best practices
1636 TopicsFrom Vibe Coding to Working App: How SRE Agent Completes the Developer Loop
The Most Common Challenge in Modern Cloud Apps There's a category of bugs that drive engineers crazy: multi-layer infrastructure issues. Your app deploys successfully. Every Azure resource shows "Succeeded." But the app fails at runtime with a vague error like Login failed for user ''. Where do you even start? You're checking the Web App, the SQL Server, the VNet, the private endpoint, the DNS zone, the identity configuration... and each one looks fine in isolation. The problem is how they connect and that's invisible in the portal. Networking issues are especially brutal. The error says "Login failed" but the actual causes could be DNS, firewall, identity, or all three. The symptom and the root causes are in completely different resources. Without deep Azure networking knowledge, you're just clicking around hoping something jumps out. Now imagine you vibe coded the infrastructure. You used AI to generate the Bicep, deployed it, and moved on. When it breaks, you're debugging code you didn't write, configuring resources you don't fully understand. This is where I wanted AI to help not just to build, but to debug. Enter SRE Agent + Coding Agent Here's what I used: Layer Tool Purpose Build VS Code Copilot Agent Mode + Claude Opus Generate code, Bicep, deploy Debug Azure SRE Agent Diagnose infrastructure issues and create developer issue with suggested fixes in source code (app code and IaC) Fix GitHub Coding Agent Create PRs with code and IaC fix from Github issue created by SRE Agent Copilot builds. SRE Agent debugs. Coding Agent fixes. What I Built I used VS Code Copilot in Agent Mode with Claude Opus to create a .NET 8 Web App connected to Azure SQL via private endpoint: Private networking (no public exposure) Entra-only authentication Managed identity (no secrets) Deployed with azd up. All green. Then I tested the health endpoint: $ curl https://app-tsdvdfdwo77hc.azurewebsites.net/health/sql {"status":"unhealthy","error":"Login failed for user ''.","errorType":"SqlException"} Deployment succeeded. App failed. One error. How I Fixed It: Step by Step Step 1: Create SRE Agent with Azure Access I created an SRE Agent with read access to my Azure subscription. You can scope it to specific resource groups. The agent builds a knowledge graph of your resources and their dependencies visible in the Resource Mapping view below. Step 2: Connect GitHub to SRE Agent using GitHub MCP server I connected the GitHub MCP server so the agent could read my repository and create issues. Step 3: Create Sub Agent to analyze source code I created a sub-agent for analyzing source code using GitHub mcp tools. this lets SRE Agent understand not just Azure resources, but also the Bicep and source code files that created them. "you are expert in analyzing source code (bicep and app code) from github repos" Step 4: Invoke Sub-Agent to Analyze the Error In the SRE Agent chat, I invoked the sub-agent to diagnose the error I received from my app end point. It correlated the runtime error with the infrastructure configuration Step 5: Watch the SRE Agent Think and Reason SRE Agent analyzed the error by tracing code in Program.cs, Bicep configurations, and Azure resource relationships Web App, SQL Server, VNet, private endpoint, DNS zone, and managed identity. Its reasoning process worked through each layer, eliminating possibilities one by one until it identified the root causes. Step 6: Agent Creates GitHub Issue Based on its analysis, SRE Agent summarized the root causes and suggested fixes in a GitHub issue: Root Causes: Private DNS Zone missing VNet link Managed identity not created as SQL user Suggested Fixes: Add virtualNetworkLinks resource to Bicep Add SQL setup script to create user with db_datareader and db_datawriter roles Step 7: Merge the PR from Coding Agent Assign the Github issue to Coding Agent which then creates a PR with the fixes. I just reviewed the fix. It made sense and I merged it. Redeployed with azd up, ran the SQL script: curl -s https://app-tsdvdfdwo77hc.azurewebsites.net/health/sql | jq . { "status": "healthy", "database": "tododb", "server": "tcp:sql-tsdvdfdwo77hc.database.windows.net,1433", "message": "Successfully connected to SQL Server" } 🎉 From error to fix in minutes without manually debugging a single Azure resource. Why This Matters If you're a developer building and deploying apps to Azure, SRE Agent changes how you work: You don't need to be a networking expert. SRE Agent understands the relationships between Azure resources private endpoints, DNS zones, VNet links, managed identities. It connects dots you didn't know existed. You don't need to guess. Instead of clicking through the portal hoping something looks wrong, the agent systematically eliminates possibilities like a senior engineer would. You don't break your workflow. SRE Agent suggests fixes in your Bicep and source code not portal changes. Everything stays version controlled. Deployed through pipelines. No hot fixes at 2 AM. You close the loop. AI helps you build fast. Now AI helps you debug fast too. Try It Yourself Do you vibe code your app, your infrastructure, or both? How do you debug when things break? Here's a challenge: Vibe code a todo app with a Web App, VNet, private endpoint, and SQL database. "Forget" to link the DNS zone to the VNet. Deploy it. Watch it fail. Then point SRE Agent at it and see how it identifies the root cause, creates a GitHub issue with the fix, and hands it off to Coding Agent for a PR. Share your experience. I'd love to hear how it goes. Learn More Azure SRE Agent documentation Azure SRE Agent blogs Azure SRE Agent community Azure SRE Agent home page Azure SRE Agent pricing82Views0likes0CommentsHow to Ensure Seamless Data Recovery and Deployment in Microsoft Azure
