Trino is a distributed SQL query engine designed to query large data sets distributed over one or more heterogeneous data sources. Recently, a few customers approached us with a dilemma on how to deploy Trino on their Azure environment in a secure and scalable fashion that complements their existing On-Premises setup and since there was no holistic documentation available so far for such a use case this led to the creation of this article.
This is an optional section to replicate the environment that we have used for our deployment. Below are the Azure CLI commands to create / replicate environment, please skip this section entirely if using existing resources or you may pick and choose missing resources for deployment.
Following assumptions are made while considering the deployment
The following pre-requisites are required to get started
The Following Azure Resources will be deployed as a part of this section
Note: Use appropriate resource naming conventions, since the below resource names might not be available
Important: Please select your SKU's based on your requirements, the below SKUs are used for demonstration purposes and are not to be considered for Production Deployment or as Best Practice from Microsoft
Let's create an RG to hold all the resources created for this tutorial, helps better organize and makes cleanup of the newly created resources easier.
az group create -l centralindia -n TrinoRG
Next, we need to create a Virtual Network and its corresponding Subnets to hold all resource addresses, since everything will be deployed privately.
Virtual Network with Default Subnet:
az network vnet create --name trinoVirtualNetwork --resource-group TrinoRG --address-prefixes 10.0.0.0/8 --location centralindia --subnet-name DefaultSubnet --subnet-prefixes 10.0.0.0/24
Please select address space per requirement, the above address space is for demonstration purpose only.
Subnet for Azure VM Resources:
az network vnet subnet create --name VirtualMachineSubnet --address-prefixes 10.0.1.0/24 --resource-group TrinoRG --vnet-name trinoVirtualNetwork
Subnet for Private Endpoint Resources:
az network vnet subnet create --name PrivateEndpointSubnet --address-prefixes 10.0.2.0/24 --resource-group TrinoRG --vnet-name trinoVirtualNetwork
Subnet for Azure Bastion Resources:
az network vnet subnet create --name AzureBastionSubnet --address-prefixes 10.0.3.0/24 --resource-group TrinoRG --vnet-name trinoVirtualNetwork
Subnet for Private Azure Kubernetes Cluster Resources:
az network vnet subnet create --name KubernetesPrivateClusterSubnet --address-prefixes 10.1.0.0/16 --resource-group TrinoRG --vnet-name trinoVirtualNetwork
Since, the Azure environment has very restricted connectivity i.e. No SSH or RDP, we will use Azure Bastion to securely connect to the VMs from local machines
Azure Bastion Public IP:
az network public-ip create --resource-group TrinoRG --name AzureBastionPIP --sku Standard --location centralindia
Azure Bastion Service Provisioning:
az network bastion create --name TrinoBastion --sku Basic --public-ip-address AzureBastionPIP --resource-group TrinoRG --vnet-name trinoVirtualNetwork --location centralindia
Most of the resources we will deploy will have public internet connectivity disabled and we will use Azure VMs to orchestrate and deploy to such resources.
az vm create --name DeveloperVM --resource-group TrinoRG --admin-username devadmin --admin-password Some-Strong-Password-4-Here --authentication-type password --vnet-name trinoVirtualNetwork --subnet VirtualMachineSubnet --image UbuntuLTS --size Standard_B4ms --public-ip-address '""' --nsg-rule NONE
Once the Azure VM is deployed, please follow the below mentioned manual steps to setup rest of the Azure Resources.
Manual Steps:
Important: All further steps would be carried out in the Azure CLI of the Ubuntu VM |
As a recommended good practice for Synapse deployment, we will deploy 2 storage accounts viz. One for Synapse to store the Spark Logs & Spark Warehouse data for Managed Tables and other where all the data resides in datalake (bronze or silver or golden). We are creating storage accounts with no public internet connectivity, just the Subnet where the VM resides, and the Private Endpoints are valid connectivity options.
