learning
393 TopicsModel Mondays S2E13: Open Source Models (Hugging Face)
1. Weekly Highlights 1. Weekly Highlights Here are the key updates we covered in the Season 2 finale: O1 Mini Reinforcement Fine-Tuning (GA): Fine-tune models with as few as ~100 samples using built-in Python code graders. Azure Live Interpreter API (Preview): Real-time speech-to-speech translation supporting 76 input languages and 143 locales with near human-level latency. Agent Factory – Part 5: Connecting agents using open standards like MCP (Model Context Protocol) and A2A (Agent-to-Agent protocol). Ask Ralph by Ralph Lauren: A retail example of agentic AI for conversational styling assistance, built on Azure OpenAI and Foundry’s agentic toolset. VS Code August Release: Brings auto-model selection, stronger safety guards for sensitive edits, and improved agent workflows through new agents.md support. 2. Spotlight – Open Source Models in Azure AI Foundry Guest: Jeff Boudier, VP of Product at Hugging Face Jeff showcased the deep integration between the Hugging Face community and Azure AI Foundry, where developers can access over 10 000 open-source models across multiple modalities—LLMs, speech recognition, computer vision, and even specialized domains like protein modeling and robotics. Demo Highlights Discover models through Azure AI Foundry’s task-based catalog filters. Deploy directly from Hugging Face Hub to Azure with one-click deployment. Explore Use Cases such as multilingual speech recognition and vision-language-action models for robotics. Jeff also highlighted notable models, including: SmoLM3 – a 3 B-parameter model with hybrid reasoning capabilities Qwen 3 Coder – a mixture-of-experts model optimized for coding tasks Parakeet ASR – multilingual speech recognition Microsoft Research protein-modeling collection MAGMA – a vision-language-action model for robotics Integration extends beyond deployment to programmatic access through the Azure CLI and Python SDKs, plus local development via new VS Code extensions. 3. Customer Story – DraftWise (BUILD 2025 Segment) The finale featured a customer spotlight on DraftWise, where CEO James Ding shared how the company accelerates contract drafting with Azure AI Foundry. Problem Legal contract drafting is time-consuming and error-prone. Solution DraftWise uses Azure AI Foundry to fine-tune Hugging Face language models on legal data, generating contract drafts and redline suggestions. Impact Faster drafting cycles and higher consistency Easy model management and deployment with Foundry’s secure workflows Transparent evaluation for legal compliance 4. Community Story – Hugging Face & Microsoft The episode also celebrated the ongoing collaboration between Hugging Face and Microsoft and the impact of open-source AI on the global developer ecosystem. Community Benefits Access to State-of-the-Art Models without licensing barriers Transparent Performance through public leaderboards and benchmarks Rapid Innovation as improvements and bug fixes spread quickly Education & Empowerment via tutorials, docs, and active forums Responsible AI Practices encouraged through community oversight 5. Key Takeaways Open Source AI Is Here to Stay Azure AI Foundry and Hugging Face make deploying, fine-tuning, and benchmarking open models easier than ever. Community Drives Innovation: Collaboration accelerates progress, improves transparency, and makes AI accessible to everyone. Responsible AI and Transparency: Open-source models come with clear documentation, licensing, and community-driven best practices. Easy Deployment & Customization: Azure AI Foundry lets you deploy, automate, and customize open models from a single, unified platform. Learn, Build, Share: The open-model ecosystem is a great place for students, developers, and researchers to learn, build, and share their work. Sharda's Tips: How I Wrote This Blog For this final recap, I focused on capturing the energy of the open source AI movement and the practical impact of Hugging Face and Azure AI Foundry collaboration. I watched the livestream, took notes on the demos and interviews, and linked directly to official resources for models, docs, and community sites. Here’s my Copilot prompt for this episode: "Generate a technical blog post for Model Mondays S2E13 based on the transcript and episode details. Focus on open source models, Hugging Face, Azure AI Foundry, and community workflows. Include practical links and actionable insights for developers and students! Learn & Connect Explore Open Models in Azure AI Foundry Hugging Face Leaderboard Responsible AI in Azure Machine Learning Llama-3 by Meta Hugging Face Community