best practices
73 TopicsStrategic Solutions for Seamless Integration of Third-Party SaaS
Modern systems must be modular and interoperable by design. Integration is no longer a feature, it’s a requirement. Developers are expected to build architectures that connect easily with third-party platforms, but too often, core systems are designed in isolation. This disconnect creates friction for downstream teams and slows delivery. At Microsoft, SaaS platforms like SAP SuccessFactors and Eightfold support Talent Acquisition by handling functions such as requisition tracking, application workflows, and interview coordination. These tools help reduce costs and free up engineering focus for high-priority areas like Azure and AI. The real challenge is integrating them with internal systems such as Demand Planning, Offer Management, and Employee Central. This blog post outlines a strategy centered around two foundational components: an Integration and Orchestration Layer, and a Messaging Platform. Together, these enable real-time communication, consistent data models, and scalable integration. While Talent Acquisition is the use case here, the architectural patterns apply broadly across domains. Whether you're embedding AI pipelines, managing edge deployments, or building platform services, thoughtful integration needs to be built into the foundation, not bolted on later.Quest 9: I want to use a ready-made template
Building robust, scalable AI apps is tough, especially when you want to move fast, follow best practices, and avoid being bogged down by endless setup and configuration. In this quest, you’ll discover how to accelerate your journey from prototype to production by leveraging ready-made templates and modern cloud tools. Say goodbye to decision fatigue and hello to streamlined, industry-approved workflows you can make your own. 👉 Want to catch up on the full program or grab more quests? https://aka.ms/JSAIBuildathon 💬 Got questions or want to hang with other builders? Join us on Discord — head to the #js-ai-build-a-thon channel. 🚀 What You’ll Build A fully functional AI application deployed on Azure, customized to solve a real problem that matters to you. A codebase powered by a production-grade template, complete with all the necessary infrastructure-as-code, deployment scripts, and best practices already baked in. Your own proof-of-concept or MVP, ready to scale or show off to the world. 🛠️ What You Need ✅ GitHub account ✅ Visual Studio Code ✅ Node.js ✅ Azure subscription (free trials and student credits available) ✅ Azure Developer CLI (azd) ✅ The curiosity to solve a meaningful problem! 🧩 Concepts You’ll Explore Azure Developer CLI (azd) Learn how azd, the developer-first command-line tool, simplifies authentication, setup, deployment, and teardown for Azure apps. With intuitive commands like azd up and azd deploy, you can go from zero to running in the cloud no deep cloud expertise required. Production-Ready Templates Explore a gallery of customizable templates designed to get your app up and running fast. These templates aren’t just “hello world” they feature scalable architectures, sample code, and reusable infrastructure assets to launch everything from chatbots to RAG apps to full-stack solutions. Infrastructure as Code (IaC) See how every template bundle configuration files and scripts to automatically provision the cloud resources you need. You’ll get a taste of how top teams ship secure, repeatable, and maintainable systems without manually clicking through Azure dashboards. Best Practices by Default Templates incorporate industry best practices for code structure, deployment, and scalability. You’ll spend less time researching how to “do it right” and more time customizing your application to fit your unique use case. Customization for Real-World Problems Pick a template and make it yours! Whether you’re building a copilot, a chat-enabled app, or a serverless API, you’ll learn how to tweak the frontend, swap out backend logic, connect your own data sources, and shape the solution to solve a real-world problem you care about. 🌟 Bonus Resources Here are some additional resources to help you learn more about the Azure Developer CLI (azd) and the templates available: Kickstart JS/TS projects with azd Templates Kickstart your JavaScript projects with azd on YouTube ⏭️ What next? With production-ready templates and the Azure Developer CLI at your side, you’re ready to move from “just an idea” to a deployable, scalable solution without reinventing the wheel. Start with the right foundation, customize with confidence, and ship your next AI app like a pro! Once you have your project done, ensure you submit to GitHub - Azure-Samples/JS-AI-Build-a-thonMastering Query Fields in Azure AI Document Intelligence with C#