DataLake Storage Account Provisioning:
az storage account create --name trinodatalake --resource-group TrinoRG --location centralindia --access-tier Hot --kind StorageV2 --allow-blob-public-access false --enable-hierarchical-namespace true --sku Standard_RAGRS --https-only true --min-tls-version TLS1_2 --require-infrastructure-encryption true --public-network-access Disabled --publish-internet-endpoints false --publish-microsoft-endpoints false --bypass AzureServices --default-action Deny
Enable Blob & Container Delete Retention:
az storage account blob-service-properties update --account-name trinodatalake --resource-group TrinoRG --enable-delete-retention true --delete-retention-days 7 --enable-container-delete-retention true --container-delete-retention-days 7
Enable Service Endpoint of Storage Account on Virtual Machine Subnet to connect securely and create containers (file systems):
az network vnet subnet update -g TrinoRG --vnet-name trinoVirtualNetwork --name VirtualMachineSubnet --service-endpoints Microsoft.Storage
Temporarily Enable Public access to Storage Account to configure Networking Rules:
az storage account update --name trinodatalake --public-network-access Enabled
Allow Virtual Machine Subnet Traffic to Storage Account via Networking Rule:
az storage account network-rule add -g TrinoRG --account-name trinodatalake --vnet-name trinoVirtualNetwork --subnet VirtualMachineSubnet
Datalake Container (File System) Provisioning:
export trinodatalakesakey=$(az storage account keys list -g TrinoRG -n trinodatalake --query [0].value -o tsv)
az storage container create --name datalake --account-name trinodatalake --account-key $trinodatalakesakey --public-access off
Disable Public Access & Virtual Machine Access to Storage Account (All communications will now be routed via Private Endpoints):
az storage account update --name trinodatalake --public-network-access Disabled
Synapse Primary Storage Account Provisioning:
az storage account create --name trinosynapseprimary --resource-group TrinoRG --location centralindia --access-tier Hot --kind StorageV2 --allow-blob-public-access false --enable-hierarchical-namespace true --sku Standard_RAGRS --https-only true --min-tls-version TLS1_2 --require-infrastructure-encryption true --public-network-access Disabled --publish-internet-endpoints false --publish-microsoft-endpoints false --bypass AzureServices --default-action Deny
Enable Blob & Container Delete Retention:
az storage account blob-service-properties update --account-name trinosynapseprimary --resource-group TrinoRG --enable-delete-retention true --delete-retention-days 7 --enable-container-delete-retention true --container-delete-retention-days 7
Temporarily Enable Public access to Storage Account to configure Networking Rules:
az storage account update --name trinosynapseprimary --public-network-access Enabled
Allow Virtual Machine Subnet Traffic to Storage Account via Networking Rule:
az storage account network-rule add -g TrinoRG --account-name trinosynapseprimary --vnet-name trinoVirtualNetwork --subnet VirtualMachineSubnet
Synapse & Hive Warehouse Container (File System) Provisioning:
export trinosynapseprimarysakey=$(az storage account keys list -g TrinoRG -n trinosynapseprimary --query [0].value -o tsv)
az storage container create --name synapse --account-name trinosynapseprimary --account-key $trinosynapseprimarysakey --public-access off
az storage container create --name warehouse --account-name trinosynapseprimary --account-key $trinosynapseprimarysakey --public-access off
Disable Public Access & Virtual Machine Access to Storage Account (All communications will now be routed via Private Endpoints):
az storage account update --name trinosynapseprimary --public-network-access Disabled
We will create a Synapse Workspace that resides in a Managed Virtual Network and has Data Exfiltration Protection Enabled to comply with the Security Policies.
export tenantId=$(az account tenant list --query [0].tenantId -o tsv)
az synapse workspace create --name trinosynapse --resource-group TrinoRG --location centralindia --storage-account trinosynapseprimary --file-system synapse --sql-admin-login-user devadmin --sql-admin-login-password Some-Strong-Password-4-Here --enable-managed-virtual-network true --prevent-data-exfiltration true --allowed-tenant-ids $tenantId
az synapse spark pool create --name SparkPool --node-count 5 --node-size Large --resource-group TrinoRG --spark-version 3.2 --workspace-name trinosynapse --enable-auto-pause true --delay 15 --enable-auto-scale true --max-node-count 5 --min-node-count 3
Manual Steps:
Since az synapse command is still in preview there are a few missing functionalities below are some manual tasks to be performed
Next, we will create an Azure SQL Database to act as the Hive Metastore DB, we are selecting Azure SQL since it is supported by Hive Standalone Metastore server and developers comfort level.
az sql server create --name trinoexternalmetastore --resource-group TrinoRG --admin-password Some-Strong-Password-4-Here --admin-user devadmin --enable-public-network false --location centralindia --minimal-tls-version 1.2 --restrict-outbound-network-access true
az sql db create --name HiveMetastore --resource-group TrinoRG --server trinoexternalmetastore --auto-pause-delay 60 --compute-model Serverless --read-scale Disabled --zone-redundant false --family Gen5 --edition GeneralPurpose --min-capacity 1 --capacity 2 --max-size 32GB --backup-storage-redundancy Local --yes
Azure Container Registry to hold the images that we will create for Hive Metastore, Trino. Please note that only Premium SKU offers Private Endpoint connectivity and hence we are selecting it.
az acr create --name trinoregistry --resource-group TrinoRG --sku Premium --location centralindia --allow-trusted-services true --default-action Deny --public-network-enabled false --zone-redundancy Disabled
Next, we will create an Azure Kubernetes Private Cluster.