Overcoming Cosmos DB Backup and Restore Challenges with Azure Databricks The Challenge of Backing Up and Restoring Azure Cosmos DB One of the significant pain points when working with Azure Cosmos DB is the lack of instant, self-service backup restoration. While Cosmos DB is engineered for global scalability and high availability, its backup and recovery process introduces a crucial bottleneck for organizations that demand agility. Backups in Cosmos DB are created automatically, but restoring them isn’t a seamless, on-demand operation. Instead, it often involves lengthy procedures and sometimes requires intervention from Microsoft support, causing delays that can stretch from hours to even longer—depending on the size and complexity of your data. Downtime Risks: During the drawn-out restore process, your applications might face downtime or reduced performance, impacting end-users and business operations. Deployment Delays: The inability to rapidly roll back or restore data can turn even minor deployment hiccups into major headaches. Lack of Flexibility: Developers and DevOps teams miss the control of instant, self-service restores, limiting their ability to efficiently manage data recovery. Compliance Hurdles: Industries with strict regulatory requirements may struggle to meet recovery time objectives due to slow data restoration. Why Instant Restore Capabilities Matter As cloud-native environments thrive on speed and reliability, the ability to restore data instantly is more than a convenience—it’s essential for: Rapid recovery from accidental data loss or corruption. Enabling safe, confident deployments with a reliable rollback plan. Supporting dynamic test and staging environments using current data snapshots. Without instant restore, organizations face heightened risks and operational slowdowns, which can stifle innovation and erode customer trust. How Azure Databricks Offers a Solution Azure Databricks steps in as a powerful ally for teams looking to bypass these backup limitations. Combining the flexibility of Apache Spark with seamless Azure integration, Databricks allows you to automate data exports, transformations, and—most importantly—restoration workflows customized to your exact needs. Restoring Data Before Deployment: A Practical Approach Automated, Periodic Backups: Databricks notebooks can regularly export Cosmos DB collections into Azure Data Lake or Blob Storage, providing you with up-to-date data snapshots. On-Demand Restoration: When it’s time to deploy or test, Databricks can efficiently restore backup data into a separate Cosmos DB container, preserving production data and minimizing risk. Deployment Safety Net: With a fresh container ready, teams can proceed with confidence, knowing that any deployment misstep can be instantly rolled back—no more waiting for time-consuming support escalations. Seamless Automation: Databricks workflows can be integrated with CI/CD pipelines, customized for various environments, and scheduled or triggered as needed. A Sample Workflow Set up Databricks to regularly back up Cosmos DB data to Azure storage. Before deployment, launch a Databricks job to restore the latest backup into a separate Cosmos DB container. Test and verify the deployment using the restored container, ensuring maximum safety and the ability to roll back instantly if needed. Once deployment is confirmed, switch over or merge as appropriate, with minimal risk to production data. The Benefits at a Glance Minimal Downtime: Quick restoration helps avoid business disruptions during incidents or rollbacks. Operational Agility: Teams can move faster, knowing that data can be restored whenever needed. Enhanced Data Protection: Using separate containers ensures production data remains shielded from accidental changes. Efficiency Gains: Automated processes reduce manual workload and the need for direct intervention. Conclusion Azure Cosmos DB’s backup and restore limitations present real challenges for organizations seeking agility and reliability. By harnessing Azure Databricks to automate backups and enable rapid restoration into separate containers, teams can unlock a new level of safety and flexibility. This approach empowers organizations to recover quickly, deploy fearlessly, and keep innovation moving at cloud speed. Call to Action Want to simplify Azure Cosmos DB backup and restore and avoid long recovery times? 📌 Explore these resources to get started: Azure Databricks documentation | Microsoft Learn Using Databricks to Enrich Data in Cosmos DB on the Fly | by Rahul Gosavi | Medium Azure Cosmos DB Workshop - Load Data Into Cosmos DB with Azure Databricks Automating backups and on-demand restores with Azure Databricks can help you reduce downtime, deploy with confidence, and stay in control of your data.Context Engineering Lessons from Building Azure SRE Agent
We started with 100+ tools and 50+ specialized agents. We ended with 5 core tools and a handful of generalists. The agent got more reliable, not less. Every context decision is a tradeoff: latency vs autonomy, evidence-building vs speed, oversight - and the cost of being wrong. This post is a practical map of those knobs and how we adjusted them for SRE Agent.1.9KViews9likes1CommentBest AI Agent for HR in Microsoft Teams?
