best practices
1580 TopicsTable Talk: Sentinel’s New ThreatIntel Tables Explained
Key updates On April 3, 2025, we publicly previewed two new tables to support STIX (Structured Threat Information eXpression) indicator and object schemas: ThreatIntelIndicators and ThreatIntelObjects. To summarize the important dates: 31 August 2025: We previously announced that data ingestion into the legacy ThreatIntelligenceIndicator table would cease on the 31 July 2025. This timeline has now been extended and the transition to the new ThreatIntelIndicators and ThreatIntelObjects tables will proceed gradually until the 31 st of August 2025. The legacy ThreatIntelligenceIndicator table (and its data) will remain accessible, but no new data will be ingested there. Therefore, any custom content, such as workbooks, queries, or analytic rules, must be updated to reference the new tables to remain effective. If you require additional time to complete the transition, you may opt into dual ingestion, available until the official retirement on the 21 st of May 2026, by submitting a service request. Update: The opt in to dual ingestion ended on the 31 st of August and is no longer available. 31 May 2026: ThreatIntelligenceIndicator table support will officially retire, along with ingestion for those who opt-in to dual ingestion beyond 31 st of August 2025. What’s changing: ThreatIntelligenceIndicator VS ThreatIntelIndicators and ThreatIntelObjects Let’s summarise some of the differences. ThreatIntelligenceIndicator ThreatIntelIndicators ThreatIntelObjects Status Extended data ingestion until the 31st of August 2025, opt-in for additional transition time available. Deprecating on the 31st of May 2026 — no new data will be ingested after this date. Active and recommended for use. Active and complementary to ThreatIntelIndicators. Purpose Originally used to store threat indicators like IPs, domains, file hashes, etc. Stores individual threat indicators (e.g. IPs, URLs, file hashes). Stores STIX objects that provide contextual information about indicators. Examples: threat actors, malware families, campaigns, attack patterns. Characteristics Limitations: o Less flexible schema. o Limited support for STIX (Structured Threat Information eXpression) objects. o Fewer contextual fields for advanced threat hunting. Enhancements: o Supports STIX indicator schema. o Includes a Data column with full STIX object data for advanced hunting. o More metadata fields (e.g. LastUpdateMethod, IsDeleted, ExpirationDateTime). o Optimized ingestion: excludes empty key-value pairs and truncates long fields over 1,000 characters. Enhancements: o Enables richer threat modelling and correlation. o Includes fields like StixType, Data.name, and Data.id. Use cases Legacy structure for storing threat indicators. Migration Note: All custom queries, workbooks, and analytics rules referencing this table must be updated to use the new tables . Ideal for identifying and correlating specific threat indicators. Threat Hunting: Enables hunting for specific Indicators of Compromise (IOCs) such as IP addresses, domains, URLs, and file hashes. Alerting and detection rules: Can be used in KQL queries to match against telemetry from other tables (e.g. Heartbeat, SecurityEvent, Syslog). Example query correlating threat indictors with threat actors: Identify threat actors associated with specific threat indicators Useful for understanding relationships between indicators and broader threat entities (e.g. linking an IP to a known threat actor). Threat Hunting: Adds context by linking indicators to threat actors, malware families, campaigns, and attack patterns. Alerting and Detection rules: Enrich alerts with context like threat actor names or malware types. Example query listing TI objects related to a threat actor, “Sangria Tempest.” : List threat intelligence data related to a specific threat actor Benefits of the new ThreatIntelIndicators and ThreatIntelObjects tables In addition to what’s mentioned in the table above. The main benefits of the new table include: Enhanced Threat Visibility More granular and complete representation of threat intelligence. Support for advanced hunting scenarios and complex queries. Enables attribution to threat actors and relationships. Improved Hunting Capabilities Generic parsing of STIX patterns. Support for all valid STIX IoCs, Threat Actors, Identity, and Relationships. Important considerations with the new TI tables Higher volume of data being ingested: o In the legacy ThreatIntelligenceIndicator table, only the IoCs with Domain, File, URL, Email, Network sources were ingested. o The new tables support a richer schema and more detailed data, which naturally increases ingestion volume. The Data column in both tables stores full STIX objects, which are often large and complex. o Additional metadata fields (e.g. LastUpdateMethod, StixType, ObservableKey, etc.) increase the size of each record. o Some fields like description and pattern are truncated if they exceed 1,000 characters, indicating the potential for large payloads. More Frequent Republishing: o Previously, threat intelligence data was republished over a 12-day cycle. Now, all data is republished every 7-10 days (depending on the volume), increasing the ingestion frequency and volume. o This change ensures fresher data but also leads to more frequent