Azure AI Documentation About Model Mondays Model Mondays is your weekly Azure AI learning series: 5-Minute Highlights: Latest AI news and product updates 15-Minute Spotlight: Demos and deep dives with product teams 30-Minute AMA Fridays: Ask anything in Discord or the forum Start building: Watch Past Replays Register For AMA Recap Past AMAs Join The Community Don’t build alone! The Azure AI Developer Community is here for real-time chats, events, and support: Join the Discord Explore the Forum About Me I'm Sharda, a Gold Microsoft Learn Student Ambassador focused on cloud and AI. Find me on GitHub, Dev.to, Tech Community, and LinkedIn. In this blog series, I share takeaways from each week’s Model Mondays livestream.123Views0likes0CommentsModel Mondays S2:E7 · AI-Assisted Azure Development
Welcome to Episode 7! This week, we explore how AI is transforming Azure development. We’ll break down two key tools—Azure MCP Server and GitHub Copilot for Azure—and see how they make working with Azure resources easier for everyone. We’ll also look at a real customer story from SightMachine, showing how AI streamlines manufacturing operations.213Views0likes0CommentsCampusSphere: Building the Future of Campus AI with Microsoft's Agentic Framework
Project Overview We are a team of Imperial College Students committed to improving campus life through innovative multi-agent solutions. CampusSphere leverages Microsoft Azure AI capabilities to automate core university campus services. We created an end-to-end solution that allows both students and staff to access a multi-agent framework for room/gym booking, attendance tracking, calendar management, IoT monitoring and more. 🔭 Our Initial Vision: Reimagining Campus Technology When our team at Imperial College London embarked on the CampusSphere project as part of Microsoft's Agentic Campus initiative, we had one clear ambition: to create an intelligent campus ecosystem that would fundamentally change how students, faculty, and staff interact with university services. The inspiration came from a simple observation—despite living in an age of advanced AI, campus technology remained frustratingly fragmented. Students juggled multiple portals for course registration, room booking, dining services, and academic support. Faculty members navigated separate systems for teaching, research, and administrative tasks. The result? Countless hours wasted on mundane navigation tasks that could be better spent on learning, teaching, and innovation. Our vision was ambitious: create a single, intelligent interface that could understand natural language, anticipate user needs, and seamlessly integrate with existing campus infrastructure. We didn't just want to build another campus app—we wanted to demonstrate how Microsoft's agentic AI technologies could create a truly intelligent campus companion. 🧠 Enter CampusSphere CampusSphere is an intelligent campus assistant made up of multiple AI agents, each with a specific domain of expertise — all communicating seamlessly through a centralized architecture. Think of it as a digital concierge for campus life, where your calendar, attendance, IoT data, and facility bookings are coordinated by specialized GPT-powered agents. Here’s what we built: TriageAgent – the brain of the system, using Retrieval-Augmented Generation (RAG) to understand user intent CalendarAgent – handles scheduling, bookings, and reminders AttendanceAgent – tracks check-ins automatically IoTAgent – monitors real-time sensor data from classrooms and labs GymAgent – manages access and reservations for sports facilities 30+ MCP Tools – perform SQL queries, scrape web data, and connect with external APIs All of this is built on Microsoft Azure AI, Semantic Kernel, and Model Context Protocol (MCP) — making it scalable, secure, and lightning fast. 🖥️ The Tech Stack Our Azure-powered architecture showcases a modular and scalable approach to real-time data processing and intelligent agent coordination. The frontend is built using React with a Vite development server, providing a fast and responsive user interface. When users submit a prompt, it travels to a Flask backend server acting as the Triage agent, which intelligently delegates tasks to a FastAPI agent service. This FastAPI service asynchronously communicates with individual agents and handles responses efficiently. Complex queries are routed to MCP Tools, which interact with the CosmosDB-powered Campus Database. Simultaneously, real-time synthetic IoT data is pushed into the database via Azure Function Apps and Azure IoT Hub. Authentication is securely managed: users log in through the frontend, receive a