So our HR team is looking for an AI agent tool that fits into our HR processes, such as performance reviews, 360 feedback, policy management, etc. We've messed around with Copilot and while it has been solid for productivity overall, it doesn't quite handle the HR processes. Any recommendations?77Views1like3CommentsData Security: Azure key Vault in Data bricks
Why this article? To remove the vulnerability of exposing the data base connection string in Databricks notebook directly, by using Azure key vault. Database connection strings are extremely confidential/vulnerable data, that we should not be exposed in the DataBricks notebook explicitly. Azure key vault is a secure option to read the secrets and establish connection. What do we need? Tenant Id of the app from the app registration with access to the azure key vault secrets Client Id of the of the app from the app registration with access to the azure key vault secrets Client secret of the app from the app registration with access to the azure key vault Where to find this information? Under the App registration, you can find the (application) Client Id, Directory (tenant) Id. Client secret value is found in the app registration of the service, under Manage -> Certificate & secrets. You can use an existing secret or create a new one and use it to access the key Vault secrets. Make sure the application is added with get access to read the secrets. Verify the key vault you are checking and using in Databricks is the same one with read access. You can verify this by going to the Azure key vault -> Access Policies and search for the application name. It should show up on search as below, this will confirm that the access of the application. What do we need to setup in Databricks notebook? Open your cluster and install azure.keyvault and azure-identity (installing version should be compatible with you cluster configuration, refer: https://docs.databricks.com/aws/en/libraries/package-repositories) In a new notebook, let’s start by importing the necessary modules. Your notebook would start with the modules, followed by tentatId, clientId, client secret, azure key vault URL , secretName of the connection string in the azure key vault and secretVersion. Lastly, we need to fetch the secret using the below code Vola, we have the DB connection string to perform the CRUD operations. Conclusion: By securely retrieving your database connection string from Azure Key Vault, you eliminate credential exposure and strengthen the overall security posture of your Databricks workflows. This simple shift ensures your notebooks remain clean, compliant, and production‑ready.Extend SRE Agent with MCP: Build an Agentic Workflow to Triage Customer Issues
Your inbox is full. GitHub issues piling up. "App not working." "How do I configure alerts?" "Please add dark mode." You open each one, figure out what it is, ask for more info, add labels, route to the right team. An hour later, you're still sorting issues. Sound familiar? The Triage Tax Every L1 support engineer, PM, and on-call developer who's handled customer issues knows this pain. When tickets come in, you're not solving problems, you're sorting them. Read the issue. Is it a bug or a question? Check the docs. Does this feature exist? Ask for more info. Wait two days. Re-triage. Add labels. Route to engineering. It's tedious. It requires judgment, you need to understand the product, know what info is needed, check documentation. And honestly? It's work that nobody volunteers for but someone has to do. In large organizations, it gets even more complex. The issue doesn't just need to be triaged, it needs to be routed to the right engineering team. Is this an auth issue? Frontend? Backend? Infrastructure? A wrong routing decision means delays, re-assignments, and frustrated customers. What if an AI agent could do this for you? Enter Azure SRE Agent + MCP Here's what I built: I gave SRE Agent access to my GitHub and PagerDuty accounts via MCP, uploaded my triage rubric as a markdown file, and set it to run twice a day. No more reading every ticket manually. No more asking the same "please provide more info" questions. No more morning triage sessions. What My Setup Looks Like My app's customer issues come in through GitHub. My team uses PagerDuty to track bugs and incidents. So I connected both via MCP to the SRE Agent. I also uploaded my triage logic as a .md file on how to classify issues, what info is required for each category, which labels to use, which team handles what. And since I didn't want to run this workflow manually, I set up a scheduled task to trigger it twice a day. Now it just runs. I verify its work if I want to. What the Agent Does Fetches all open, unlabeled GitHub issues Reads each issue and classifies it (bug, doc question, feature request) Checks if required info is present Posts a comment asking for details