Introduction Azure AI Document Intelligence simplifies document data extraction, with features like query fields enabling targeted data retrieval. However, using these features with the C# SDK can be tricky. This guide highlights a real-world issue, provides a corrected implementation, and shares best practices for efficient usage. Use case scenario During the cause of Azure AI Document Intelligence software engineering code tasks or review, many developers encountered an error while trying to extract fields like "FullName," "CompanyName," and "JobTitle" using `AnalyzeDocumentAsync`: The error might be similar to Inner Error: The parameter urlSource or base64Source is required. This is a challenge referred to as parameter errors and SDK changes. Most problematic code are looks like below in C#: BinaryData data = BinaryData.FromBytes(Content); var queryFields = new List<string> { "FullName", "CompanyName", "JobTitle" }; var operation = await client.AnalyzeDocumentAsync( WaitUntil.Completed, modelId, data, "1-2", queryFields: queryFields, features: new List<DocumentAnalysisFeature> { DocumentAnalysisFeature.QueryFields } ); One of the reasons this failed was that the developer was using `Azure.AI.DocumentIntelligence v1.0.0`, where `base64Source` and `urlSource` must be handled internally. Because the older examples using `AnalyzeDocumentContent` no longer apply and leading to errors. Practical Solution Using AnalyzeDocumentOptions. Alternative Method using manual JSON Payload. Using AnalyzeDocumentOptions The correct method involves using AnalyzeDocumentOptions, which streamlines the request construction using the below steps: Prepare the document content: BinaryData data = BinaryData.FromBytes(Content); Create AnalyzeDocumentOptions: var analyzeOptions = new AnalyzeDocumentOptions(modelId, data) { Pages = "1-2", Features = { DocumentAnalysisFeature.QueryFields }, QueryFields = { "FullName", "CompanyName", "JobTitle" } }; - `modelId`: Your trained model’s ID. - `Pages`: Specify pages to analyze (e.g., "1-2"). - `Features`: Enable `QueryFields`. - `QueryFields`: Define which fields to extract. Run the analysis: Operation<AnalyzeResult> operation = await client.AnalyzeDocumentAsync( WaitUntil.Completed, analyzeOptions ); AnalyzeResult result = operation.Value; The reason this works: The SDK manages `base64Source` automatically. This approach matches the latest SDK standards. It results in cleaner, more maintainable code. Alternative method using manual JSON payload For advanced use cases where more control over the request is needed, you can manually create the JSON payload. For an example: var queriesPayload = new { queryFields = new[] { new { key = "FullName" }, new { key = "CompanyName" }, new { key = "JobTitle" } } }; string jsonPayload = JsonSerializer.Serialize(queriesPayload); BinaryData requestData = BinaryData.FromString(jsonPayload); var operation = await client.AnalyzeDocumentAsync( WaitUntil.Completed, modelId, requestData, "1-2", features: new List<DocumentAnalysisFeature> { DocumentAnalysisFeature.QueryFields } ); When to use the above: Custom request formats Non-standard data source integration Key points to remember Breaking changes exist between preview versions and v1.0.0 by checking the SDK version. Prefer `AnalyzeDocumentOptions` for simpler, error-free integration by using built-In classes. Ensure your content is wrapped in `BinaryData` or use a direct URL for correct document input: Conclusion In this article, we have seen how you can use AnalyzeDocumentOptions to significantly improves how you integrate query fields with Azure AI Document Intelligence in C#. It ensures your solution is up-to-date, readable, and more reliable. Staying aware of SDK updates and evolving best practices will help you unlock deeper insights from your documents effortlessly. Reference Official AnalyzeDocumentAsync Documentation. Official Azure SDK documentation. Azure Document Intelligence C# SDK support add-on query field.317Views0likes0CommentsThe Importance of Implementing SAST Scanning for Infrastructure as Code
As the adoption of Infrastructure as Code (IaC) continues to grow, ensuring the security of your infrastructure configurations becomes increasingly crucial. Static Application Security Testing (SAST) scanning for IaC can play a vital role in identifying vulnerabilities early in the development lifecycle. This blog explores why implementing SAST scanning for IaC is essential for maintaining secure and robust infrastructure.Elevate Your AI Expertise with Microsoft Azure: Learn Live Series for Developers
Unlock the power of Azure AI and master the art of creating advanced AI agents. Starting from April 15th, embark on a comprehensive learning journey designed specifically for professional developers like you. This series will guide you through the official Microsoft Learn Plan, focused on the latest agentic AI technologies and innovations. Generative AI has evolved to become an essential tool for crafting intelligent applications, and AI agents are leading the charge. Here's your opportunity to deepen your expertise in building powerful, scalable agent-based solutions using the Azure AI Foundry, Azure AI Agent Service, and the Semantic Kernel Framework. Why Attend? This Learn Live series will provide you with: In-depth Knowledge: Understand when to use AI agents, how they function, and the best practices for building them on Azure. Hands-On Experience: Gain practical skills to develop, deploy, and extend AI agents with Azure AI Agent Service and Semantic Kernel SDK. Expert Insights: Learn directly from Microsoft’s AI professionals, ensuring you're at the cutting edge of agentic AI technologies. Session Highlights Plan and Prepare AI Solutions | April 15th Explore foundational principles for creating secure and responsible AI solutions. Prepare your development environment for seamless integration with Azure AI services. Fundamentals of AI Agents | April 22nd Discover the transformative role of language models and generative AI in enabling intelligent applications. Understand Microsoft Copilot and effective prompting techniques for agent development. Azure AI Agent Service: Build and