token from the database API server, and use it for authorized access to MCP services, with permissions enforced based on user roles using our custom MCP server implementation. This robust architecture enables seamless integration, real-time data flow, and secure multi-agent collaboration across Azure services. Our system leverages a multi-agent architecture designed to intelligently coordinate task execution across specialized services. At the core is the TriageAgent, which uses Retrieval-Augmented Generation (RAG) to interpret user prompts, enrich them with relevant context, and determine the optimal response path. Based on the nature of the request, it may handle the response directly, seek clarification, or delegate tasks to specific agents via FastAPI. Each specialized agent has a clearly defined role: AttendanceAgent: Interfaces with CosmosDB-backed FastAPI endpoints to check student attendance, using filters like event name, student ID, or date. IoTAgent: Monitors room conditions (e.g., temperature, CO₂ levels) and flags anomalies using real-time data from Azure IoT Hub, processed via FastAPI. CalendarAgent: Handles scheduling, availability checks, and event creation by querying or updating CosmosDB through FastAPI. Future integration with Microsoft Graph API is planned for direct calendar syncing. Gym Slot Agent: Checks available times for gym sessions using dedicated MCP tools. The triage agent serves as the orchestrator, breaking down complex requests (like "Book a gym session") into subtasks. It consults relevant agents (e.g., calendar and gym slot agents), merges results, and then confirms the final action with the user. This distributed and asynchronous workflow reduces backend load and enhances both responsiveness and reliability of the system. 🔮 What’s Next? Integrating CampusSphere with live systems via Microsoft OAuth is crucial for enhancing its capabilities. This integration will grant the agent authenticated access to a wider range of student data, moving beyond synthetic datasets. This expanded access to real-world information will enable deeply personalized advice, such as tailored course selection, scholarship recommendations, event suggestions, and deadline reminders, transforming CampusSphere into a sophisticated, proactive personal assistant. 🤝Meet the Team Behind CampusSphere Our success stemmed from a diverse team of innovators who brought together expertise from multiple domains: Benny Liu - https://www.linkedin.com/in/zong-benny-liu-393a4621b/ Lucas Ng - https://www.linkedin.com/in/lucas-ng-11b317203/ Lu Ju - https://www.linkedin.com/in/lu-ju/ Bruno Duaso - https://www.linkedin.com/in/bruno-duaso-jimeno-744464262/ Martim Coutinho - https://www.linkedin.com/in/martim-pereira-coutinho-116308233/ Krischad Pourpongpan - https://www.linkedin.com/in/krischadpua/ Yixu Pan - https://www.linkedin.com/in/yixu-pan/ Our collaborative approach enabled us to create a sophisticated agentic AI system that demonstrates the powerful potential of Microsoft's AI technologies in educational environments. 🧑💻 Project Repository: GitHub - Imperial-Microsoft-Agentic-Campus/CampusSphere Contribute to Imperial-Microsoft-Agentic-Campus/CampusSphere development by creating an account on GitHub. github.com Have questions about implementing similar solutions at your institution? Connect with our team members on LinkedIn—we're always excited to share knowledge and collaborate on innovative campus technology projects. 📚Get Started with Microsoft's AI Tools Ready to explore the technologies that made CampusSphere possible? Here are essential resources: Microsoft Semantic Kernel: The core framework for building AI agent orchestration systems. Learn how to create, coordinate, and manage multiple AI agents working together seamlessly. AI Agents for Beginners: A comprehensive guide to understanding and building AI agents from the ground up. Perfect for getting started with agentic AI development. Model Context Protocol (MCP): Learn about the protocol that enables secure connections between AI models and external tools and services—essential for building integrated AI systems. Windows AI Toolkit: Microsoft's toolkit for developing AI applications on Windows, providing local AI model development capabilities and deployment tools. Azure Container Apps: Understand how to deploy and scale containerized AI applications in the cloud, perfect for hosting multi-agent systems. Azure Cosmos DB Security: Essential security practices for managing data in AI applications, covering encryption, access control, and compliance.364Views2likes0CommentsCurious About Model Context Protocol? Dive into MCP with Us!