ingestion events. o Republishing is identifiable by LastUpdateMethod = "LogARepublisher" in the tables. Optimising data ingestion There are two mechanisms to optimise threat intelligence data ingestion and control costs. Ingestion Rules See ingestion rules in action: Introducing Threat Intelligence Ingestion Rules | Microsoft Community Hub Sentinel supports Ingestion Rules that allow organizations to curate data before it enters the system. In addition, it enables: Bulk tagging, expiration extensions, and confidence-based filtering, which may increase ingestion if more indicators are retained or extended. Custom workflows that may result in additional ingestion events (e.g. tagging or relationship creation). Reduce noise by filtering out irrelevant TI Objects such as low confidence indicators (e.g. drop IoCs with a confidence score of 0), suppressing known false positives from specific feeds. These rules act on TI objects before they are ingested into Sentinel, giving you control over what gets stored and analysed. Data Collection Rules/ Data transformation As mentioned above, the ThreatIntelIndicator and ThreatIntelObjects tables include a “Data” column which contains the full original STIX object and may or may not be relevant for your use cases. In this case, you can use a workspace transformation DCR to filter it out using a KQL query. An example of this KQL query is shown below, for more examples about using workspace transformations and data collection rules: Data collection rules in Azure Monitor - Azure Monitor | Microsoft Learn source | project-away Data A few things to note: o Your threat intelligence feeds will be sending the additional STIX objects data and IoCs, if you prefer not to receive these additional TI data, you can modify the filter out data according to your use cases as mentioned above. More examples are mentioned here: Work with STIX objects and indicators to enhance threat intelligence and threat hunting in Microsoft Sentinel (Preview) - Microsoft Sentinel | Microsoft Learn o If you are using a data collection rule to make schema changes such as dropping the fields, please make sure to modify the relevant Sentinel content (e.g. detection rules, Workbooks, hunting queries, etc.) that are using the tables. o There can be additional cost when using Azure Monitor data transformations (such as when adding extra columns or adding enrichments to incoming data), however, if Sentinel is enabled on the Log Analytics workspace, there is no filtering ingestion charge regardless of how much data the transformation filters. New Threat Intelligence solution pack available A new Threat Intelligence solution is now available in the Content Hub, providing out of the box content referencing the new TI tables, including 51 detection rules, 5 hunting queries, 1 Workbook, 5 data connectors and also includes 1 parser for the ThreatIntelIndicators. Please note, the previous Threat Intelligence solution pack will be deprecated and removed after the transition phase. We recommend downloading the new solution from the Content Hub as shown below: Conclusion The transition to the new ThreatIntelIndicators and ThreatIntelObjects tables provide enhanced support for STIX schemas, improved hunting and alerting features, and greater control over data ingestion allowing organizations to get deeper visibility and more effective threat detection. To ensure continuity and maximize value, it's essential to update existing content and adopt the new Threat Intelligence solution pack available in the Content Hub. Related content and references: Work with STIX objects and indicators to enhance threat intelligence and threat hunting in Microsoft Sentinel Curate Threat Intelligence using Ingestion Rules Announcing Public Preview: New STIX Objects in Microsoft Sentinel3KViews1like2CommentsSecuring Microsoft Teams Best Practice & Cleanup
Working on a Teams environment that is fully wide open. They have seen a huge number of Teams created and are looking to get it under control from here on out and clean up. Wanted some advice on what you recommend doing and if you have the instructions to complete those tasks. My thoughts would be Block Team creation where IT would need to be involved. I believe this could be accomplished by blocking M365 Group creation. Way to expire or archive old Teams with no activity in X amount of time? Also, how are you handling guest invitations or access? Doing anything that allows but might secure things better for the organization. Thanks all.82Views0likes3CommentsSearch Less, Build More: Inner Sourcing with GitHub CoPilot and ADO MCP Server
