learning
708 TopicsStudy Buddy: Learning Data Science and Machine Learning with an AI Sidekick
If you've ever wished for a friendly companion to guide you through the world of data science and machine learning, you're not alone. As part of the "For Beginners" curriculum, I recently built a Study Buddy Agent, an AI-powered assistant designed to help learners explore data science interactively, intuitively, and joyfully. Why a Study Buddy? Learning something new can be overwhelming, especially when you're navigating complex topics like machine learning, statistics, or Python programming. The Study Buddy Agent is here to change that. It brings the curriculum to life by answering questions, offering explanations, and nudging learners toward deeper understanding, all in a conversational format. Think of it as your AI-powered lab partner: always available, never judgmental, and endlessly curious. Built with chatmodes, Powered by Purpose The agent lives inside a .chatmodes file in the https://github.com/microsoft/Data-Science-For-Beginners/blob/main/.github/chatmodes/study-mode.chatmode.md. This file defines how the agent behaves, what tone it uses, and how it interacts with learners. I designed it to be friendly, encouraging, and beginner-first—just like the curriculum itself. It’s not just about answering questions. The Study Buddy is trained to: Reinforce key concepts from the curriculum Offer hints and nudges when learners get stuck Encourage exploration and experimentation Celebrate progress and milestones What’s Under the Hood? The agent uses GitHub Copilot's chatmode, which allows developers to define custom behaviors for AI agents. By aligning the agent’s responses with the curriculum’s learning objectives, we ensure that learners stay on track while enjoying the flexibility of conversational learning. How You Can Use It YouTube Video here: Study Buddy - Data Science AI Sidekick Clone the repo: Head to the https://github.com/microsoft/Data-Science-For-Beginners and clone it locally or use Codespaces. Open the GitHub Copilot Chat, and select Study Buddy: This will activate the Study Buddy. Start chatting: Ask questions, explore topics, and let the agent guide you. What’s Next? This is just the beginning. I’m exploring ways to: Expand the agent to other beginner curriculums (Web Dev, AI, IoT) Integrate feedback loops so learners can shape the agent’s evolution Final Thoughts In my role, I believe learning should be inclusive, empowering, and fun. The Study Buddy Agent is a small step toward that vision, a way to make data science feel less like a mountain and more like a hike with a good friend. Try it out, share your feedback, and let’s keep building tools that make learning magical. Join us on Discord to share your feedback.AI Career Navigator — Empowering Job Seekers with Azure OpenAI
AI Career Navigator is more than just a project — it’s a mission to make career growth accessible, intelligent, and human. Powered by Azure OpenAI, it transforms uncertainty into direction and effort into achievement. Author: Aryan Jaiswal — Gold Microsoft Learn Student Ambassador Reviewer: Julia Muiruri (Microsoft)120Views0likes0CommentsAl agregar un Partner University: Id. de correlación: fcb98f32-41a1-4dee-976c-42a0801ec868
Partner University ¿Qué es? Microsoft Partner University es una plataforma de aprendizaje en línea dedicada a los partners de Microsoft. Ofrece cursos, evaluaciones y rutas de aprendizaje para ayudar a los partners a cumplir los requisitos de habilidades para el programa de Socios de Soluciones y Especializaciones. Más información Cómo obtener acceso: Haga clic en "Registrarse para obtener acceso a Partner University" e inicie sesión con su id. de correo electrónico personal. Una vez que tenga acceso, podrá explorar y completar los cursos a su propio ritmo. Más información Cómo le ayudará: Los logros de Partner University se actualizarán automáticamente en el Centro de Partners, ayudando a su organización a cumplir los requisitos de habilidades del programa. Se ha producido un error. Intente volver a cargar la página. Si el problema persiste, póngase en contacto con Microsoft support. Id. de correlación: fcb98f32-41a1-4dee-976c-42a0801ec868 y no me deja agregar un Partner University, no se si a alguien le paso o me puede echar un cable. TRANSLATION: Partner University What is it? Microsoft Partner University is an online learning platform dedicated to Microsoft