Global Workshops for All Skill Levels We’re hosting a series of free online workshops to introduce you to MCP—available in multiple languages and programming languages! You’ll get hands-on experience building your first MCP server, guided by friendly experts ready to answer your questions. Register now: https://aka.ms/letslearnmcp Who Should Join? This workshop is built for: Students exploring tech careers Beginner devs eager to learn how AI agents and MCP works Curious coders and seasoned pros alike If you’ve got some code curiosity and a laptop, you’re good to go. Workshop Schedule (English Sessions) Date Tech Focus Registration Link July 9 C# Join Here July 15 Java Join Here July 16 Python Join Here July 17 C# + Visual Studio Join Here July 21 TypeScript Join Here Multilingual Sessions We’re also hosting workshops in Spanish, Portuguese, Japanese, Korean, Chinese, Vietnamese, and more! Explore different tech stacks while learning in your preferred language: Date Language Technology Link July 15 한국어 (Korean) C# Join July 15 日本語 (Japanese) C# Join July 17 Español C# Join July 18 Tiếng Việt C# Join July 18 한국어 JavaScript Join July 22 한국어 Python Join July 22 Português Java Join July 23 中文 (Chinese) C# Join July 23 Türkçe C# Join July 23 Español JavaScript/TS Join July 23 Português C# Join July 24 Deutsch Java Join July 24 Italiano Python Join 🗓️ Save your seat: https://aka.ms/letslearnmcp What You’ll Need Before the event starts, make sure you’ve got: Visual Studio Code set up for your language of choice Docker installed A GitHub account (you can sign up for Copilot for free!) A curious mindset—no MCP experience required You can check out the MCP for Beginner course at https://aka.ms/mcp-for-beginners What’s Next? MCP Dev Days! Once you’ve wrapped up the workshop, why not go deeper? MCP Dev Days is happening July 29–30, and it’s packed with pro sessions from the Microsoft team and beyond. You’ll explore the MCP ecosystem, learn from insiders, and connect with other learners and devs. 👉 Info and registration: https://aka.ms/mcpdevdays Whether you're writing your first line of code or fine-tuning models like a pro, MCP is a game-changer. Come learn with us, and let’s build the future together265Views0likes0CommentsTrain a simple Recommendation Engine using the new Azure AI Studio
The AI Studio Odyssey: Embark on a journey to the heart of personalization with our latest guide, “Train a Simple Recommendation Engine using the new Azure AI Studio.” Unlock the secrets of the all-new Azure AI Studio intuitive tools to craft a recommendation system that feels like magic, yet is grounded in data and user preferences. Ready to enchant your audience? Grab some popcorn and read on!6.3KViews0likes1CommentCreate a responsive menu navigation bar in Canvas Power Apps using Gallery control
In this blog post I will show how to use two Gallery control in one screen and how to create responsive menu navigation bar in Canvas Power Apps using Gallery control and Collection, which you can use to navigate to different screens in your application.47KViews2likes6CommentsKickstart Your AI Development with the Model Context Protocol (MCP) Course
Model Context Protocol is an open standard that acts as a universal connector between AI models and the outside world. Think of MCP as “the USB-C of the AI world,” allowing AI systems to plug into APIs, databases, files, and other tools seamlessly. By adopting MCP, developers can create smarter, more useful AI applications that access up-to-date information and perform actions like a human developer would. To help developers learn this game-changing technology, Microsoft has created the “MCP for Beginners” course a free, open-source curriculum that guides you from the basics of MCP to building real-world AI integrations. Below, we’ll explore what MCP is, who this course is for, and how it empowers both beginners and intermediate developers to get started with MCP. What is MCP and Why Should Developers Care? Model Context Protocol (MCP) is a innovative framework designed to standardize interactions between AI models and client applications. In simpler terms, MCP is a communication bridge that lets your AI agent fetch live context from external sources (like APIs, documents, databases, or web services) and even take actions using tools. This means your AI apps are no longer limited to pre-trained knowledge they can dynamically retrieve data or execute commands, enabling far more powerful and context-aware behavior. Some key reasons MCP matters for developers: Seamless Integration of Tools & Data: MCP provides a unified way to connect AI to various data sources and tools, eliminating the need for ad-hoc, fragile integrations. Your AI agent can, for example, query a database or call a web API during a conversation all through a standardized protocol. Stay Up-to-Date: Because AI models can use MCP to access external information, they overcome the training data cutoff problem. They can fetch the latest facts, figures, or documents on demand, ensuring more accurate and timely responses. Industry Momentum: MCP is quickly gaining traction. Originally introduced by Microsoft and Anthropic in late 2024, it has since been adopted by major AI platforms (Replit, Sourcegraph, Hugging Face, and more) and spawned thousands of open-source connectors by early 2025. It’s an emerging standard – learning it now puts developers at the forefront of AI innovation. In short, MCP is transformative for AI development, and