learning
715 TopicsUpdated Achievement Code Documentation
We have updated our Achievement Code documentation to clarify and consolidate. This document contains info on: Onboarding to a Microsoft Learn admin account that allows your organization to generate achievement codes How to generate achievement codes The redeeming experience for the learner / customer Support resources While this resource will be more pertinent to new TSPs, it does contain information related to many of the questions we receive on the topic. If you are seeking information that this document does not provide, please drop a note on this thread and we can explore adding more detail. The document will be available in the coming days in the Get Started collection. As I'm still having issues adding attachments to these forum posts, please find the document in October's Community Call shared folder for the time being. I will update this thread with a new location when available.MCT New and Renewing MCTs - Update July 26
Updated July 26, 2025 As we step into FY26 on July 1st, 2025, I want to share some important updates regarding the MCT Program—especially for those planning to renew. New Fees Coming October 2025, no exact date and the cost will be shared at a later date. Starting July 1st, 2025, we will introduce: A renewal fee (ecommerce tool will be available in October 2025 for everyone to renew) A new MCT enrollment fee (ecommerce tool will be available in October 2025 for new MCTs) Our systems are currently being updated to support this change, with the new tool expected to launch in October 2025. More to come on costs. Pricing will be region supported. Session Requirement for Renewal Effective January 1st, 2026, MCTs will be required to complete six (6) sessions or six (6) days of training per calendar year to qualify for renewal. For clarity on what qualifies as a session, please refer to the attached PDF: Mandatory Use of MTM We will be enforcing stricter requirements for using Metrics That Matter (MTM) to log sessions with your Training Services Partner (TSP). Please coordinate with your TSPs to ensure MTM is being used correctly. What to Expect Next More details on program costs will be shared closer to the tool’s release. All MCTs that were MCTs before manual enrollment have been extended through January 1st, 2026, with full benefits. You’ll see this extension reflected in your profile in your MCT Trainer History NOT active certification. All current MCTs will be able to renew when the tool is available in October 2025 and the requirement to renew will be to have an active certification and have taught one class since your last renewal and pay the renewal fee (costs to come later). We will be checking that you have taught the one class using MTM. New MCTs will need ISC certificate, one role-based active certification and pay the MCT new enrollment fee. New MCT Enrollment Process | Microsoft Learn 🙏 Thank you for your continued support and patience as we enhance our systems. Here’s to a successful and impactful FY26!Edge AI for Beginners : Getting Started with Foundry Local
In Module 08 of the EdgeAI for Beginners course, Microsoft introduces Foundry Local a toolkit that helps you deploy and test Small Language Models (SLMs) completely offline. In this blog, I’ll share how I installed Foundry Local, ran the Phi-3.5-mini model on my windows laptop, and what I learned through the process. What Is Foundry Local? Foundry Local allows developers to run AI models locally on their own hardware. It supports text generation, summarization, and code completion — all without sending data to the cloud. Unlike cloud-based systems, everything happens on your computer, so your data never leaves your device. Prerequisites Before starting, make sure you have: Windows 10 or 11 Python 3.10 or newer Git Internet connection (for the first-time model download) Foundry Local installed Step 1 — Verify Installation After installing Foundry Local, open Command Prompt and type: foundry --version If you see a version number, Foundry Local is installed correctly. Step 2 — Start the Service Start the Foundry Local service using: foundry service start You should see a confirmation message that the service is running. Step 3 — List Available Models To view the models supported by your system, run: foundry model list You’ll get a list of locally available SLMs. Here’s what I saw on my machine: Note: Model availability depends on your device’s hardware. For most laptops, phi-3.5-mini works smoothly on CPU. Step 4 — Run the Phi-3.5 Model Now let’s start chatting with the model: foundry model run phi-3.5-mini-instruct-generic-cpu:1 Once it loads, you’ll enter an interactive chat mode. Try a simple prompt: Hello! What can you do? The model replies instantly — right from your laptop, no cloud needed. To exit, type: /exit How It Works Foundry Local loads the model weights from your device and performs inference locally.This means text generation happens using your CPU (or GPU, if available). The result: complete privacy, no internet dependency, and instant responses. Benefits for Students For students beginning their journey in AI, Foundry Local offers several key advantages: No need for high-end GPUs or expensive cloud subscriptions. Easy setup for experimenting with multiple models. Perfect for class assignments, AI workshops, and offline learning sessions. Promotes a deeper understanding of model behavior by allowing step-by-step local interaction. These factors make Foundry Local a practical choice for learning environments, especially in universities and research institutions where accessibility and affordability are important. Why Use Foundry Local Running models locally offers several practical benefits compared to using AI Foundry in the cloud. With Foundry Local, you do not need an internet connection, and all computations happen on your personal machine. This makes it