Developers burn cycles context‑switching: opening five repos to find a logging example, searching a wiki for a data masking rule, scrolling chat history for the latest pipeline pattern. Organisations that I speak to are often on the path of transformational platform engineering projects but always have the fear or doubt of "what if my engineers don't use these resources". While projects like Backstage still play a pivotal role in inner sourcing and discoverability I also empathise with developers who would argue "How would I even know in the first place, which modules have or haven't been created for reuse". In this blog we explore how we can ensure organisational standards and developer satisfaction without any heavy lifting on either side, no custom model training, no rewriting or relocating of repositories and no stagnant local data. Using GitHub CoPilot + Azure DevOps MCP server (with the free `code_search` extension) we turn the IDE into an organizational knowledge interface. Instead of guessing or re‑implementing, engineers can start scaffolding projects or solving issues as they would normally (hopefully using CoPilot) and without extra prompting. GitHub CoPilot can lean into organisational standards and ensure recommendations are made with code snippets directly generated from existing examples. What Is the Azure DevOps MCP Server + code_search Extension? MCP (Model Context Protocol) is an open standard that lets agents (like GitHub Copilot) pull in structured, on-demand context from external systems. MCP servers contain natural language explanations of the tools that the agent can utilise allowing dynamic decision making of when to implement certain toolsets over others. The Azure DevOps MCP Server is the ADO Product Team's implementation of that standard. It exposes your ADO environment in a way CoPilot can consume. Out of the box it gives you access to: Projects – list and navigate across projects in your organization. Repositories – browse repos, branches, and files. Work items – surface user stories, bugs, or acceptance criteria. Wiki's – pull policies, standards, and documentation. This means CoPilot can ground its answers in live ADO content, instead of hallucinating or relying only on what’s in the current editor window. The ADO server runs locally from your own machine to ensure that all sensitive project information remains within your secure network boundary. This also means that existing permissions on ADO objects such as Projects or Repositories are respected. Wiki search tooling available out of the box with ADO MCP server is very useful however if I am honest I have seen these wiki's go unused with documentation being stored elsewhere either inside the repository or in a project management tool. This means any tool that needs to implement code requires the ability to accurately search the code stored in the repositories themself. That is where the code_search extension enablement in ADO is so important. Most organisations have this enabled already however it is worth noting that this pre-requisite is the real unlock of cross-repo search. This allows for CoPilot to: Query for symbols, snippets, or keywords across all repos. Retrieve usage examples from code, not just docs. Locate standards (like logging wrappers or retry policies) wherever they live. Back every recommendation with specific source lines. In short: MCP connects CoPilot to Azure DevOps. code_search makes that connection powerful by turning it into a discovery engine. What is the relevance of CoPilot Instructions? One of the less obvious but most powerful features of GitHub CoPilot is its ability to follow instructions files. CoPilot automatically looks for these files and uses them as a “playbook” for how it should behave. There are different types of instructions you can provide: Organisational instructions – apply across your entire workspace, regardless of which repo you’re in. Repo-specific instructions – scoped to a particular repository, useful when one project has unique standards or patterns. Personal instructions – smaller overrides layered on top of global rules when a local exception applies. (Stored in .github/copilot-instructions.md) In this solution, I’m using a single personal instructions file. It tells CoPilot: When to search (e.g., always query repos and wikis before answering a standards question). Where to look (Azure DevOps repos, wikis, and with code_search, the code itself). How to answer (responses must cite the repo/file/line or wiki page; if no source is found, say so). How to resolve conflicts (prefer dated wiki entries over older README fragments). As a small example, a section of a CoPilot instruction file could look like this: # GitHub Copilot Instructions for Azure DevOps MCP Integration This project uses Azure DevOps with MCP server integration to provide organizational context awareness. Always check to see if the Azure DevOps MCP server has a tool relevant to the user's request. ## Core Principles ### 1. Azure DevOps Integration - **Always prioritize Azure DevOps MCP tools** when users ask about: - Work items, stories, bugs, tasks - Pull requests and code reviews - Build pipelines and deployments - Repository operations and branch management - Wiki pages and documentation - Test plans and test cases - Project and team information ### 2. Organizational Context Awareness - Before suggesting solutions, **check existing organizational patterns** by: - Searching code across repositories for similar implementations - Referencing established coding standards and frameworks - Looking for existing shared libraries and utilities - Checking architectural decision records (ADRs) in wikis ### 3. Cross-Repository Intelligence - When providing code suggestions: - **Search for existing patterns** in other repositories first - **Reference shared libraries** and common utilities - **Maintain consistency** with organizational standards - **Suggest reusable components** when appropriate ## Tool Usage Guidelines ### Work Items and Project Management When users mention bugs, features, tasks, or project planning: ``` ✅ Use: wit_my_work_items, wit_create_work_item, wit_update_work_item ✅ Use: wit_list_backlogs, wit_get_work_items_for_iteration ✅ Use: work_list_team_iterations, core_list_projects The result... To test this I created 3 ADO Projects each with between 1-2 repositories. The repositories were light with only ReadMe's inside containing descriptions of the "repo" and some code snippets examples for usage. I have then created a brand-new workspace with no context apart from a CoPilot instructions document (which could be part of a repo scaffold or organisation wide) which tells CoPilot to search code and the wikis across all ADO projects in my demo environment. It returns guidance and standards from all available repo's and starts to use it to formulate its response. In the screenshot I have highlighted some key parts with red boxes. The first being a section of the readme that CoPilot has identified in its response, that part also highlighted within CoPilot chat response. I have highlighted the rather generic prompt I used to get this response at the bottom of that window too. Above I have highlighted CoPilot using the MCP server tooling searching through projects, repo's and code. Finally the largest box highlights the instructions given to CoPilot on how to search and how easily these could be optimised or changed depending on the requirements and organisational coding standards. How did I implement this? Implementation is actually incredibly simple. As mentioned I created multiple projects and repositories within my ADO Organisation in order to test cross-project & cross-repo discovery. I then did the following: Enable code_search - in your Azure DevOps organization (Marketplace → install extension). Login to Azure - Use the AZ CLI to authenticate to Azure with "az login". Create vscode/mcp.json file - Snippet is provided below, the organisation name should be changed to your organisations name. Start and enable your MCP server - In the mcp.json file you should see a "Start" button. Using the snippet below you will be prompted to add your organisation name. Ensure your CoPilot agent has access to the server under "tools" too. View this setup guide for full setup instructions (azure-devops-mcp/docs/GETTINGSTARTED.md at main · microsoft/azure-devops-mcp) Create a CoPilot Instructions file - with a search-first directive. I have inserted the full version used in this demo at the bottom of the article. Experiment with Prompts – Start generic (“How do we secure APIs?”). Review the output and tools used and then tailor your instructions. Considerations While this is a great approach I do still have some considerations when going to production. Latency - Using MCP tooling on every request will add some latency to developer requests. We can look at optimizing usage through copilot instructions to better identify when CoPilot should or shouldn't use the ADO MCP server. Complex Projects and Repositories - While I have demonstrated cross project and cross repository retrieval my demo environment does not truly simulate an enterprise ADO environment. Performance should be tested and closely monitored as organisational complexity increases. Public Preview - The ADO MCP server is moving quickly but is currently still public preview. We have demonstrated in this article how quickly we can make our Azure DevOps content discoverable. While their are considerations moving forward this showcases a direction towards agentic inner sourcing. Feel free to comment below how you think this approach could be extended or augmented for other use cases! Resources MCP Server Config (/.vscode/mcp.json) { "inputs": [ { "id": "ado_org", "type": "promptString", "description": "Azure DevOps organization name (e.g. 'contoso')" } ], "servers": { "ado": { "type": "stdio", "command": "npx", "args": ["-y", "@azure-devops/mcp", "${input:ado_org}"] } } } CoPilot Instructions (/.github/copilot-instructions.md) # GitHub Copilot Instructions for Azure DevOps MCP Integration This project uses Azure DevOps with MCP server integration to provide organizational context awareness. Always check to see if the Azure DevOps MCP server has a tool relevant to the user's request. ## Core Principles ### 1. Azure DevOps Integration - **Always prioritize Azure DevOps MCP tools** when users ask about: - Work items, stories, bugs, tasks - Pull requests and code reviews - Build pipelines and deployments - Repository operations and branch management - Wiki pages and documentation - Test plans and test cases - Project and team information ### 2. Organizational Context Awareness - Before suggesting solutions, **check existing organizational patterns** by: - Searching code across repositories for similar implementations - Referencing established coding standards and frameworks - Looking for existing shared libraries and utilities - Checking architectural decision records (ADRs) in wikis ### 3. Cross-Repository Intelligence - When providing code suggestions: - **Search for existing patterns** in other repositories first - **Reference shared libraries** and common utilities - **Maintain consistency** with organizational standards - **Suggest reusable components** when appropriate ## Tool Usage Guidelines ### Work Items and Project Management When users mention bugs, features, tasks, or project planning: ``` ✅ Use: wit_my_work_items, wit_create_work_item, wit_update_work_item ✅ Use: wit_list_backlogs, wit_get_work_items_for_iteration ✅ Use: work_list_team_iterations, core_list_projects ``` ### Code and Repository Operations When users ask about code, branches, or pull requests: ``` ✅ Use: repo_list_repos_by_project, repo_list_pull_requests_by_repo ✅ Use: repo_list_branches_by_repo, repo_search_commits ✅ Use: search_code for finding patterns across repositories ``` ### Documentation and Knowledge Sharing When users need documentation or want to create/update docs: ``` ✅ Use: wiki_list_wikis, wiki_get_page_content, wiki_create_or_update_page ✅ Use: search_wiki for finding existing documentation ``` ### Build and Deployment When users ask about builds, deployments, or CI/CD: ``` ✅ Use: pipelines_get_builds, pipelines_get_build_definitions ✅ Use: pipelines_run_pipeline, pipelines_get_build_status ``` ## Response Patterns ### 1. Discovery First Before providing solutions, always discover organizational context: ``` "Let me first check what patterns exist in your organization..." → Search code, check repositories, review existing work items ``` ### 2. Reference Organizational Standards When suggesting code or approaches: ``` "Based on patterns I found in your [RepositoryName] repository..." "Following your organization's standard approach seen in..." "This aligns with the pattern established in [TeamName]'s implementation..." ``` ### 3. Actionable Integration Always offer to create or update Azure DevOps artifacts: ``` "I can create a work item for this enhancement..." "Should I update the wiki page with this new pattern?" "Let me link this to the current iteration..." ``` ## Specific Scenarios ### New Feature Development 1. **Search existing repositories** for similar features 2. **Check architectural patterns** and shared libraries 3. **Review related work items** and planning documents 4. **Suggest implementation** based on organizational standards 5. **Offer to create work items** and documentation ### Bug Investigation 1. **Search for similar issues** across repositories and work items 2. **Check related builds** and recent changes 3. **Review test results** and failure patterns 4. **Provide solution** based on organizational practices 5. **Offer to create/update** bug work items and documentation ### Code Review and Standards 1. **Compare against organizational patterns** found in other repositories 2. **Reference coding standards** from wiki documentation 3. **Suggest improvements** based on established practices 4. **Check for reusable components** that could be leveraged ### Documentation Requests 1. **Search existing wikis** for related content 2. **Check for ADRs** and technical documentation 3. **Reference patterns** from similar projects 4. **Offer to create/update** wiki pages with findings ## Error Handling If Azure DevOps MCP tools are not available or fail: 1. **Inform the user** about the limitation 2. **Provide alternative approaches** using available information 3. **Suggest manual steps** for Azure DevOps integration 4. **Offer to help** with configuration if needed ## Best Practices ### Always Do: - ✅ Search organizational context before suggesting solutions - ✅ Reference existing patterns and standards - ✅ Offer to create/update Azure DevOps artifacts - ✅ Maintain consistency with organizational practices - ✅ Provide actionable next steps ### Never Do: - ❌ Suggest solutions without checking organizational context - ❌ Ignore existing patterns and implementations - ❌ Provide generic advice when specific organizational context is available - ❌ Forget to offer Azure DevOps integration opportunities --- **Remember: The goal is to provide intelligent, context-aware assistance that leverages the full organizational knowledge base available through Azure DevOps while maintaining development efficiency and consistency.**116Views1like1CommentGeneral Availability of on-demand scanning in Defender for Storage
When malware protection was initially introduced in Microsoft Defender for Storage, security administrators gained the ability to safeguard their storage accounts against malicious attacks during blob uploads. This means that any time a blob is uploaded—whether from a web application, server, or user—into an Azure Blob storage account, malware scanning powered by Microsoft Defender Antivirus examines the content for any malicious elements within the blob, including images, documents, zip files and more. 🎉In addition to on-upload malware protection, on-demand malware protection is now generally available in Defender for Storage. This article will focus on the recent general availability release of on-demand scanning, its benefits, and how security administrators can begin utilizing this feature today. 