Pre-requisites Setup: Service Principal to own the AKS Resource
az ad sp create-for-rbac --name spTrinoAks
Manual Steps:
Copy the "appId" from the output of above command and assign it to the $appId variable
Copy the "password" from the output of the above command and assign it to the $password variable.
PS - Password will be visible only once, please store any place safe.
For Example:
export appId="<appId GUID>"
export password="<appId Password>"
Networking Configurations to support AKS Private Cluster:
Route Table:
az network route-table create --name rtTrinoAks --resource-group TrinoRG
Attach Route Table to Kubernetes Private Cluster Subnet:
az network vnet subnet update --name KubernetesPrivateClusterSubnet --resource-group TrinoRG --vnet-name trinoVirtualNetwork --route-table rtTrinoAks
Storing Networking Resource IDs to variables:
export vnetId=$(az network vnet list -g TrinoRG --query [0].id -o tsv)
export subnetId=$(az network vnet subnet list -g TrinoRG --vnet-name trinoVirtualNetwork --query [4].id -o tsv)
export routeTableId=$(az network route-table list -g TrinoRG --query [0].id -o tsv)
Azure RBAC Permissions:
az role assignment create --assignee $appId --scope $vnetId --role Contributor
az role assignment create --assignee $appId --scope $subnetId --role Contributor
az role assignment create --assignee $appId --scope $routeTableId --role Contributor
Azure Kubernetes Service Private Cluster:
az aks create --resource-group TrinoRG --name trinoaks --location centralindia --generate-ssh-keys --enable-private-cluster --network-plugin kubenet --disable-public-fqdn --service-cidr 10.10.0.0/16 --dns-service-ip 10.10.0.10 --vnet-subnet-id $subnetId --docker-bridge-address 172.17.0.1/16 --pod-cidr 10.245.0.0/16 --service-principal $appId --client-secret $password --outbound-type userDefinedRouting --attach-acr trinoregistry --enable-cluster-autoscaler --min-count 3 --max-count 10 --node-vm-size Standard_E8_v5
Note: Trino is an In-Memory Operation service, it is recommended to use Azure E-Series VMs as Nodes for Node Pools for a better performance.
The final step is to connect all services created above via Private Endpoint connectivity
Storage Accounts (ADLS Gen2)
Private DNS Zone**
az network private-dns zone create --resource-group TrinoRG --name "privatelink.dfs.core.windows.net"
Private DNS Link
az network private-dns link vnet create --resource-group TrinoRG --zone-name "privatelink.dfs.core.windows.net" --name DfsCoreLink --virtual-network trinoVirtualNetwork --registration-enabled false
Private Endpoints: Datalake Storage Account:
export trinodatalakeid=$(az storage account list --resource-group TrinoRG --query '[0].[id]' -o tsv)
az network private-endpoint create --connection-name TrinoDataLakePeConnection --name TrinoDataLakePe --private-connection-resource-id $trinodatalakeid --resource-group TrinoRG --subnet PrivateEndpointSubnet --group-id dfs --vnet-name trinoVirtualNetwork
az network private-endpoint dns-zone-group create --resource-group TrinoRG --endpoint-name TrinoDataLakePe --name DfsZoneGroup --private-dns-zone "privatelink.dfs.core.windows.net" --zone-name AdlsDfsZone
Private Endpoints: Synapse Primary Storage Account
export trinosynapseprimaryid=$(az storage account list --resource-group TrinoRG --query '[1].[id]' -o tsv)
az network private-endpoint create --connection-name TrinoSynapsePrimaryPeConnection --name TrinoSynapsePrimaryPe --private-connection-resource-id $trinosynapseprimaryid --resource-group TrinoRG --subnet PrivateEndpointSubnet --group-id dfs --vnet-name trinoVirtualNetwork
az network private-endpoint dns-zone-group create --resource-group TrinoRG --endpoint-name TrinoSynapsePrimaryPe --name DfsZoneGroup --private-dns-zone "privatelink.dfs.core.windows.net" --zone-name AdlsDfsZone
Azure SQL Server
Private DNS Zone**