Integrate | April 29th Dive into the key features of Azure AI Agent Service. Build agents and learn how to integrate them into your applications for enhanced functionality. Extend with Custom Tools | May 6th Enhance your agents’ capabilities with custom tools, tailored to meet unique application requirements. Develop an AI agent with Semantic Kernel | May 8th Use Semantic Kernel to connect to an Azure AI Foundry project Create Azure AI Agent Service agents using the Semantic Kernel SDK Integrate plugin functions with your AI agent Orchestrate Multi-Agent Solutions with Semantic Kernel | May 13th Utilize the Semantic Kernel SDK to create collaborative multi-agent systems. Develop and integrate custom plugin functions for versatile AI solutions. What You’ll Achieve By the end of this series, you'll: Build AI agents using cutting-edge Azure technologies. Integrate custom tools to extend agent capabilities. Develop multi-agent solutions with advanced orchestration. How to Join Don't miss out on this opportunity to level up your development skills and lead the next wave of AI-driven applications. Register now and set yourself apart as a developer equipped to harness the full potential of Azure AI. 🔗 Register for the Learn Live Series 🗓️ Format: Livestream | Language: English | Topic: Core AI Development Take the leap and transform how you develop intelligent applications with Microsoft Azure AI. Does this revision align with your vision for the blog? Let me know if there's anything else you'd like to refine or add!Essential Microsoft Resources for MVPs & the Tech Community from the AI Tour
Unlock the power of Microsoft AI with redeliverable technical presentations, hands-on workshops, and open-source curriculum from the Microsoft AI Tour! Whether you’re a Microsoft MVP, Developer, or IT Professional, these expertly crafted resources empower you to teach, train, and lead AI adoption in your community. Explore top breakout sessions covering GitHub Copilot, Azure AI, Generative AI, and security best practices—designed to simplify AI integration and accelerate digital transformation. Dive into interactive workshops that provide real-world applications of AI technologies. Take it a step further with Microsoft’s Open-Source AI Curriculum, offering beginner-friendly courses on AI, Machine Learning, Data Science, Cybersecurity, and GitHub Copilot—perfect for upskilling teams and fostering innovation. Don’t just learn—lead. Access these resources, host impactful training sessions, and drive AI adoption in your organization. Start sharing today! Explore now: Microsoft AI Tour Resources.The Startup Stage: Powered by Microsoft for Startups at European AI & Cloud Summit
🚀 The Startup Stage: Powered by Microsoft for Startups Take center stage in the AI and Cloud Startup Program, designed to showcase groundbreaking solutions and foster collaboration between ambitious startups and influential industry leaders. Whether you're looking to engage with potential investors, connect with clients, or share your boldest ideas, this is the platform to shine. Why Join the Startup Stage? Pitch to Top Investors: Present your ideas and products to key decision-makers in the tech world. Gain Visibility: Showcase your startup in a vibrant space dedicated to innovation, and prove that you are the next game-changer. Learn from the Best: Hear from visionary thought leaders and Microsoft AI experts about the latest trends and opportunities in AI and cloud. AI Competition: Propel Your Startup Stand out from the crowd by participating in the European AI & Cloud Startup Stage competition, exclusively designed for startups leveraging Microsoft AI and Azure Cloud services. Compete for prestigious awards, including: $25,000 in Microsoft Azure Credits. A mentoring session with Marco Casalaina, VP of Products at Azure AI. Fast-track access to exclusive resources through the Microsoft for Startups Program. Get ready to deliver a pitch in front of a live audience and an expert panel on 28 May 2025! How to Apply: Ensure your startup solution runs on Microsoft AI and Azure Cloud. Register as a conference and submit your Competiton application form before the deadline: 14 April 2025 at European Cloud and AI Summit. Be Part of Something Bigger This isn’t just an exhibition—it’s a thriving community where innovation meets opportunity. Don’t miss out! With tickets already 70% sold out, now’s the time to secure your spot. Join the European AI and Cloud Startup Area with a booth or launchpad, and accelerate your growth in the tech ecosystem. Visit the [European AI and Cloud Summit](https://ecs.events) website to learn more, purchase tickets, or apply for the AI competition. Download the sponsorship brochure for detailed insights into this once-in-a-lifetime event. Together, let’s shape the future of cloud technology. See you in Düsseldorf! 🎉Measure and Mitigate Risks for a generative AI app in Azure AI Foundry
Join Microsoft Reactor on March 4th at 9 AM PST (6 PM CET) for an exclusive session on responsible AI strategies in Azure AI Foundry. Learn how to identify and mitigate AI risks using tools like Azure AI Content Safety and built-in safety monitoring. Engage in a live Q&A on Discord (March 5th) and participate in the Microsoft Learn Challenge (until March 11th). Led by April Speight, Principal Cloud Advocate at Microsoft, this session is essential for developers building trustworthy AI applications.Get certified as an Azure AI Engineer (AI-102) this summer?