being proficient in it will help you build smarter AI solutions that can interact with the real world. The MCP for Beginners course is designed to make mastering this protocol accessible, with a structured learning path and hands-on examples. Introducing the MCP for Beginners Course “Model Context Protocol for Beginners” is an open-source, self-paced curriculum created by Microsoft to teach the concepts and fundamentals of MCP. Whether you’re completely new to MCP or have some experience, this course offers a comprehensive guide from the ground up. Key Features and Highlights: Structured Learning Path: The curriculum is organized as a multi-part guide (9 modules in total) that gradually builds your knowledge. It starts with the basics of MCP – What is MCP? Why does standardization matter? What are the use cases? – and then moves through core concepts, security considerations, getting started with coding, all the way to advanced topics and real-world case studies. This progression ensures you understand the “why” and “how” of MCP before tackling complex scenarios. Hands-On Coding Examples: This isn’t just theory – practical coding examples are a cornerstone of the course. You’ll find live code samples and mini-projects in multiple languages (C#, Java, JavaScript/TypeScript, and Python) for each concept. For instance, you’ll build a simple MCP-powered Calculator application as a project, exploring how to implement MCP clients and servers in your preferred language. By coding along, you cement your understanding and see MCP in action. Real-World Use Cases: The curriculum illustrates how MCP applies to real scenarios. It discusses practical use cases of MCP in AI pipelines (e.g. an AI agent pulling in documentation or database info on the fly) and includes case studies of early adopters. These examples help you connect what you learn to actual applications and solutions you might develop in your job. Broad Language Support: A unique aspect of this course is its multi-language approach – both in terms of programming and human languages. The content provides code implementations in several popular programming languages (so you can learn MCP in the context of C#, Java, Python, JavaScript, or TypeScript, as you prefer). In addition, the learning materials themselves are available in multiple human languages (English, plus translations like French, Spanish, German, Chinese, Japanese, Korean, Polish, etc.) to support learners worldwide. This inclusivity ensures that more developers can comfortably engage with the material. Up-to-Date and Open-Source: Being hosted on GitHub under MIT License, the curriculum is completely free to use and open for contributions. It’s maintained with the latest updates for example, automated workflows keep translations in sync so all language versions stay current. As MCP evolves, the course content can evolve with it. You can even join the community to suggest improvements or add content, making this a living learning resource. Official Resources & Community Support: The course links to official MCP documentation and specs for deeper reference, and it encourages learners to join thehttps;//aka.ms/ai/discord to discuss and get help. You won’t be learning alone; you can network with experts and peers, ask questions, and share progress. Microsoft’s open-source approach means you’re part of a community of practitioners from day one. Course Outline: (Modules at a Glance) Introduction to MCP: Overview of MCP, why standardization matters in AI, and the key benefits and use cases of using MCP. (Start here to understand the big picture.) Core Concepts: Deep dive into MCP’s architecture – understanding the client-server model, how requests and responses work, and the message schema. Learn the fundamental components that make up the protocol. Security in MCP: Identify potential security threats when building MCP-based systems and learn best practices to secure your AI integrations. Important for anyone planning to deploy MCP in production environments. Getting Started (Hands-On): Set up your environment and create your first MCP server and client. This module walks through basic implementation steps and shows how to integrate MCP with existing applications, so you get a service up and running that an AI agent can communicate with. MCP Calculator Project: A guided project where you build a simple MCP-powered application (a calculator) in the language of your choice. This hands-on exercise reinforces the concepts by implementing a real tool – you’ll see how an AI agent can use MCP to perform calculations via an external tool. Practical Implementation: Tips and techniques for using MCP SDKs across different languages. Covers debugging, testing, validation of MCP integrations, and how to design effective prompt workflows that leverage MCP’s capabilities. Advanced Topics: Going beyond the basics – explore multi-modal AI workflows (using MCP to handle not just text but other data types), scalability and performance tuning for MCP servers, and how MCP fits into larger enterprise architectures. This is where intermediate users can really deepen their expertise. Community Contributions: Learn how to contribute to the MCP ecosystem and the curriculum itself. This section shows you how to collaborate via GitHub, follow the project’s guidelines, and even extend the protocol with your own ideas. It underlines that MCP is a growing, community-driven standard. Insights from Early Adoption: Hear lessons learned