partners. It offers courses, assessments, and learning paths to help partners meet the skill requirements for the Solutions Partner and Specializations program. More information How to get access: Click on "Sign up to get access to Partner University" and log in with your personal email ID. Once you have access, you can explore and complete the courses at your own pace.More information How it will help you: Achievements in Partner University will automatically update in the Partner Center, helping your organization meet the skill requirements of the program. An error has occurred. Please try reloading the page. If the problem persists, contact Microsoft support. Correlation ID: fcb98f32-41a1-4dee-976c-42a0801ec868and it won't let me add a Partner UniversityGetting Started with AI Agents: A Student Developer’s Guide to the Microsoft Agent Framework
AI agents are becoming the backbone of modern applications, from personal assistants to autonomous research bots. If you're a student developer curious about building intelligent, goal-driven agents, Microsoft’s newly released Agent Framework is your launchpad. In this post, we’ll break down what the framework offers, how to get started, and why it’s a game-changer for learners and builders alike. What Is the Microsoft Agent Framework? The Microsoft Agent Framework is a modular, open-source toolkit designed to help developers build, orchestrate, and evaluate AI agents with minimal friction. It’s part of the AI Agents for Beginners curriculum, which walks you through foundational concepts using reproducible examples. At its core, the framework helps you: Define agent goals and capabilities Manage memory and context Route tasks through tools and APIs Evaluate agent performance with traceable metrics Whether you're building a research assistant, a coding helper, or a multi-agent system, this framework gives you the scaffolding to do it right. What’s Inside the Framework? Here’s a quick look at the key components: Component Purpose AgentRuntime Manages agent lifecycle, memory, and tool routing AgentConfig Defines agent goals, tools, and memory settings Tool Interface Lets you plug in custom tools (e.g., web search, code execution) MemoryProvider Supports semantic memory and context-aware responses Evaluator Tracks agent performance and goal completion The framework is built with Python and .NET and designed to be extensible, perfect for experimentation and learning. Try It: Your First Agent in 10 Minutes Here’s a simplified walkthrough to get you started: Clone the repo git clone https://github.com/microsoft/ai-agents-for-beginners Open the Sample cd ai-agents-for-beginners/14-microsoft-agent-framework Install dependencies pip install -r requirements.txt Run the sample agent python main.py You’ll see a basic agent that can answer questions using a web search tool and maintain context across turns. From here, you can customize its goals, memory, and tools. Why Student Developers Should Care Modular Design: Learn how real-world agents are structured—from memory to evaluation. Reproducible Workflows: Build agents that can be debugged, traced, and improved over time. Open Source: Contribute, fork, and remix with your own ideas. Community-Ready: Perfect for hackathons, research projects, or portfolio demos. Plus, it aligns with Microsoft’s best practices for agent governance, making it a solid foundation for enterprise-grade development. Why Learn? Here are a few ideas to take your learning further: Build a custom tool (e.g., a calculator or code interpreter) Swap in a different memory provider (like a vector DB) Create an evaluation pipeline for multi-agent collaboration Use it in a class project or student-led workshop Join the Microsoft Azure AI Foundry Discord https://aka.ms/Foundry/discord share your project and build your AI Engineer and Developer connections. Star and Fork the AI Agents for Beginners repo for updates and new modules. Final Thoughts The Microsoft Agent Framework isn’t just another library, it’s a teaching tool, a playground, and a launchpad for the next generation of AI builders. If you’re a student developer, this is your chance to learn by doing, contribute to the community, and shape the future of agentic systems. So fire up your terminal, fork the repo, and start building. Your first agent is just a few lines of code away.304Views0likes1CommentLevel up your Python Gen AI Skills from our free nine-part YouTube series!