faster for small models and more private since your data never leaves your device. In contrast, AI Foundry runs entirely on the cloud, requiring internet access and charging based on usage. For students and developers, Foundry Local is ideal for quick experiments, offline testing, and understanding how models behave in real-time. On the other hand, AI Foundry is better suited for large-scale or production-level scenarios where models need to be deployed at scale. In summary, Foundry Local provides a flexible and affordable environment for hands-on learning, especially when working with smaller models such as Phi-3, Qwen2.5, or TinyLlama. It allows you to experiment freely, learn efficiently, and better understand the fundamentals of Edge AI development. Optional: Restart Later Next time you open your laptop, you don’t have to reinstall anything. Just run these two commands again: foundry service start foundry model run phi-3.5-mini-instruct-generic-cpu:1 What I Learned Following the EdgeAI for Beginners Study Guide helped me understand: How edge AI applications work How small models like Phi 3.5 can run on a local machine How to test prompts and build chat apps with zero cloud usage Conclusion Running the Phi-3.5-mini model locally with Foundry Localgave me hands-on insight into edge AI. It’s an easy, private, and cost-free way to explore generative AI development. If you’re new to Edge AI, start with the EdgeAI for Beginners course and follow its Study Guide to get comfortable with local inference and small language models. Resources: EdgeAI for Beginners GitHub Repo Foundry Local Official Site Phi Model Link190Views0likes0CommentsAnnouncing Public Preview: AI Toolkit for GitHub Copilot Prompt-First Agent Development
This week at GitHub Universe, we’re announcing the Public Preview of the GitHub Copilot prompt-first agent development in the AI Toolkit for Visual Studio Code. With this release, building powerful AI agents is now simpler and faster - no need to wrestle with complex frameworks or orchestrators. Just start with natural language prompts and let GitHub Copilot guide you from concept to working agent code. Accelerate Agent Development in VS Code The AI Toolkit embeds agent development workflows directly into Visual Studio Code and GitHub Copilot, enabling you to transform ideas into production-ready agents within minutes. This unified experience empowers developers and product teams to: Select the best model for your agent scenario Build and orchestrate agents using Microsoft Agent Framework Trace agent behaviors Evaluate agent response quality Select the best model for your scenario Models are the foundation for building powerful agents. Using the AI Toolkit, you can already explore and experiment with a wide range of local and remote models. Copilot now recommends models tailored to your agent’s needs, helping you make informed choices quickly. Build and orchestrate agents Whether you’re creating a single agent or designing a multi-agent workflow, Copilot leverages the latest Microsoft Agent Framework to generate robust agent code. You can initiate agent creation with simple prompts and visualize workflows for greater clarity and control. Create a single agent using Copilot Create a multi-agent workflow using Copilot and visualize workflow execution Trace agent behaviors As agents become more sophisticated, understanding their actions is crucial. The AI Toolkit enables tracing via Copilot, collecting local traces and displaying detailed agent calls, all within VS Code. Evaluate agent response quality Copilot guides you through structured evaluation, recommending metrics and generating test datasets. Integrate evaluations into your CI/CD pipeline for continuous quality assurance and confident deployments. Get started and share feedback This release marks a significant step toward making AI agent development easier and more accessible in Visual Studio Code. Try out the AI Toolkit for Visual Studio Code, share your thoughts, and file issues and suggest features on our GitHub repo. Thank you for being a part of this journey with us!Level up your Python + AI skills with our complete series
We've just wrapped up our live series on Python + AI, a comprehensive nine-part journey diving deep into how to use generative AI models from Python. The series introduced multiple types of models, including LLMs, embedding models, and vision models. We dug into popular techniques like RAG, tool calling, and structured outputs. We assessed AI quality and safety using automated evaluations and red-teaming. Finally, we developed AI agents using popular Python agents frameworks and explored the new Model Context Protocol (MCP). To help you apply what you've learned, all of our code examples work with GitHub Models, a service that provides free models to every GitHub account holder for experimentation and education. Even if you missed the live series, you can still access all the material using the links below! If you're an instructor, feel free to use the slides and code examples in your own classes. If you're a Spanish speaker, check out the Spanish version of the series. Python + AI: Large Language Models 📺 Watch recording In this session, we explore Large Language Models (LLMs), the models that power ChatGPT and GitHub Copilot. We use Python to interact with LLMs using popular packages like the OpenAI SDK and LangChain. We experiment with prompt engineering and few-shot examples to improve outputs. We also demonstrate how to build a full-stack app powered by LLMs and explain the importance of concurrency and streaming for user-facing AI apps. Slides for this session Code repository with examples: python-openai-demos Python + AI: Vector embeddings 📺 Watch recording In our second session, we dive into a different type of model: the vector embedding model. A vector embedding is a way to encode text or images as an array of