az network private-dns zone create --resource-group TrinoRG --name "privatelink.database.windows.net"
Private DNS Link
az network private-dns link vnet create --resource-group TrinoRG --zone-name "privatelink.database.windows.net" --name SqlServerDatabaseLink --virtual-network trinoVirtualNetwork --registration-enabled false
Private Endpoints: Azure SQL
export hivemetastoredbid=$(az sql server list -g TrinoRG --query [0].id -o tsv)
az network private-endpoint create --connection-name TrinoExternalMetastoreConnection --name TrinoExternalMetastorePe --private-connection-resource-id $hivemetastoredbid --resource-group TrinoRG --subnet PrivateEndpointSubnet --group-id sqlServer --vnet-name trinoVirtualNetwork
az network private-endpoint dns-zone-group create --resource-group TrinoRG --endpoint-name TrinoExternalMetastorePe --name SqlServerZoneGroup --private-dns-zone "privatelink.database.windows.net" --zone-name SqlDatabaseZone
Azure Container Registry
Private DNS Zone**
az network private-dns zone create --resource-group TrinoRG --name "privatelink.azurecr.io"
Private DNS Link
az network private-dns link vnet create --resource-group TrinoRG --zone-name "privatelink.azurecr.io" --name AcrLink --virtual-network trinoVirtualNetwork --registration-enabled false
Private Endpoints: Azure Container Registry
export trinoregistryid=$(az acr list -g TrinoRG --query [0].id -o tsv)
az network private-endpoint create --connection-name TrinoRegistryConnection --name TrinoRegistryPe --private-connection-resource-id $trinoregistryid --resource-group TrinoRG --subnet PrivateEndpointSubnet --group-id registry --vnet-name trinoVirtualNetwork
az network private-endpoint dns-zone-group create --resource-group TrinoRG --endpoint-name TrinoRegistryPe --name AcrZoneGroup --private-dns-zone "privatelink.azurecr.io" --zone-name RegistryZone
**To be carried out on Networking / Connectivity Subscription, if we are using Enterprise Scale Landing Zone
Congratulations, we have successfully deployed the required Infrastructure considering Data & Information Security Policies.
With the Infrastructure in place, let's get cracking towards setting up Trino on Azure Kubernetes Services.
Connecting to Delta Lake from Trino is possible via Trino Delta Lake Connector. However, Trino Delta Connector has an inherent dependency on Hive Metastore, luckily from version 3 of Hive onwards we have a Standalone Metastore server without the need to configure Hive, HDFS and other Hadoop Complications, since this is a Trino Installation we will go ahead with the Standalone Server.
Configuration Steps:
Login to Ubuntu VM using Bastion and follow the commands below. We will be using the Ubuntu VM as an orchestration layer to setup Hive Schema on Azure SQL DB using the inbuilt Hive SchemaTool.
Version Variables:
export HiveMetastoreVersion="3.1.3"
export HadoopVersion="3.3.4"
export MsSQLDriverVersion="11.2.0"
Java 11 JDK:
sudo apt-get install openjdk-11-jdk -y
Hive Metastore Standalone Binaries:
wget https://repo1.maven.org/maven2/org/apache/hive/hive-standalone-metastore/${HiveMetastoreVersion}/hive-standalone-metastore-${HiveMetastoreVersion}-bin.tar.gz
tar -xvf hive-standalone-metastore-${HiveMetastoreVersion}-bin.tar.gz
rm -f hive-standalone-metastore-${HiveMetastoreVersion}-bin.tar.gz
mv apache-hive-metastore-${HiveMetastoreVersion}-bin metastore
Apache Hadoop Binaries (HADDOP_HOME variable needs to be defined to use SchemaTool):
wget --no-check-certificate https://dlcdn.apache.org/hadoop/common/hadoop-${HadoopVersion}/hadoop-${HadoopVersion}.tar.gz
tar -xvf hadoop-${HadoopVersion}.tar.gz
rm -f hadoop-${HadoopVersion}.tar.gz
mv hadoop-${HadoopVersion} hadoop
MSSQL Driver Jar:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/${MsSQLDriverVersion}.jre8/mssql-jdbc-${MsSQLDriverVersion}.jre8.jar
mv mssql-jdbc-${MsSQLDriverVersion}.jre8.jar metastore/lib/
Setting Hadoop & Java Variables:
export HADOOP_HOME=/home/$USER/hadoop
export JAVA_HOME=/usr/lib/jvm/java-1.11.0-openjdk-amd64
Modifying Hive Schema Creation Script for Bug Fixes:
cat <<EOT >> metastore/scripts/metastore/upgrade/mssql/hive-schema-3.1.0.mssql.sql
-- -----------------------------------------------------------------
-- HIVE-19416
-- -----------------------------------------------------------------
ALTER TABLE TBLS ADD WRITE_ID bigint NOT NULL DEFAULT(0);
ALTER TABLE PARTITIONS ADD WRITE_ID bigint NOT NULL DEFAULT(0);
EOT
Note: Please ensure the formatting of the SQL file post the above command
Modifying Metastore Site XML to add connection properties to Azure SQL Database:
mv metastore/conf/metastore-site.xml metastore/conf/metastore-site.xml.bak
cat <<EOT >> metastore/conf/metastore-site.xml
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:sqlserver://trinoexternalmetastore.database.windows.net:1433;database=HiveMetastore;encrypt=true;trustServerCertificate=false;hostNameInCertificate=*.database.windows.net;loginTimeout=30;</value>
<description>Azure SQL Database Connection String without UserName and Password</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.microsoft.sqlserver.jdbc.SQLServerDriver</value>
<description>com.microsoft.sqlserver.jdbc.SQLServerDriver</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>devadmin@trinoexternalmetastore</value>
<description>Hive/Admin user for Azure SQL</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>Some-Strong-Password-4-Here</value>
<description>Password for Hive/Admin User</description>
</property>
</configuration>
EOT
Note: Please ensure the formatting of the XML file post the above command
Running Hive SchemaTool to create schema on Azure SQL Database:
metastore/bin/schematool -initSchema -dbType mssql
The Hive SchemaTool will connect to your Azure SQL Database using the credentials and connection string provided in the metastore-site.xml file and initialize the database schema.
Since we don't have a helm chart (as of me writing this documentation) for Standalone Hive Metastore server we will be creating a custom docker image to have this hosted on AKS with replica set enabled. Login to Ubuntu VM using Bastion and follow the commands below
mkdir hms-docker
cd hms-docker
Artifact: DockerFile
cat <<EOT >> Dockerfile
FROM ubuntu:22.04
ARG HiveMetastoreVersion="3.1.3"
ARG HadoopVersion="3.3.4"
ARG MsSQLDriverVersion="11.2.0"
# Install Wget, Java 1.8 and clean cache
RUN apt-get update \
&& apt-get install -y openjdk-8-jdk wget \
&& apt-get clean all
# Setup Hive Metastore Standalone Packages
RUN wget https://repo1.maven.org/maven2/org/apache/hive/hive-standalone-metastore/${HiveMetastoreVersion}/hive-standalone-metastore-${HiveMetastoreVersion}-bin.tar.gz && \
tar -xvf hive-standalone-metastore-${HiveMetastoreVersion}-bin.tar.gz && \
rm -f hive-standalone-metastore-${HiveMetastoreVersion}-bin.tar.gz && \
mv apache-hive-metastore-${HiveMetastoreVersion}-bin /opt/metastore
# Setup Hadoop Packages
RUN wget --no-check-certificate https://dlcdn.apache.org/hadoop/common/hadoop-${HadoopVersion}/hadoop-${HadoopVersion}.tar.gz && \
tar -xvf hadoop-${HadoopVersion}.tar.gz && \
rm -f hadoop-${HadoopVersion}.tar.gz && \
mv hadoop-${HadoopVersion} /opt/hadoop-${HadoopVersion}/
# Copy MSSQL JDBC connector
RUN wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/${MsSQLDriverVersion}.jre8/mssql-jdbc-${MsSQLDriverVersion}.jre8.jar && \
cp mssql-jdbc-${MsSQLDriverVersion}.jre8.jar /opt/metastore/lib/
# Download Dependencies
RUN wget https://repo1.maven.org/maven2/org/apache/hadoop/hadoop-azure/3.3.4/hadoop-azure-3.3.4.jar \
&& wget https://repo1.maven.org/maven2/com/microsoft/azure/azure-storage/8.6.6/azure-storage-8.6.6.jar \
&& wget https://repo1.maven.org/maven2/org/apache/hadoop/thirdparty/hadoop-shaded-guava/1.1.1/hadoop-shaded-guava-1.1.1.jar \