from real-world MCP implementations. What challenges did early adopters face? What patterns and solutions worked best? Understanding these will prepare you to avoid pitfalls in your own projects. Best Practices and Case Studies: A roundup of do’s and don’ts when using MCP. This includes performance optimization techniques, designing fault-tolerant systems, and testing strategies. Plus, detailed case studies that walk through actual MCP solution architectures with diagrams and integration tips bringing everything you learned together in concrete examples. Who Should Take This Course? The MCP for Beginners course is geared towards developers if you build or work on AI-driven applications, this course is for you. The content specifically welcomes: Beginners in AI Integration: You might be a developer who's comfortable with languages like Python, C#, or Java but new to AI/LLMs or to MCP itself. This course will take you from zero knowledge of MCP to a level where you can build and deploy your own MCP-enabled services. You do not need prior experience with MCP or machine learning pipelines the introduction module will bring you up to speed on key concepts. (Basic programming skills and understanding of client-server or API concepts are the only prerequisites.) Intermediate Developers & AI Practitioners: If you have some experience building bots or AI features and want to enhance them with real-time data access, you’ll benefit greatly. The course’s later modules on advanced topics, security, and best practices are especially valuable for those looking to integrate MCP into existing projects or optimize their approach. Even if you've dabbled in MCP or a similar concept before, this curriculum will fill gaps in knowledge and provide structured insights that are hard to get from scattered documentation. AI Enthusiasts & Architects: Perhaps you’re an AI architect or tech lead exploring new frameworks for intelligent agents. This course serves as a comprehensive resource to evaluate MCP for your architecture. By walking through it, you’ll understand how MCP can fit into enterprise systems, what benefits it brings, and how to implement it in a maintainable way. It’s perfect for getting a broad yet detailed view of MCP’s capabilities before adopting it within a team. In essence, anyone interested in making AI applications more connected and powerful will find value here. From a solo hackathon coder to a professional solution architect, the material scales to your need. The course starts with fundamentals in an easy-to-grasp manner and then deepens into complex topics appealing to a wide range of skill levels. Prerequisites: The official prerequisites for the course are minimal: you should have basic knowledge of at least one programming language (C#, Java, or Python is recommended) and a general understanding of how client-server applications or APIs work. Familiarity with machine learning concepts is optional but can help. In short, if you can write simple programs and understand making API calls, you have everything you need to start learning MCP. Conclusion: Empower Your AI Projects with MCP The Model Context Protocol for Beginners course is more than just a tutorial – it’s a comprehensive journey that empowers you to build the next generation of AI applications. By demystifying MCP and equipping you with hands-on experience, this curriculum turns a seemingly complex concept into practical skills you can apply immediately. With MCP, you unlock capabilities like giving your AI agents real-time information access and the ability to use tools autonomously. That means as a developer, you can create solutions that are significantly more intelligent and useful. A chatbot that can search documents, a coding assistant that can consult APIs or run code, an AI service that seamlessly integrates with your database – all these become achievable when you know MCP. And thanks to this beginners-friendly course, you’ll be able to implement such features with confidence. Whether you are starting out in the AI development world or looking to sharpen your cutting-edge skills, the MCP for Beginners course has something for you. It condenses best practices, real-world lessons, and robust techniques into an accessible format. Learning MCP now will put you ahead of the curve, as this protocol rapidly becomes a cornerstone of AI integrations across the industry. So, are you ready to level up your AI development skills? Dive into the https://aka.ms/mcp-for-beginnerscourse and start building AI agents that can truly interact with the world around them. With the knowledge and experience gained, you’ll be prepared to create smarter, context-aware applications and be a part of the community driving AI innovation forward.6.6KViews3likes1CommentBuild your code-first agent with Azure AI Foundry: Self-Guided Workshop