Want to learn how to use generative AI models in your Python applications? We're putting on a series of nine live streams, in both English and Spanish, all about generative AI. We'll cover large language models, embedding models, vision models, introduce techniques like RAG, function calling, and structured outputs, and show you how to build Agents and MCP servers. Plus we'll talk about AI safety and evaluations, to make sure all your models and applications are producing safe outputs. 🔗 Register for the entire series. In addition to the live streams, you can also join a weekly office hours in our AI Discord to ask any questions that don't get answered in the chat. You can also scroll down to learn about each live stream and register for individual sessions. See you in the streams! 👋🏻 Large Language Models 7 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor Join us for the first session in our Python + AI series! In this session, we'll talk about Large Language Models (LLMs), the models that power ChatGPT and GitHub Copilot. We'll use Python to interact with LLMs using popular packages like the OpenAI SDK and Langchain. We'll experiment with prompt engineering and few-shot examples to improve our outputs. We'll also show how to build a full stack app powered by LLMs, and explain the importance of concurrency and streaming for user-facing AI apps. Vector embeddings 8 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In our second session of the Python + AI series, we'll dive into a different kind of model: the vector embedding model. A vector embedding is a way to encode a text or image as an array of floating point numbers. Vector embeddings make it possible to perform similarity search on many kinds of content. In this session, we'll explore different vector embedding models, like the OpenAI text-embedding-3 series, with both visualizations and Python code. We'll compare distance metrics, use quantization to reduce vector size, and try out multimodal embedding models. Retrieval Augmented Generation 9 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In our fourth Python + AI session, we'll explore one of the most popular techniques used with LLMs: Retrieval Augmented Generation. RAG is an approach that sends context to the LLM so that it can provide well-grounded answers for a particular domain. The RAG approach can be used with many kinds of data sources like CSVs, webpages, documents, databases. In this session, we'll walk through RAG flows in Python, starting with a simple flow and culminating in a full-stack RAG application based on Azure AI Search. Vision models 14 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor Our third stream in the Python + AI series is all about vision models! Vision models are LLMs that can accept both text and images, like GPT 4o and 4o-mini. You can use those models for image captioning, data extraction, question-answering, classification, and more! We'll use Python to send images to vision models, build a basic chat-on-images app, and build a multimodal search engine. Structured outputs 15 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In our fifth stream of the Python + AI series, we'll discover how to get LLMs to output structured responses that adhere to a schema. In Python, all we need to do is define a @dataclass or a Pydantic BaseModel, and we get validated output that meets our needs perfectly. We'll focus on the structured outputs mode available in OpenAI models, but you can use similar techniques with other model providers. Our examples will demonstrate the many ways you can use structured responses, like entity extraction, classification, and agentic workflows. Quality and safety 16 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor Now that we're more than halfway through our Python + AI series, we're covering a crucial topic: how to use AI safely, and how to evaluate the quality of AI outputs. There are multiple mitigation layers when working with LLMs: the model itself, a safety system on top, the prompting and context, and the application user experience. Our focus will be on Azure tools that make it easier to put safe AI systems into production. We'll show how to configure the Azure AI Content Safety system when working with Azure AI models, and how to handle those errors in Python code. Then we'll use the Azure AI Evaluation SDK to evaluate the safety and quality of the output from our LLM. Tool calling 21 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor Now that we're more than halfway through our Python + AI series, we're covering a crucial topic: how to use AI safely, and how to evaluate the quality of AI outputs. There are multiple mitigation layers when working with LLMs: the model itself, a safety system on top, the prompting and context, and the application user experience. Our focus will be on Azure tools that make it easier to put safe AI