&& wget https://repo1.maven.org/maven2/org/codehaus/jackson/jackson-core-asl/1.9.13/jackson-core-asl-1.9.13.jar \
&& wget https://repo1.maven.org/maven2/org/eclipse/jetty/jetty-util-ajax/11.0.11/jetty-util-ajax-11.0.11.jar \
&& wget https://repo1.maven.org/maven2/org/wildfly/openssl/wildfly-openssl/2.2.5.Final/wildfly-openssl-2.2.5.Final.jar \
&& wget https://repo1.maven.org/maven2/org/apache/hadoop/hadoop-azure-datalake/3.3.4/hadoop-azure-datalake-3.3.4.jar \
&& wget https://repo1.maven.org/maven2/com/microsoft/azure/azure-data-lake-store-sdk/2.3.10/azure-data-lake-store-sdk-2.3.10.jar \
&& cp *.jar /opt/metastore/lib \
&& rm -f *.jar
# environment variables requested by Hive metastore
ENV JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
ENV HADOOP_HOME=/opt/hadoop-${HadoopVersion}
ENV HADOOP_CONF_DIR=/etc/hadoop/conf
# replace a library and add missing libraries
RUN rm -f /opt/metastore/lib/guava-19.0.jar \
&& cp ${HADOOP_HOME}/share/hadoop/common/lib/guava-27.0-jre.jar /opt/metastore/lib
WORKDIR /opt/metastore
# Copy Hive metastore configuration file
COPY metastore-site.xml /opt/metastore/conf/
COPY core-site.xml /etc/hadoop/conf
# Expose Metastore Port
EXPOSE 9083
# Start Metastore Services
ENTRYPOINT ["/bin/bash"]
CMD ["/opt/metastore/bin/start-metastore"]
EOT
Artifact: metastore-site.xml
cat <<EOT >> metastore-site.xml
<configuration>
<property>
<name>fs.azure.account.key.trinosynapseprimary.dfs.core.windows.net</name>
<value>trinosynapseprimary-Storage-Account-Key-Goes-Here</value>
</property>
<property>
<name>fs.azure.account.key.trinodatalake.dfs.core.windows.net</name>
<value>trinodatalake-Storage-Account-Key-Goes-Here</value>
</property>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:sqlserver://trinoexternalmetastore.database.windows.net:1433;database=HiveMetastore;encrypt=true;trustServerCertificate=false;hostNameInCertificate=*.database.windows.net;loginTimeout=30;</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.microsoft.sqlserver.jdbc.SQLServerDriver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>devadmin@trinoexternalmetastore</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>Some-Strong-Password-4-Here</value>
</property>
<property>
<name>hive.metastore.event.db.notification.api.auth</name>
<value>false</value>
</property>
<property>
<name>metastore.thrift.uris</name>
<value>thrift://localhost:9083</value>
<description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>
</property>
<property>
<name>metastore.task.threads.always</name>
<value>org.apache.hadoop.hive.metastore.events.EventCleanerTask</value>
</property>
<property>
<name>metastore.expression.proxy</name>
<value>org.apache.hadoop.hive.metastore.DefaultPartitionExpressionProxy</value>
</property>
<property>
<name>metastore.warehouse.dir</name>
<value>abfss://warehouse@trinosynapseprimary.dfs.core.windows.net/trino</value>
</property>
<property>
<name>hive.cluster.delegation.token.store.class</name>
<value>org.apache.hadoop.hive.thrift.DBTokenStore</value>
</property>
</configuration>
EOT
Artifact: core-site.xml
cat <<EOT >> core-site.xml
<configuration>
<property>
<name>fs.azure.account.auth.type.trinodatalake.dfs.core.windows.net</name>
<value>SharedKey</value>
</property>
<property>
<name>fs.azure.account.key.trinodatalake.dfs.core.windows.net</name>
<value>trinodatalake-Storage-Account-Key-Goes-Here</value>
</property>
<property>
<name>fs.azure.account.auth.type.trinosynapseprimary.dfs.core.windows.net</name>
<value>SharedKey</value>
</property>
<property>
<name>fs.azure.account.key.trinosynapseprimary.dfs.core.windows.net</name>
<value>trinosynapseprimary-Storage-Account-Key-Goes-Here</value>
</property>
</configuration>
EOT
Build & Deploy Hive Metastore Image to Azure Container Registry
Navigate to the directory where the Dockerfile, core-site.xml and metastore-site.xml are located
docker build --no-cache -t hivemetastore/3.1.3:v1 .