if needed, or acknowledges the issue Adds appropriate labels Creates a PagerDuty incident for bugs ready for engineering Moves to the next issue How I Built It: Step by Step Let me walk you through exactly how I set this up inside SRE Agent. Step 1: Create an SRE Agent I created a new SRE Agent in the Azure portal. Since this workflow triages GitHub issues and not Azure resources, I didn't need to configure any Azure resource groups or subscriptions. Just an agent. Step 2: Connect MCP Servers I added two MCP servers to give the agent access to my tools: GitHub MCP– Fetch issues, post comments, add labels PagerDuty MCP – Create incidents for bugs that need dev team's attention MCP (Model Context Protocol) lets you bring any API into the agent. If your tool has an API, you can connect it. Step 3: Create Subagents I created two focused subagents, each with a specific job and only the tools it needs: GitHub Issue Triager "You are expert in triaging GitHub issues, classifying them into categories such as user needs to supply additional information, bug, documentation question, or feature request. Use the knowledge base to search for the right document that helps you with performing this triaging. Perform all actions autonomously without waiting for user input. Hand off to Incident Creator for the issues you classified as bugs." Tools: GitHub MCP (issues, labels, comments) Incident Creator Here "You are expert in managing incidents in PagerDuty, listing services, incidents, creating incidents with all details. Once done, hand off back to GitHub Issue Triager." Tools: PagerDuty MCP (services, incidents) The handoff between them creates a workflow. They collaborate without human involvement. Step 4: Add Your Knowledge I uploaded my triage logic as a .md file to the agent's knowledge base. This is my rubric - my mental model for how to triage issues: How do I classify bugs vs. doc questions vs. feature requests? What info is required for each category? What labels do I use? When should an incident be created? Which team handles which type of issue? I wrote it down the way I'd explain it to a new teammate. The agent searches and follows it. Step 5: Add a Scheduled Task I didn't want to trigger this workflow manually every time. SRE Agent supports scheduled tasks, workflows that run automatically on a cadence. I set up a trigger to run twice a day: morning and evening. Now the workflow is fully automated. Here is the end to end automated agentic workflow to triage customer tickets. Why MCP Matters Every team uses different tools. Maybe your customer issues live in Zendesk, incidents go to ServiceNow and you use Jira or Azure DevOps. SRE Agent doesn't lock you in. With MCP, you connect to whatever tools you already use. The agent orchestrates across them. That's the extensibility model: your tools, your workflow, orchestrated by the agent. The Result Before: 2 hours every morning sorting tickets. After: By the time anyone logs in, issues are labeled, missing-info requests are posted, urgent bugs have incidents, and feature requests are acknowledged. Your team can finally focus on the complex stuff not sorting tickets. Why This Matters Faster response times. Issues get acknowledged in minutes, not days. Consistent classification. No "this should have been a P1" moments. No tickets bouncing between teams. Happier customers. They get a response immediately even if it's just "we're looking into it." Focus on what matters. Your team should be solving problems, not sorting them. The Bottom Line Triage isn't the job, it's the tax on the job. It quietly eats the hours your team could spend building, debugging, and shipping. You don't need to build a custom triage bot. You don't need to wire up webhooks and write glue code. You give the SRE agent your tools, your logic, and a schedule and it handles the sorting. Use GitHub? Connect GitHub. Use Zendesk? Connect Zendesk. PagerDuty, ServiceNow, Jira - whatever your team runs on, the agent meets you there. Stop sorting tickets. Start shipping. A Few Tips Test MCP endpoints before configuring them in the SRE agent Give each subagent only the tools it needs, don't enable everything Start read-only until you trust the classification, then enable comments Do You Still Want to Triage Issues Manually? What tools does your team use to track customer-reported issues and incidents? Let us know in the comments, we'd love to hear how you'd use this workflow with your stack. Is triage your most toilsome workflow or is there something even worse eating your team's time? Let us know in the comments.258Views0likes0CommentsFrom Cloud to Chip: Building Smarter AI at the Edge with Windows AI PCs