systems into production. We'll show how to configure the Azure AI Content Safety system when working with Azure AI models, and how to handle those errors in Python code. Then we'll use the Azure AI Evaluation SDK to evaluate the safety and quality of the output from our LLM. AI agents 22 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor For the penultimate session of our Python + AI series, we're building AI agents! We'll use many of the most popular Python AI agent frameworks: Langgraph, Semantic Kernel, Autogen, Pydantic AI, and more. Our agents will start simple and then ramp up in complexity, demonstrating different architectures like hand-offs, round-robin, supervisor, graphs, and ReAct. Model Context Protocol 23 October, 2025 | 5:00 PM - 6:00 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In the final session of our Python + AI series, we're diving into the hottest technology of 2025: MCP, Model Context Protocol. This open protocol makes it easy to extend AI agents and chatbots with custom functionality, to make them more powerful and flexible. We'll show how to use the official Python FastMCP SDK to build an MCP server running locally and consume that server from chatbots like GitHub Copilot. Then we'll build our own MCP client to consume the server. Finally, we'll discover how easy it is to point popular AI agent frameworks like Langgraph, Pydantic AI, and Semantic Kernel at MCP servers. With great power comes great responsibility, so we will briefly discuss the many security risks that come with MCP, both as a user and developer.Essential Microsoft Resources for MVPs & the Tech Community from the AI Tour
Unlock the power of Microsoft AI with redeliverable technical presentations, hands-on workshops, and open-source curriculum from the Microsoft AI Tour! Whether you’re a Microsoft MVP, Developer, or IT Professional, these expertly crafted resources empower you to teach, train, and lead AI adoption in your community. Explore top breakout sessions covering GitHub Copilot, Azure AI, Generative AI, and security best practices—designed to simplify AI integration and accelerate digital transformation. Dive into interactive workshops that provide real-world applications of AI technologies. Take it a step further with Microsoft’s Open-Source AI Curriculum, offering beginner-friendly courses on AI, Machine Learning, Data Science, Cybersecurity, and GitHub Copilot—perfect for upskilling teams and fostering innovation. Don’t just learn—lead. Access these resources, host impactful training sessions, and drive AI adoption in your organization. Start sharing today! Explore now: Microsoft AI Tour Resources.Foundry Fridays: Your Front-Row Seat to Azure AI Innovation
🔥 Foundry Fridays: Your Front-Row Seat to Azure AI Innovation Are you ready to go beyond the blog posts and docs and get your questions answered directly by the minds behind Azure AI? Then mark your calendars for Foundry Fridays a weekly Ask Me Anything (AMA) series hosted on the Azure AI Foundry Discord. Every Friday at 1:30 PM ET, the Azure AI team opens the floor to developers, researchers, and enthusiasts for a 30-minute live AMA with the experts building the future of AI at Microsoft. Whether you're curious about model fine-tuning, local inference, agentic workflows, or the latest in open-source tooling—Foundry Fridays is where the real-time insights happen. 🎙️ Why Join Foundry Fridays? Direct Access to Experts: Ask your questions live to Principal PMs, researchers, and engineers from the Azure AI Foundry team. Fresh Topics Weekly: Each session spotlights a new theme from model routing and MCP registries to SAMBA architectures and AI agent security. Community-Driven: These aren’t lectures—they’re conversations. Bring your curiosity, share your feedback, and help shape the future of Azure AI. No Slides, Just Substance: It’s raw, real, and refreshingly unscripted. You’ll hear what’s working, what’s coming, and what’s still being figured out. Episode is hosted by community leaders like Nitya Narasimhan and Lee Stott, who guide the conversation and ensure your questions get the spotlight they deserve you can watch all the Monday Model Series on Demand at https://aka.ms/model-mondays and get ready for Season 3 of Model Mondays every Monday at 1.30pm ET. 📈 Why It Matters Foundry Fridays isn’t just another event it’s a community catalyst. Join our communty hear from experts and share your experiences of using Azure AI Tools and Services. 🚀 How to Join Join the Discord: aka.ms/model-mondays/discord Find the AMA: Head to the Events #community-calls and #model-mondays channel or check the pinned events. Ask Anything: Come with questions, ideas, or just listen in. No registration required. Want a sneak peek at what’s coming? Check the Foundry Fridays schedule or follow the Azure AI Foundry Blog for recaps and resources. 💬 Final Thoughts Whether you're building with Azure AI, exploring open-source models, or just curious about what’s next—Foundry Fridays is your chance to connect, learn, and grow with the community. So grab your headphones, fire up Discord, and let’s build the future of AI—together. 🗓️ Fridays | 1:30 PM ET 📍 Azure AI Foundry Discord 🔗 Join NowHow to Master GitHub Copilot: Build, Prompt, Deploy Smarter