Build your first Agent App Agentic AI is changing how we build intelligent apps - enabling software to reason, plan, and act for us. Learning to build AI agents is quickly becoming a must-have skill for anyone working with AI. Self-Guided Workshop Try our self-guided “Build your code-first agent with Azure AI Foundry” workshop to get hands-on with Azure AI Agent Service. You’ll learn to build, deploy, and interact with agents using Azure’s powerful tools. What is Azure AI Agent Service? Azure AI Agent Service lets you create, orchestrate, and manage AI-powered agents that can handle complex tasks, integrate with tools, and deploy securely. What Will You Learn? The basics of agentic AI apps and how they differ from traditional apps How to set up your Azure environment How to build your first agent How to test and interact with your agent Advanced features like tool integration and memory management Who Is This For? Anyone interested in building intelligent, goal-oriented agents — developers, data scientists, students, and AI enthusiasts. No prior experience with Azure AI Agent Service required. How Does the Workshop Work? Tip: Select the self-guided tab in Getting Started for the right instructions. Step-by-step guides at your own pace Code samples and templates Real-world scenarios Get Started See what agentic AI can do for you with the self-guided “Build your code-first agent with Azure AI Foundry” workshop. Build practical skills in one of AI’s most exciting areas. Try the workshop and start building agents that make a difference! Additional Resources Azure AI Foundry Documentation Azure AI Agent Service Overview Questions or feedback Questions or feedback? Visit the issues page. Happy learning and building with Azure AI Agent Service!1.2KViews0likes0CommentsSimulation game designed to train students to handle a bankruptcy case using Power Platform
Technology is transforming the education sector, increasingly helping teachers around the world to provide better, more interactive learning experiences. Dutch institution Avans Applied Science University is a prime example. Here, a law teacher (with no technical background) has recently created a simulation game designed to train students to handle a bankruptcy case as it would happen in real life. Built using Microsoft Power Platform, the game takes students through various steps of the case. All with the help of a chatbot created using Power Virtual Agents, which interacts with students and asks them legal questions.1.9KViews1like2CommentsHow to use any Python AI agent framework with free GitHub Models
I ❤️ when companies offer free tiers for developer services, since it gives everyone a way to learn new technologies without breaking the bank. Free tiers are especially important for students and people between jobs, when the desire to learn is high but the available cash is low. That's why I'm such a fan of GitHub Models: free, high-quality generative AI models available to anyone with a GitHub account. The available models include the latest OpenAI LLMs (like o3-mini), LLMs from the research community (like Phi and Llama), LLMs from other popular providers (like Mistral and Jamba), multimodal models (like gpt-4o and llama-vision-instruct) and even a few embedding models (from OpenAI and Cohere). With access to such a range of models, you can prototype complex multi-model workflows to improve your productivity or heck, just make something fun for yourself. 🤗 To use GitHub Models, you can start off in no-code mode: open the playground for a model, send a few requests, tweak the parameters, and check out the answers. When you're ready to write code, select "Use this model". A screen will pop up where you can select a programming language (Python/JavaScript/C#/Java/REST) and select an SDK (which varies depending on model). Then you'll get instructions and code for that model, language, and SDK. But here's what's really cool about GitHub Models: you can use them with all the popular Python AI frameworks, even if the framework has no specific integration with GitHub Models. How is that possible? The vast majority of Python AI frameworks support the OpenAI Chat Completions API, since that API became a defacto standard supported by many LLM API providers besides OpenAI itself. GitHub Models also provide OpenAI-compatible endpoints for chat completion models. Therefore, any Python AI framework that supports OpenAI-like models can be used with GitHub Models as well. 🎉 To prove it, I've made a new repository with examples from eight different Python AI agent packages, all working with GitHub Models: python-ai-agent-frameworks-demos. There are examples for AutoGen, LangGraph, Llamaindex, OpenAI Agents SDK, OpenAI standard SDK, PydanticAI, Semantic Kernel, and SmolAgents. You can open that repository in GitHub Codespaces, install the packages, and get the examples running immediately. Now let's walk through the API connection code for GitHub Models for each framework. Even if I missed your favorite framework, I hope my tips here will help you connect any framework to GitHub Models. OpenAI I'll start with openai , the package that started it all! import openai client = openai.OpenAI( api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com") The code above demonstrates the two key parameters we'll need to configure for all frameworks: api_key : When using OpenAI.com, you pass your OpenAI API key here. When using GitHub Models, you pass in a Personal Access Token (PAT). If you open the repository (or any repository) in GitHub Codespaces, a PAT is already stored in the GITHUB_TOKEN environment variable. However, if you're working locally with GitHub Models, you'll need to generate a PAT yourself and store it. PATs expire after a while, so you need to generate new PATs every so often. base_url : This parameter tells the OpenAI client to send all requests to "https://models.inference.ai.azure.com" instead of the OpenAI.com API servers. That's the domain that hosts the OpenAI-compatible endpoint for GitHub Models, so you'll always pass that domain as the base URL. If we're working with the new openai-agents