🐞What is on-demand scanning? Unlike on-upload scanning, which is a security feature that automatically scan blobs for malware when they are uploaded or modified in cloud storage environments, on-demand scanning enables security administrators to manually initiate scans of entire storage accounts for malware. This scanning method is particularly beneficial for targeted security inspections, incident response, creating security baselines for specific storage accounts and compliance with regulatory requirements. Scanning all existing blobs in a storage account can be performed via the API and Azure portal user interface. Let's explore some use case scenarios and reasons why an organization might need on-demand scanning. Contoso IT Department has received a budget to enhance the security of their organization following the acquisition of Company Z. Company Z possesses numerous storage accounts containing dormant data that have not undergone malware scanning. To integrate these data blobs into the parent organization, it is essential that they first be scanned for malware. Contoso Health Department is mandated by state law to conduct a scheduled quarterly audit of the storage accounts. This audit ensures data integrity and provides documented assurance of security controls for compliance. It involves verifying that important cloud-hosted documents are secure and free from malware. Contoso Legal Corporation experienced a recent breach where the attacker accessed several storage accounts. Post-breach, Contoso Legal Corporation must assure their stakeholders that the storage accounts are free of malware. 💪Benefits of on-demand scanning On-demand scanning offers numerous advantages that security administrators can leverage to safeguard their cloud storage. This section details some of the primary benefits associated with on-demand scanning. Native scan experience: Malware scanning within Defender for Storage is an agentless solution that requires no additional infrastructure. Security administrators can enable malware protection easily and observe its benefits immediately. Respond to security events: Immediately scan storage accounts when security alerts or suspicious activities are detected. Security audits and maintenance: Performing on-demand scans is crucial during security audits or routine system maintenance to ensure that all potential issues are identified and addressed. Latest malware signatures: On-demand scanning ensures that the most recent malware signatures are utilized. Blobs that may have previously evaded detection by previous malware scans can be identified during a manual scan. 🫰On-demand scanning cost estimation Organizations frequently possess extensive amounts of data and require scanning for malware due to various security considerations. A lack of understanding regarding the precise cost of this operation can hinder security leaders from effectively safeguarding their organization. To address this issue, Defender for Storage offers an integrated cost estimation tool within the Azure portal user interface for on-demand scanning. This new UI will display the size of the blob storage and provide estimated costs for scans based on the volume of data. Access to this crucial information facilitates budgeting processes. 🤔On-upload or on-demand scanning In the current configuration of malware protection within Defender for Storage, it is required to have on-upload malware scanning enabled to use the on-demand functionality. On-demand scanning is offered as an additional option. On-upload scanning ensures that incoming blobs are free from malware, while on-demand scanning provides malware baselines and verifies blob health using the latest malware signatures. On-upload and on-demand scanning have distinct triggers. On-upload scanning is automatically performed when new blobs are uploaded to a blob-based storage account, whereas on-demand scanning is manually triggered by a user or an API call. On-demand scanning can also be initiated by workflow automation, such as using a logic app within Azure for scheduled scans. 👟Start scanning your blobs with on-demand scanning Prerequisites Malware protection in Defender for Storage is exclusively available in the per-storage account plan. If your organization is still using the classic Defender for Storage plan, we highly recommend upgrading to take advantage of the full range of security benefits and the latest features. To get started with this agentless solution, please look at the prerequisites in our public documentation here. Test on-demand Malware Scanning Within the Microsoft Defender for Cloud Ninja Training available on GitHub, security administrators can utilize Exercise 12: Test On-demand Malware Scanning in Module 19. The exercise includes detailed instructions and screenshots for testing on-demand malware scanning. This test can be performed using the Azure Portal User Interface or API. Best Practices To maximize the effectiveness of on-demand malware scanning in Microsoft Defender for Storage, please take a look at the best practices that are outlined in our public documentation here. 📖 Conclusion In this article we have explored the newly available on-demand scanning feature in Defender for Storage, which complements existing on-upload scanning capabilities by allowing security administrators to manually initiate malware scans for storage accounts. This feature is particularly useful for targeted security checks, incident response, creating security baseline for storage accounts and compliance audits. Additionally, Defender for Storage includes a built-in cost estimation tool to help organizations budget for on-demand scanning based on their data volume. ⚙️Additional Resources Defender for Storage Malware Protection Overview On-demand malware protection in Defender for Storage On-upload malware protection in Defender for Storage We want to hear from you! Please take a moment to fill out this survey to provide direct feedback to the Defender for Storage engineering team.Case Management: Incidents, Cases, and When to Use Them
