azure openai
61 TopicsAMA on Camera - AI Revolution: Azure OpenAI's Game-Changing Enhancements
Discover the latest enhancements to Azure OpenAI Service offering and deployments. Join our engineering experts to learn about Azure OpenAI Data Zones for flexible, multi-regional data processing and compliance. Explore simplified deployment flows, industry-leading performance guarantees, and cost-efficiency at scale. Perfect for anyone looking to leverage adaptable, reliable, and scalable AI solutions for enterprise applications. Please check out this blog post for more information: Accelerate scale with Azure OpenAI Service Provisioned offering | Microsoft Azure Blog Azure OpenAI Global Batch offering is designed to handle large-scale and high-volume processing tasks efficiently. Process asynchronous groups of requests with separate quota, a 24-hour turnaround time, at 50% less cost than global standard. Learn more There will be presentations on Batch, Data Zone Standard and Data Zone Provisioned and we will be taking questions throughout. Please share any questions that you would like our experts to address in the comments below. Questions can be posted anytime in the comments below beforehand, if it fits your schedule or time zone better, though questions will not be answered until the live hour. Questions will be answered both in the live broadcast on video and in text below. This will be a live stream video directly on this event page. NOTE: Please be aware the link sent via the private message to folks will not work due to some platform changes. We are working on redirecting it, but just in case, the new event link (the page you are on) is here: AMA on Camera - AI Revolution: Azure OpenAI's Game-Changing Enhancements | Microsoft Community Hub )4.8KViews13likes11CommentsAzure Data Explorer for Vector Similarity Search
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/series-cosine-similarity-function In the world of AI & data analytics, vector databases are emerging as a powerful tool for managing complex and high-dimensional data. In this article, we will explore the concept of vector databases, the need for vector databases in data analytics, and how Azure Data Explorer (ADX) aka Kusto can be used as a vector database.32KViews13likes5CommentsBuilding a Scalable Web Crawling and Indexing Pipeline with Azure storage and AI Search
In the ever-evolving world of data management, keeping search indexes up-to-date with dynamic data can be challenging. Traditional approaches, such as manual or scheduled indexing, are resource-intensive, delay-prone, and difficult to scale. Azure Blob Trigger combined with an AI Search Indexer offers a cutting-edge solution to overcome these challenges, enabling real-time, scalable, and enriched data indexing. This blog explores how Blob Trigger, integrated with Azure Cognitive Search, transforms the indexing process by automating workflows and enriching data with AI capabilities. It highlights the step-by-step process of configuring Blob Storage, creating Azure Functions for triggers, and seamlessly connecting with an AI-powered search index. The approach leverages Azure's event-driven architecture, ensuring efficient and cost-effective data management.2.3KViews7likes10CommentsTeach ChatGPT to Answer Questions: Using Azure AI Search & Azure OpenAI (Semantic Kernel)
In this two-part series, we will explore how to build intelligent service using Azure. In Series 1, we'll use Azure AI Search to extract keywords from unstructured data stored in Azure Blob Storage. In Series 2, we'll Create a feature to answer questions based on PDF documents using Azure OpenAI26KViews4likes3CommentsTeach ChatGPT to Answer Questions: Using Azure AI Search & Azure OpenAI (Lang Chain)
In this two-part series, we will explore how to build intelligent service using Azure. In Series 1, we'll use Azure AI Search to extract keywords from unstructured data stored in Azure Blob Storage. In Series 2, we'll Create a feature to answer questions based on PDF documents using Azure OpenAI.43KViews4likes9CommentsAzure OpenAI GPT model to review Pull Requests for Azure DevOps
In recent months, the use of Generative Pre-trained Transformer (GPT) models for natural language processing (NLP) has gained significant traction. GPT models, which are based on the Transformer architecture, can generate text from arbitrary sources of input data and can be trained to identify errors and detect anomalies in text. As such, GPT models are increasingly being used for a variety of applications, ranging from natural language understanding to text summarization and question-answering. In the software development world, developers use pull requests to submit proposed changes to a codebase. However, reviews by other developers can sometimes take a long time and not accurate, and in some cases, these reviews can introduce new bugs and issues. In order to reduce this risk, During my research I found the integration of GPT models is possible and we can add Azure OpenAI service as pull request reviewers for Azure Pipelines service. The GPT models are trained on developer codebases and are able to detect potential coding issues such as typos, syntax errors, style inconsistencies and code smells. In addition, they can also assess code structure and suggest improvements to the overall code quality. Once the GPT models have been trained, they can be integrated into the Azure Pipelines service so that they can automatically review pull requests and provide feedback. This helps to reduce the time taken for code reviews, as well as reduce the likelihood of introducing bugs and issues.45KViews4likes13CommentsUnlocking the Power of Open AI – Azure DevOps Backlogs from Images/PDFs