az acr login --name trinoregistry
docker tag hivemetastore/3.1.3:v1 trinoregistry.azurecr.io/hivemetastore/3.1.3:v1
docker push trinoregistry.azurecr.io/hivemetastore/3.1.3:v1
Deploy HiveMetastore Image on Kubernetes
Artifact: Service YAML for Standalone Hive Metastore Image
cat <<EOT >> aks-hm-service.yaml
apiVersion: v1
kind: Service
metadata:
name: hivemetastore
namespace: default
spec:
ports:
- targetPort: 9083
name: metastore
port: 9083
protocol: TCP
selector:
app: hivemetastore
EOT
Artifact: Deployment YAML for Standalone Hive Metastore Image
cat <<EOT >> aks-hm-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: hivemetastore
namespace: default
spec:
replicas: 3
selector:
matchLabels:
app: hivemetastore
template:
metadata:
labels:
app: hivemetastore
spec:
nodeSelector:
kubernetes.io/os: linux
containers:
- name: hivemetastore
image: trinoregistry.azurecr.io/hivemetastore/3.1.3:v1
ports:
- containerPort: 9083
resources:
requests:
cpu: '1'
memory: 3G
limits:
cpu: '2'
memory: 6G
EOT
Connect to AKS Cluster & Deploy YAML files:
az aks get-credentials --resource-group TrinoRG --name trinoaks
kubectl apply -f .
Check Hive Metastore Deployment & Service:
kubectl get pods -o wide
kubectl get service -o wide
kubectl get deployment -o wide
Deploy Trino Image to Azure Container Registry
Since the Azure Environment doesn't have access to Docker Hub, we will download the Trino Image on Developer VM and Push it to Container Registry. Login to Ubuntu VM using Bastion and follow the commands below
export http.proxy=http://proxyserver.domain.com
export https.proxy=https://proxyserver.domain.com
docker pull trinodb/trino
docker tag trinodb/trino trinoregistry.azurecr.io/trinodb/trino:v1
docker push trinoregistry.azurecr.io/trinodb/trino:v1
Deploy Trino Helm Chart to Azure Container Registry
Since outbound internet connectivity is restricted from Azure Network, we cannot download the Trino helm charts from GitHub, moreover open-source Trino helm charts is using HPA based on Compute parameter, whereas for Trino Memory Consumption should be the defining parameter. To mitigate this, we have created a custom helm chart using Developer VM, please find the chart attached below. It has few modifications from the open-source helm chart viz. HPA configured with Memory as the metric instead of CPU, using ACR Image rather than Docker Hub Image etc.
Note: If Memory utilization based HPA is not needed, please use the open-source helm charts available here.
Assign AcrPush Role to AKS Service Principal:
export registryId=$(az acr show --name trinoregistry --query id --output tsv)
export PASSWORD="<appId Password>"
export USER_NAME="<appId GUID>"
az role assignment create --assignee $USER_NAME --scope $registryId --role AcrPush
Push Custom Helm Chart to Azure Container Registry:
helm registry login trinoregistry.azurecr.io --username $USER_NAME --password $PASSWORD
helm push trino-v2.tgz oci://trinoregistry.azurecr.io/trino-helm
Deploy Trino Cluster using Custom Helm Chart & Trino Image from Azure Container Registry:
helm upgrade --install trino oci://trinoregistry.azurecr.io/trino-helm/trino --set image.repository=trinoregistry.azurecr.io/trinodb/trino --set server.workers=3 --set server.config.query.maxMemory=4GB --set server.config.query.maxMemoryPerNode=2GB --set server.config.memory.heapHeadroomPerNode=1GB --set worker.jvm.maxHeapSize=4G --set coordinator.jvm.maxHeapSize=4G --set server.autoscaling.enabled=true --set server.autoscaling.targetRAMUtilizationAverageValue=3000Mi
Check Trino Deployment & Service:
kubectl get pods -o wide
kubectl get service -o wide
kubectl get deployment -o wide
Please note the ClusterIP of the Metastore Service, it will be needed in the next steps
kubectl edit configmap trino-catalog
Make changes to following configurations under delta.properties
hive.metastore.uri=thrift://<ClusterIP of HiveMetastore Service>:9083
hive.azure.abfs-storage-account=<DataLake ADLS Account Name where Delta Table Resides>
hive.azure.abfs-access-key=<Access Key for the above mentioned Storage Account>
Note: If more than one datalake (ADLS) account please repeat the properties of "hive.azure.abfs-storage-account" and "hive.azure.abfs-access-key".