In March, Case Management went to GA status within the unified portal for customers. This introduced new functionality and experiences such as: A new case queue Custom statuses New Case task experience Linking incidents to cases This can be a little confusing for existing users who are familiar with incidents and the incident experience for either Microsoft Defender or Sentinel. Let’s break this down into more detail. What are Incidents? Incidents are artifacts that act as containers for alerts to signal that a noteworthy event took place that involves one or more malicious activities. These serve to be a single landing page for alerts, activities, entities, and more. When to use Incidents? Incidents are the default experience for analysts as they perform incident investigations and response. Incidents are where they will find any and all details available for alerts and entities while performing the basic tasks of a SOC analyst. Incidents should be used when investigating and responding to malicious activity within the environment. The current incident experience provides features such as: Alert timeline Entity mapping and tracking Entity investigation graph Copilot for Security Pre-performed investigations and responses What are Cases? Cases are artifacts that represent an actionable or trackable item, such as incident investigation, validating a threat hunting hypothesis, reviewing threat intelligence review, managing endpoint vulnerabilities, and more. They can exist without alerts or incidents. When to use Cases vs. Incidents? This section is not meant to put one over the other, but is meant to clear up some confusion. Cases serve as items that can be created to track important activities within the SOC, they don’t have to just be for incident response. A case can be created for any notable activity that the SOC performs, as mentioned above. Cases can be used as a collaboration tool within your SOC team. While cases may seem redundant to incident, that is not true one bit. Here are a few distinguishing points: As incidents are a container for alerts, cases can be a container for incidents, allowing multiple incidents to be worked on at once if they are related by threat actor, impacted entities, and more. Cases offer a native task experience, similar to the experience within Microsoft Sentinel in Azure. Cases offer attachment support, allowing analysts a more traditional case management experience that incidents do not have. Cases allow for more customization, such as custom statuses. Incidents do not offer custom statuses. Let’s look at two example scenarios: Cases with Incidents I am a SOC Analyst that is reviewing the incident queue. I find an incident that involves multiple threat types and scripts. I would like to work on this incident with my colleagues while tracking notable artifacts that we find in our investigation. For example: I visit the unified incident queue and see that I have a multi-stage incident, involving multiple alerts for multiple assets. I perform my initial triage and confirm that this is a true positive that should be addressed. I will then cut a case and attach this incident to it for collaboration. Within the case, I can add a code block to list any query that I have performed within Advanced Hunting, as well as paste results from my queries directly in the case for tracking. If using Copilot for Security, I can copy and paste the Copilot incident summary in the case so that my colleagues can get an incident summary without having to leave the case. Cases without Incidents I am a SOC Analyst that is responsible for remediating device vulnerabilities. I check our current CVE’s within Exposure Management and see that I have several devices that are currently vulnerable to CVE-2025-5419, a Microsoft Edge Chromium vulnerability. I save my list of devices to a CSV file so that I can attach it to my case. I also copy the description of the CVE to add the case notes to make it more convenient for my colleagues to join the case and not need to leave it. I then pivot to Advanced Hunting to review activities by any of these vulnerable devices. I have a match and would like to connect that result to my case, so I use Export > Copy to Clipboard so that I can paste it in the case. Back within the case, I begin uploading the CSV of exposed devices as evidence, I leave a message that is formatted to draw attention to the findings, and I paste my findings based on my query. Based on my findings, I begin generating new tasks for each device owner and pasting the instructions for remediation of the CVE. These are just some examples of the many uses for cases within the Defender Portal. Hopefully this highlights the versatility of case management today and how it can operate both with and without an incident involved. Keep an eye out for more improvements as Case Management matures. If looking to learn about case management, please check out the below resources: Public documentation: Manage security operations cases natively in the Microsoft Defender portal - Unified security operations | Microsoft Learn Video based learning: https://www.youtube.com/watch?v=G-vfMJSL11g Demo: Case Management in Microsoft Defender1.2KViews0likes0CommentsShopify Campaign Buy X Get Y fullfillment.