In today's digital world, the need to convert images and PDFs to text is becoming increasingly important. However, the process of manually transcribing images and PDFs can be time-consuming and error-prone. Fortunately, there is a better way. With the Azure Open AI service, you can easily and quickly convert images and PDFs to text.4.7KViews4likes0CommentsAzure OpenAI Model Upgrades: Prompt Safety Pitfalls with GPT-4o and Beyond
Upgrading to New Azure OpenAI Models? Beware Your Old Prompts Might Break. I recently worked on upgrading our Azure OpenAI integration from gpt-35-turbo to gpt-4o-mini, expecting it to be a straightforward configuration change. Just update the Azure Foundry resource endpoint, change the model name, deploy the code — and voilà, everything should work as before. Right? Not quite. The Unexpected Roadblock As soon as I deployed the updated code, I started seeing 400 status errors from the OpenAI endpoint. The message was cryptic: The response was filtered due to the prompt triggering Azure OpenAI's content management policy. At first, I assumed it was a bug in my SDK call or a malformed payload. But after digging deeper, I realized this wasn’t a technical failure — it was a content safety filter kicking in before the prompt even reached the model. The Prompt That Broke It Here’s the original system prompt that worked perfectly with gpt-35-turbo: YOU ARE A QNA EXTRACTOR IN TEXT FORMAT. YOU WILL GET A SET OF SURVEYJS QNA JSONS. YOU WILL CONVERT THAT INTO A TEXT DOCUMENT. FOR THE QUESTIONS WHERE NO ANSWER WAS GIVEN, MARK THOSE AS NO ANSWER. HERE IS THE QNA: BE CREATIVE AND PROFESSIONAL. I WANT TO GENERATE A DOCUMENT TO BE PUBLISHED. {{$style}} +++++ {{$input}} +++++ This prompt had been reliable for months. But with gpt-4o-mini, it triggered Azure’s new input safety layer, introduced in mid-2024. What Changed with GPT-4o-mini? Unlike gpt-35-turbo, the gpt-4o family: Applies stricter content filtering — not just on the output, but also on the input prompt. Treats system messages and user messages as role-based chat messages, passing them through moderation before the model sees them. Flags prompts that look like prompt injection attempts like aggressive instructions like “YOU ARE…”, “BE CREATIVE”, “GENERATE”, “PROFESSIONAL”. Flags unusual formatting (like `+++++`), artificial delimiters or token markers as it may look like encoded content. In short, the model didn’t even get a chance to process my prompt — it was blocked at the gate. Fixing It: Softening the Prompt The solution wasn’t to rewrite the entire logic, but to soften the system prompt and remove formatting that could be misinterpreted. Here’s what helped: - Replacing “YOU ARE…” with a gentler instruction like “Please help convert the following Q&A data…” - Removing creative directives like “BE CREATIVE” or “PROFESSIONAL” unless clearly contextualized. - Avoiding raw JSON markers and template syntax (`{{ }}`, `+++++`) in the prompt. Once I made these changes, the model responded smoothly — and the upgrade was finally complete. Evolving the Prompt — Not Abandoning It Interestingly, for some prompts I didn’t have to completely eliminate the “YOU ARE…” structure. Instead, I refined it to be more natural and less directive. Here’s a comparison: ❌ Old Prompt (Blocked) ✅ New Prompt (Accepted) YOU ARE A SOURCING AND PROCUREMENT MANAGER. YOU WILL GET BUYER'S REQUIREMENTS IN QNA FORMAT. HERE IS THE QNA: {{$input}} +++++ YOU WILL GENERATE TOP 10 {{$category}} RELATED QUESTIONS THAT CAN BE ASKED OF A SUPPLIER IN JSON FORMAT. THE JSON MUST HAVE QUESTION NUMBER AS THE KEY AND QUESTION TEXT AS THE QUESTION. DON'T ADD ANY DESCRIPTION TEXT OR FORMATTING IN THE OUTPUT. BE CREATIVE AND PROFESSIONAL. I WANT TO GENERATE AN RFX. You are an AI assistant that helps clarify sourcing requirements. You will receive buyer's requirements in QnA format. Here is the QnA: {$input} Your task is to generate the top 10 {$category} related questions that can be asked of a supplier, in JSON format. - The JSON must use the question number as the key and the question text as the value. - Do not include any description text or formatting in the output. - Focus on creating clear, professional, and relevant questions that will help prepare an RFX. Key Takeaways - Model upgrades aren’t just about configuration changes — they can introduce new moderation layers that affect prompt design. - Prompt safety filtering is now a first-class citizen in Azure OpenAI, especially for newer models. - System prompts need to be rewritten with moderation in mind, not just clarity or creativity. This experience reminded me that even small upgrades can surface big learning moments. If you're planning to move to gpt-4o-mini or any newer Azure OpenAI model, take a moment to review your prompts — they might need a little more finesse than before.224Views3likes1CommentStaying in the flow: SleekFlow and Azure turn customer conversations into conversions