Mastering GitHub Copilot: Build, Prompt, Deploy Smarter is a free, hands-on workshop designed to help developers go beyond autocomplete and unlock the true power of AI-assisted coding. Instead of toy examples, this course walks you through real-world software engineering challenges: messy codebases, multi-language projects, cloud deployments, and legacy system upgrades. You’ll learn practical skills like prompt engineering, advanced Copilot features, and AI pair programming techniques that make you faster, sharper, and more creative. Whether you’re a junior developer or a seasoned architect, mastering GitHub Copilot will help you: Reduce cognitive load and focus on system design Accelerate onboarding for new engineers Write cleaner, more consistent code Automate repetitive tasks to free up time for innovation AI coding tools like GitHub Copilot are no longer optional—they’re essential. This workshop gives you the skills to collaborate with Copilot effectively and stay competitive in the age of AI-powered development.Checking If It’s Okay to Post a Training Partnership Idea in MCT Spaces
Dear Community Leaders, I hope this message finds you well! I’m reaching out to ask if it would be appropriate to share a post in the MCT Community or MCT Longue regarding an initiative I’m developing under the Microsoft XIAD program. The concept is to invite fellow MCTs—particularly those not currently affiliated with a TSP—to collaborate on future training events. While paid opportunities may not be available at the outset, we’re committed to offering visibility and recognition. One way we plan to do this is by featuring trainer profiles and their specialties on our website, helping build credibility and exposure for participating MCTs. As part of this initiative, I’m planning to organize a one-day event each quarter, and I’m looking to collaborate with five certified MCTs who hold any of the following certifications: PL300, DP100, DP203, DP600, DP700, PL200, PL400, PL600 The goal is to foster meaningful partnerships and create a space where trainers can align with our mission and potentially engage in future work. I’d love to start this conversation in a transparent and inclusive way, and I believe the MCT Café could be a great place to gauge interest and gather feedback. Please let me know if this type of post would be welcome, or if there’s a preferred channel or format for sharing such ideas. Warm regards, vk2 MCT & Head of TSP.Foundry Fridays: Your Gateway to Azure AI Discovery
🎓 What Is Foundry Fridays? Every Friday at 1:30 PM ET, join the Azure AI Foundry Discord Community https://aka.ms/model-mondays/discord for a 30-minute live Ask Me Anything (AMA) session. It’s your chance to connect with the experts behind Azure AI—Principal PMs, researchers, and engineers—who are building the tools you’ll use in classrooms, hackathons, and real-world projects. Whether you're experimenting with model fine-tuning, curious about local inference, or diving into agentic workflows and open-source tooling, this is where your questions get answered live and unscripted. 💡 Why Students & Educators Should Join Direct Access to Experts Ask your questions live and get real-time insights from the people building Azure AI. Weekly Themes That Matter From model routing and MCP registries to SAMBA architectures, AI Agents, Model Router, Deployment Templates each week brings a new topic to explore. Community-Led Conversations Hosted by leaders like Nitya Narasimhan and Lee Stott, these sessions are interactive, inclusive, and designed to spotlight your questions. No Slides, Just Substance Skip the lectures—this is about real talk, real tech, and real learning. 📚 Bonus Learning: Model Mondays Want even more? Catch up on the Model Mondays series on demand at https://aka.ms/model-mondays and get ready for Season 3, streaming every Monday at 1:30 PM ET. 🚀 How to Join Join the Discord: https://aka.ms/model-mondays/discord Find the AMA: Check the #community-calls and #model-mondays channels or look for pinned events. Ask Anything: Bring your questions, ideas, or just listen in. No registration needed. 💬 Final Thoughts Whether you're coding your first AI project, mentoring students, or researching the next big thing listen and ask the experts questions and hear from the wider community. Foundry Fridays is your space to learn, connect, and grow. So grab your headphones, jump into Discord, and let’s shape the future of AI—together. 🗓️ Fridays | 1:30 PM ET 📍 Azure AI Foundry Discord 🔗 https://aka.ms/model-mondays/discord126Views0likes0Comments