As AI engineers, we’ve spent years optimizing models for the cloud, scaling inference, wrangling latency, and chasing compute across clusters. But the frontier is shifting. With the rise of Windows AI PCs and powerful local accelerators, the edge is no longer a constraint it’s now a canvas. Whether you're deploying vision models to industrial cameras, optimizing speech interfaces for offline assistants, or building privacy-preserving apps for healthcare, Edge AI is where real-world intelligence meets real-time performance. Why Edge AI, Why Now? Edge AI isn’t just about running models locally, it’s about rethinking the entire lifecycle: - Latency: Decisions in milliseconds, not round-trips to the cloud. - Privacy: Sensitive data stays on-device, enabling HIPAA/GDPR compliance. - Resilience: Offline-first apps that don’t break when the network does. - Cost: Reduced cloud compute and bandwidth overhead. With Windows AI PCs powered by Intel and Qualcomm NPUs and tools like ONNX Runtime, DirectML, and Olive, developers can now optimize and deploy models with unprecedented efficiency. What You’ll Learn in Edge AI for Beginners The Edge AI for Beginners curriculum is a hands-on, open-source guide designed for engineers ready to move from theory to deployment. Multi-Language Support This content is available in over 48 languages, so you can read and study in your native language. What You'll Master This course takes you from fundamental concepts to production-ready implementations, covering: Small Language Models (SLMs) optimized for edge deployment Hardware-aware optimization across diverse platforms Real-time inference with privacy-preserving capabilities Production deployment strategies for enterprise applications Why EdgeAI Matters Edge AI represents a paradigm shift that addresses critical modern challenges: Privacy & Security: Process sensitive data locally without cloud exposure Real-time Performance: Eliminate network latency for time-critical applications Cost Efficiency: Reduce bandwidth and cloud computing expenses Resilient Operations: Maintain functionality during network outages Regulatory Compliance: Meet data sovereignty requirements Edge AI Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making. Core Principles: On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs) Offline capability: Functions without persistent internet connectivity Low latency: Immediate responses suited for real-time systems Data sovereignty: Keeps sensitive data local, improving security and compliance Small Language Models (SLMs) SLMs like Phi-4, Mistral-7B, Qwen and Gemma are optimized versions of larger LLMs, trained or distilled for: Reduced memory footprint: Efficient use of limited edge device memory Lower compute demand: Optimized for CPU and edge GPU performance Faster startup times: Quick initialization for responsive applications They unlock powerful NLP capabilities while meeting the constraints of: Embedded systems: IoT devices and industrial controllers Mobile devices: Smartphones and tablets with offline capabilities IoT Devices: Sensors and smart devices with limited resources Edge servers: Local processing units with limited GPU resources Personal Computers: Desktop and laptop deployment scenarios Course Modules & Navigation Course duration. 10 hours of content Module Topic Focus Area Key Content Level Duration 📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs 📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs 🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs 🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs ⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs 🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs 🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs 💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs 🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs Each module includes Jupyter notebooks, code samples, and deployment walkthroughs, perfect for engineers who learn by doing. Developer Highlights - 🔧 Olive: Microsoft's optimization toolchain for quantization, pruning, and acceleration. - 🧩 ONNX Runtime: Cross-platform inference engine with support for CPU, GPU, and NPU. - 🎮 DirectML: GPU-accelerated ML API for Windows, ideal for gaming and real-time apps. - 🖥️ Windows AI PCs: Devices with built-in NPUs for low-power, high-performance inference. Local AI: Beyond the Edge Local AI isn’t just about inference, it’s about autonomy. Imagine agents that: - Learn from local context - Adapt to user behavior - Respect privacy by design With tools like Agent Framework, Azure AI Foundry and Windows Copilot Studio, and Foundry Local developers can orchestrate local agents that blend LLMs, sensors, and user preferences, all without cloud dependency. Try It Yourself Ready to get started? Clone the Edge AI for Beginners GitHub repo, run the notebooks, and deploy your first model to a Windows AI PC or IoT devices Whether you're building smart kiosks, offline assistants, or industrial monitors, this curriculum gives you the scaffolding to go from prototype to production.