floating-point numbers. Vector embeddings enable similarity search across many types of content. In this session, we explore different vector embedding models, such as the OpenAI text-embedding-3 series, through both visualizations and Python code. We compare distance metrics, use quantization to reduce vector size, and experiment with multimodal embedding models. Slides for this session Code repository with examples: vector-embedding-demos Python + AI: Retrieval Augmented Generation 📺 Watch recording In our third session, we explore one of the most popular techniques used with LLMs: Retrieval Augmented Generation. RAG is an approach that provides context to the LLM, enabling it to deliver well-grounded answers for a particular domain. The RAG approach works with many types of data sources, including CSVs, webpages, documents, and databases. In this session, we walk through RAG flows in Python, starting with a simple flow and culminating in a full-stack RAG application based on Azure AI Search. Slides for this session Code repository with examples: python-openai-demos Python + AI: Vision models 📺 Watch recording Our fourth session is all about vision models! Vision models are LLMs that can accept both text and images, such as GPT-4o and GPT-4o mini. You can use these models for image captioning, data extraction, question answering, classification, and more! We use Python to send images to vision models, build a basic chat-with-images app, and create a multimodal search engine. Slides for this session Code repository with examples: openai-chat-vision-quickstart Python + AI: Structured outputs 📺 Watch recording In our fifth session, we discover how to get LLMs to output structured responses that adhere to a schema. In Python, all you need to do is define a Pydantic BaseModel to get validated output that perfectly meets your needs. We focus on the structured outputs mode available in OpenAI models, but you can use similar techniques with other model providers. Our examples demonstrate the many ways you can use structured responses, such as entity extraction, classification, and agentic workflows. Slides for this session Code repository with examples: python-openai-demos Python + AI: Quality and safety 📺 Watch recording This session covers a crucial topic: how to use AI safely and how to evaluate the quality of AI outputs. There are multiple mitigation layers when working with LLMs: the model itself, a safety system on top, the prompting and context, and the application user experience. We focus on Azure tools that make it easier to deploy safe AI systems into production. We demonstrate how to configure the Azure AI Content Safety system when working with Azure AI models and how to handle errors in Python code. Then we use the Azure AI Evaluation SDK to evaluate the safety and quality of output from your LLM. Slides for this session Code repository with examples: ai-quality-safety-demos Python + AI: Tool calling 📺 Watch recording In the final part of the series, we focus on the technologies needed to build AI agents, starting with the foundation: tool calling (also known as function calling). We define tool call specifications using both JSON schema and Python function definitions, then send these definitions to the LLM. We demonstrate how to properly handle tool call responses from LLMs, enable parallel tool calling, and iterate over multiple tool calls. Understanding tool calling is absolutely essential before diving into agents, so don't skip over this foundational session. Slides for this session Code repository with examples: python-openai-demos Python + AI: Agents 📺 Watch recording In the penultimate session, we build AI agents! We use Python AI agent frameworks such as the new agent-framework from Microsoft and the popular LangGraph framework. Our agents start simple and then increase in complexity, demonstrating different architectures such as multiple tools, supervisor patterns, graphs, and human-in-the-loop workflows. Slides for this session Code repository with examples: python-ai-agent-frameworks-demos Python + AI: Model Context Protocol 📺 Watch recording In the final session, we dive into the hottest technology of 2025: MCP (Model Context Protocol). This open protocol makes it easy to extend AI agents and chatbots with custom functionality, making them more powerful and flexible. We demonstrate how to use the Python FastMCP SDK to build an MCP server running locally and consume that server from chatbots like GitHub Copilot. Then we build our own MCP client to consume the server. Finally, we discover how easy it is to connect AI agent frameworks like LangGraph and Microsoft agent-framework to MCP servers. With great power comes great responsibility, so we briefly discuss the security risks that come with MCP, both as a user and as a developer. Slides for this session Code repository with examples: python-mcp-demo618Views0likes0CommentsRedeeming Azure for Student from your GitHub Student Pack when you do not have an Academic Email
GitHub Student Developer Pack Learn to ship software like a pro. There's no substitute for hands-on experience. But for most students, real world tools can be cost-prohibitive. That's why we created the GitHub Student Developer Pack with some of our partners and friends. Sign up for Student Developer Pack22KViews1like3CommentsUpdate from the MCT Program Team- PLEASE READ.
The MCT Portal is available BUT currently in a PILOT PHASE! To enable this pilot, we’ve set up a public link for early access. However, the portal has not been officially announced yet, and we kindly ask that you hold off on directing MCTs to renew or enroll for about one week. We’re working through a few bugs to ensure the best possible user experience for everyone. Thank you for your understanding and patience as we finalize these improvements. We’ll share an official announcement soon—stay tuned! MCT Program Team.