For developers, the accreditation as an Azure AI Engineer—certified through the rigorous AI-102 exam—has become a golden ticket to career acceleration. It isn’t just about coding chatbots or fine-tuning machine learning models; it’s about gaining the confidence (for you and for your business) that you can wield Azure’s toolkits to configure AI solutions that augment human capability. Before we dive in, if you’re planning to become certified as an Azure AI Engineer, you may find this Starter Learning Plan (AI 102) valuable—recently curated by a group of Microsoft experts, purposed for your success. We recommend adding it to your existing learning portfolio. It’s a light introduction that should take less than four hours, but it offers a solid glimpse into what to expect on your journey and the breadth of solutions you might craft in the future. From revolutionizing customer service with intelligent agents to optimizing supply chains through predictive analytics, Azure AI engineers sit at the confluence of technological ingenuity and business transformation. For those with an appetite for problem-solving and a vision for AI-driven futures, this certification isn’t just another badge—it’s an assertion of expertise in a field where demand is outpacing supply. Securing that expertise, however, requires more than just a weekend of cramming. Today’s aspiring AI engineers navigate an ecosystem of learning that is as modern as the field itself. Gone are the days when one could rely solely on a stack of manuals; now, candidates immerse themselves in a medley of Microsoft Learn modules, hands-on labs, AI-powered coding assistants, and community-led study groups. Many take a pragmatic approach—building real-world projects using Azure Cognitive Services and Machine Learning Studio to cement their understanding. Others lean on practice exams and structured courses from platforms like Pluralsight and Udemy, ensuring they aren’t just memorizing but internalizing the core principles. The AI-102 exam doesn’t reward rote knowledge—it demands fluency in designing, deploying, and securing AI solutions, making thorough preparation an indispensable part of the journey. In addition to the above learning plan, we want to provide a few other tips. Understand the Exam Objectives: Begin by thoroughly reviewing the AI-102 study guide. This document outlines the key topics and skills assessed, including planning and managing Azure AI solutions, implementing computer vision and natural language processing solutions, and deploying generative AI solutions. Familiarizing yourself with these areas will provide a structured framework for your study plan. Continuous memorization is part of your study. But if you get a bit bored from your flashcards and look for more ‘storyline’ style learning content, we recommend adding MSFT employee created learning plan to your mix. They are scenario-based and focus more on providing you with a structured understanding of how to do XYZ on Azure. Here are 3 examples: Modernize for AI Readiness Build AI apps with Azure Re-platform AI applications Hands-On Practice: Practical experience is invaluable. Engage with Azure AI services directly by building projects that incorporate computer vision, natural language processing, and other AI functionalities. This hands-on approach not only reinforces theoretical knowledge but also enhances problem-solving skills in real-world scenarios. Utilize Practice Assessments: Assess your readiness by taking advantage of free practice assessments provided by Microsoft. These assessments mirror the style and difficulty of actual exam questions, offering detailed feedback and links to additional resources for areas that may require further study. Stay Updated on Exam Changes: Certification exams are periodically updated to reflect the latest technologies and practices. Regularly consult the official exam page to stay informed about any changes in exam content or structure. Participate in Community Discussions: Engaging with peers through forums and study groups can provide diverse perspectives and insights. The Microsoft Q&A platform is a valuable resource for asking questions, sharing knowledge, and learning from the experiences of others preparing for the same certification. By systematically incorporating these strategies into your preparation, you'll be well-positioned to excel in the AI-102 exam and advance your career as an Azure AI Engineer. If you have additional tips or thoughts, let us know in the comments area. Good luck!