Restart Trino Cluster for Changes to take effect
kubectl rollout restart deploy trino-coordinator trino-worker
At this point, we have a Trino Cluster deployed and configured with Delta Connector.
1. Check Connectivity to Trino CLI & Its Catalogs
kubectl get pods -o wide
Please note the Pod Name for Trino Coordinator, will be needed in the next step to connect to Trino CLI
kubectl exec -it trino-coordinator-pod-name -- /usr/bin/trino --debug
Once inside of the Trino CLI, we can quickly check for Catalogs
SHOW CATALOGS;
2. Check Connectivity to Delta Catalog
USE delta.default;
Trino CLI should connect to the Delta Catalog successfully
3. Create Table in Delta Catalog
In this example, I am using Bike Sharing dataset link
CREATE TABLE delta.default.bikeShareDelta (
dummy bigint
)
WITH (
location = 'abfss://datalake@dtrinodatalake.dfs.core.windows.net/bikeSharingDelta/',
checkpoint_interval = 5
);
Trino will auto-detect schema from the Delta Table if dummy schema is provided.
4. Select Query from Delta Table
SELECT * FROM delta.default.bikeShareDelta LIMIT 10;
5. Update / Delete Query to Delta Table
UPDATE delta.default.bikeShareDelta SET atemp = atemp + 1 WHERE cnt > 150;
6. Check for HPA Autoscaling
This check would be difficult to simulate since it requires heavy load conditions, the memory
configurations mentioned during helm install / upgrade etc. the essential passing score would be trino-worker pods scaling up and down per memory consumption of the pods. It typically takes 5 min to scale down.
7. Simulate Failure of Pods
Let's delete one of the Trino Worker pods manually to see how Kubernetes Handles the failure
kubectl delete pod trino-worker-5dbcff8f8f-h0dt9
Now, let's check the current status of the deployment
kubectl get pods -o wide
We will see the deleted pod was quickly replaced by a new pod by Kubernetes.
8. Scaling of Trino Cluster
Let's increase the minimum number of worker pods from 3 to 5 and increase the memory threshold from 3000Mi to 3500Mi.
helm upgrade --install trino oci://trinoregistry.azurecr.io/trino-helm/trino --set image.repository=trinoregistry.azurecr.io/trinodb/trino --set server.workers=5 --set server.config.query.maxMemory=4GB --set server.config.query.maxMemoryPerNode=2GB --set server.config.memory.heapHeadroomPerNode=1GB --set worker.jvm.maxHeapSize=4G --set coordinator.jvm.maxHeapSize=4G --set server.autoscaling.enabled=true --set server.autoscaling.targetRAMUtilizationAverageValue=3500Mi
There are several other parameters that can be tweaked for the Trino Helm Chart, the documentation can be found here link
Building a Holistic Analytics Ecosystem
With Trino successfully setup in the above steps, Next step was to build a Centralized Analytics Framework that can spans across multiple technologies like Azure Synapse Analytics, Azure Databricks, Azure HDInsight, Custom Spark & Hadoop Installations on Azure VMs or Azure Kubernetes Services and even On-Premises Spark & Hadoop deployments.
Please refer to the below Documentation links that mentions connecting the various analytics platform to the Hive Metastore that we created, please note we are using 3.1 version of Standalone Hive Metastore.
There are of course some pros and cons to the above approach the biggest pro is we have a centralized metastore where all the tables are created and consumed across multiple platforms at the same time this feature is also the biggest con considering the governance issues, simply put who creates which tables, who edits it, who owns it, while these questions don't seem quite grave but in an enterprise setting these quickly become bottlenecks for progress.
In this particular case Trino was operated in Read-Only mode for consumption by various Business Intelligence Tools and Data Analysts using SQL IDEs to fire queries and gain insights on a huge datalake. This approach solves the data governance issues since all the development for Data Lake & Creation of Tables can be done using a single platform like Azure Synapse Analytics or Azure Databricks or relevant services. Of course, it bears mentioning that this approach while it was favorable in this use case, for other use cases the mileage may vary.
In this tutorial, we setup Hive Metastore Server in HA Mode in AKS, Hive Metastore DB in Azure SQL, Trino Cluster with HPA on Memory Auto-scale in AKS and we connected Trino Cluster to Azure Synapse Analytics to build a holistic ecosystem. By taking advantage of the Kubernetes ecosystem, we were able to build out the Trino cluster per business requirements and demonstrate elasticity & resiliency by killing a pod.
Azure Kubernetes Services and Trino work well together and can be used for large scale deployments.
You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.