Hi, I understand from an article that campaign articles Buy X Get Y (campaign items) in Shopify must currently be fulfilled manually. But I’m wondering if anyone has found a workaround for this limitation. Specifically: - Is it possible to adjust the Shopify Connector so that the fulfillment process can be automated? - Alternatively, can we fulfill the order in Business Central and then have that fulfillment successfully sync back to Shopify? Here’s what I’ve found so far: - There is a synchronization function in Business Central: Sync Shipments to Shopify. - The Sales Shipment Line (Table 111) in BC has a row number that matches with the Shopify Order Line (Table 30119). - However, the Shopify Fulfillment Order Line (Table 30144) does not have a row number that links back to the Shopify Order Line (30119). This creates a problem: If the order contains both “normal” items and campaign items, then the normal items are fulfilled as expected. But the campaign items are ignored during the fulfillment process, because of the Shopify Product IDs and Variant IDs are identical. Has anyone found a way to handle this? Maybe through a modification of the connector? Or another method to make sure campaign items also get fulfilled automatically when syncing shipments from BC to Shopify? Any tips, experiences, or suggestions would be greatly appreciated!Team call handling - option to redirect calls if there is no answer
Dear Community To prevent calls from being dropped when the Teams client is offline, we have set the global calling policy 'Voicemail for inbound calls' to 'On' (AllowVoicemail: AlwaysEnabled in PowerShell CsTeamsCallingPolicy). With this setting enabled, incoming calls to users who are not logged in to a client are forwarded to their voicemail. Until recently (1-2 month?) users had the option to set the rule "When you can't answer a call" and "Ring for this many seconds before redirecting" in the Teams client. Now, only the 'Ring for this many seconds before redirecting' option is shown, and sometimes even that setting is unavailable. We cannot rule out an issue with the Teams client; however, resetting the app does not help at the moment. Reversing the entry on the calling policy 'Voicemail for inbound calls' to 'Let users decide' does solve the issue in the Teams client. However, depending on the user's configuration, calls may be dropped if the user is offline. According to Microsoft's documentation, this is an expected behaviour; however, the user should not be able to change the redirection time (fixed to thirty seconds). https://learn.microsoft.com/en-us/powershell/module/microsoftteams/set-csteamscallingpolicy -AllowVoicemail Enables inbound calls to be routed to voicemail. Valid options are: AlwaysEnabled: Calls are always forwarded to voicemail on unanswered after ringing for thirty seconds, regardless of the unanswered call forward setting for the user. AlwaysDisabled: Calls are never routed to voicemail, regardless of the call forward or unanswered settings for the user. Voicemail isn't available as a call forwarding or unanswered setting in Teams. UserOverride: Calls are forwarded to voicemail based on the call forwarding and/or unanswered settings for the user. What is the recommended policy setting for 'Voicemail for inbound calls' and how can we ensure that incoming calls are transferred to voicemail when the user is offline, while still enabling them to set 'When you can't answer a call'? Many thanks.54Views0likes1CommentChannel hidden by default. How to change?
Hello, when I create channels in a Team or a org team (Im the admin) The default way a user sees these are hidden. Even sometimes when the open the team it still wont unhide until they pin it. As a admin how can i force a new channel in a team to be always shown? I choose "automatically show this channel in everyones list, and while it is technically there, its hidden which we do not want. Thanks55KViews1like15CommentsM365 Copilot Prompt-a-thon: A Hands-On Event for Government Innovators
Ready to supercharge your workflow with AI? Join us for Power Your AI Transformation with Microsoft Cloud — a dynamic, hands-on workshop designed exclusively for government professionals! Discover how to harness the power of Copilot in Microsoft 365 GCC to tackle real-world mission scenarios, boost productivity, and collaborate with experts and peers.590Views0likes0Comments