SDK, we use very similar code, but we must use the AsyncOpenAI client from openai instead. Lately, Python AI packages are defaulting to async, because it's so much better for performance. import agents import openai client = openai.AsyncOpenAI( base_url="https://models.inference.ai.azure.com", api_key=os.environ["GITHUB_TOKEN"]) model = agents.OpenAIChatCompletionsModel( model="gpt-4o", openai_client=client) spanish_agent = agents.Agent( name="Spanish agent", instructions="You only speak Spanish.", model=model) PydanticAI Now let's look at all of the packages that make it really easy for us, by allowing us to directly bring in an instance of either OpenAI or AsyncOpenAI . For PydanticAI, we configure an AsyncOpenAI client, then construct an OpenAIModel object from PydanticAI, and pass that model to the agent: import openai import pydantic_ai import pydantic_ai.models.openai client = openai.AsyncOpenAI( api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com") model = pydantic_ai.models.openai.OpenAIModel( "gpt-4o", provider=OpenAIProvider(openai_client=client)) spanish_agent = pydantic_ai.Agent( model, system_prompt="You only speak Spanish.") Semantic Kernel For Semantic Kernel, the code is very similar. We configure an AsyncOpenAI client, then construct an OpenAIChatCompletion object from Semantic Kernel, and add that object to the kernel. import openai import semantic_kernel.connectors.ai.open_ai import semantic_kernel.agents chat_client = openai.AsyncOpenAI( api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com") chat = semantic_kernel.connectors.ai.open_ai.OpenAIChatCompletion( ai_model_id="gpt-4o", async_client=chat_client) kernel.add_service(chat) spanish_agent = semantic_kernel.agents.ChatCompletionAgent( kernel=kernel, name="Spanish agent" instructions="You only speak Spanish") AutoGen Next, we'll check out a few frameworks that have their own wrapper of the OpenAI clients, so we won't be using any classes from openai directly. For AutoGen, we configure both the OpenAI parameters and the model name in the same object, then pass that to each agent: import autogen_ext.models.openai import autogen_agentchat.agents client = autogen_ext.models.openai.OpenAIChatCompletionClient( model="gpt-4o", api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com") spanish_agent = autogen_agentchat.agents.AssistantAgent( "spanish_agent", model_client=client, system_message="You only speak Spanish") LangGraph For LangGraph, we configure a very similar object, which even has the same parameter names: import langchain_openai import langgraph.graph model = langchain_openai.ChatOpenAI( model="gpt-4o", api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com", ) def call_model(state): messages = state["messages"] response = model.invoke(messages) return {"messages": [response]} workflow = langgraph.graph.StateGraph(MessagesState) workflow.add_node("agent", call_model) SmolAgents Once again, for SmolAgents, we configure a similar object, though with slightly different parameter names: import smolagents model = smolagents.OpenAIServerModel( model_id="gpt-4o", api_key=os.environ["GITHUB_TOKEN"], api_base="https://models.inference.ai.azure.com") agent = smolagents.CodeAgent(model=model) Llamaindex I saved Llamaindex for last, as it is the most different. The llama-index package has a different constructor for OpenAI.com versus OpenAI-like servers, so I opted to use that OpenAILike constructor instead. However, I also needed an embeddings model for my example, and the package doesn't have an OpenAIEmbeddingsLike constructor, so I used the standard OpenAIEmbedding constructor. import llama_index.embeddings.openai import llama_index.llms.openai_like import llama_index.core.agent.workflow Settings.llm = llama_index.llms.openai_like.OpenAILike( model="gpt-4o", api_key=os.environ["GITHUB_TOKEN"], api_base="https://models.inference.ai.azure.com", is_chat_model=True) Settings.embed_model = llama_index.embeddings.openai.OpenAIEmbedding( model="text-embedding-3-small", api_key=os.environ["GITHUB_TOKEN"], api_base="https://models.inference.ai.azure.com") agent = llama_index.core.agent.workflow.ReActAgent( tools=query_engine_tools, llm=Settings.llm) Choose your models wisely! In all of the examples above, I specified the gpt-4o model. The gpt-4o model is a great choice for agents because it supports function calling, and many agent frameworks only work (or work best) with models that natively support function calling. Fortunately, GitHub Models includes multiple models that support function calling, at least in my basic experiments: gpt-4o gpt-4o-mini o3-mini AI21-Jamba-1.5-Large AI21-Jamba-1.5-Mini Codestral-2501 Cohere-command-r Ministral-3B Mistral-Large-2411 Mistral-Nemo Mistral-small You might find that some models work better than others, especially if you're using agents with multiple tools. With GitHub Models, it's very easy to experiment and see for yourself, by simply changing the model name and re-running the code. Join the AI Agents Hackathon We are currently running a free virtual hackathon from April 8th - 30th, to challenge developers to create agentic applications using Microsoft technologies. You could build an agent entirely using GitHub Models and submit it to the hackathon for a chance to win amazing prizes! You can also join our 30+ streams about building AI agents, including a stream all about prototyping with GitHub Models. Learn more and register at https://aka.ms/agentshack1.8KViews3likes0Comments