A customer adds three items to their cart but never checks out. Another asks about shipping, gets stuck waiting eight minutes, only to drop the call. A lead responds to an offer but is never followed up with in time. Each of these moments represents lost revenue, and they happen to businesses every day. SleekFlow was founded in 2019 to help companies turn those almost-lost-customer moments into connection, retention, and growth. Today we serve more than 2,000 mid-market and enterprise organizations across industries including retail and e-commerce, financial services, healthcare, travel and hospitality, telecommunications, real estate, and professional services. In total, those customers rely on SleekFlow to orchestrate more than 600,000 daily customer interactions across WhatsApp, Instagram, web chat, email, and more. Our name reflects what makes us different. Sleek is about unified, polished experiences—consolidating conversations into one intelligent, enterprise-ready platform. Flow is about orchestration—AI and human agents working together to move each conversation forward, from first inquiry to purchase to renewal. The drive for enterprise-ready agentic AI Enterprises today expect always-on, intelligent conversations—but delivering that at scale proved daunting. When we set out to build AgentFlow, our agentic AI platform, we quickly ran into familiar roadblocks: downtime that disrupted peak-hour interactions, vector search delays that hurt accuracy, and costs that ballooned under multi-tenant workloads. Development slowed from limited compatibility with other technologies, while customer onboarding stalled without clear compliance assurances. To move past these barriers, we needed a foundation that could deliver the performance, trust, and global scale enterprises demand. The platform behind the flow: How Azure powers AgentFlow We chose Azure because building AgentFlow required more than raw compute power. Chatbots built on a single-agent model often stall out. They struggle to retrieve the right context, they miss critical handoffs, and they return answers too slowly to keep a customer engaged. To fix that, we needed an ecosystem capable of supporting a team of specialized AI agents working together at enterprise scale. Azure Cosmos DB provides the backbone for memory and context, managing short-term interactions, long-term histories, and vector embeddings in containers that respond in 15–20 milliseconds. Powered by Azure AI Foundry, our agents use Azure OpenAI models within Azure AI Foundry to understand and generate responses natively in multiple languages. Whether in English, Chinese, or Portuguese, the responses feel natural and aligned with the brand. Semantic Kernel acts as the conductor, orchestrating multiple agents, each of which retrieves the necessary knowledge and context, including chat histories, transactional data, and vector embeddings, directly from Azure Cosmos DB. For example, one agent could be retrieving pricing data, another summarizing it, and a third preparing it for a human handoff. The result is not just responsiveness but accuracy. A telecom provider can resolve a billing question while surfacing an upsell opportunity in the same dialogue. A financial advisor can walk into a call with a complete dossier prepared in seconds rather than hours. A retailer can save a purchase by offering an in-stock substitute before the shopper abandons the cart. Each of these conversations is different, yet the foundation is consistent on AgentFlow. Fast, fluent, and focused: Azure keeps conversations moving Speed is the heartbeat of a good conversation. A delayed answer feels like a dropped call, and an irrelevant one breaks trust. For AgentFlow to keep customers engaged, every operation behind the scenes has to happen in milliseconds. A single interaction can involve dozens of steps. One agent pulls product information from embeddings, another checks it against structured policy data, and a third generates a concise, brand-aligned response. If any of these steps lag, the dialogue falters. On Azure, they don’t. Azure Cosmos DB manages conversational memory and agent state across dedicated containers for short-term exchanges, long-term history, and vector search. Sharded DiskANN indexing powers semantic lookups that resolve in the 15–20 millisecond range—fast enough that the customer never feels a pause. Microsoft Phi’s model Phi-4 as well as Azure OpenAI in Foundry Models like o3-mini and o4-mini, provide the reasoning, and Azure Container Apps scale elastically, so performance holds steady during event-driven bursts, such as campaign broadcasts that can push the platform from a few to thousands of conversations per minute, and during daily peak-hour surges. To support that level of responsiveness, we run Azure Container Apps on the Pay-As-You-Go consumption plan, using KEDA-based autoscaling to expand from five idle containers to more than 160 within seconds. Meanwhile, Microsoft Orleans coordinates lightweight in-memory clustering to keep conversations sleek and flowing. The results are tangible. Retrieval-augmented generation recall improved from 50 to 70 percent. Execution speed is about 50 percent faster. For SleekFlow’s customers, that means carts are recovered before they’re abandoned, leads are qualified in real time, and support inquiries move forward instead of stalling out. With Azure handling the complexity under the hood, conversations flow naturally on the surface—and that’s what keeps customers engaged. Secure enough for enterprises, human enough for customers AgentFlow was built with security-by-design as a first principle, giving businesses confidence that every interaction is private, compliant, and reliable. On Azure, every AI agent operates inside guardrails enterprises can depend on. Azure Cosmos DB enforces strict per-tenant isolation through logical partitioning, encryption, and role-based access control, ensuring chat histories, knowledge bases, and embeddings remain auditable and contained. Models deployed through Azure AI Foundry, including Azure OpenAI and Microsoft Phi, process data entirely within SleekFlow’s Azure environment and guarantees it is never used to train public models, with activity logged for transparency. And Azure’s certifications—including ISO 27001, SOC 2, and GDPR—are backed by continuous monitoring and regional data residency options, proving compliance at a global scale. But trust is more than a checklist of certifications. AgentFlow brings human-like fluency and empathy to every interaction, powered by Azure OpenAI running with high token-per-second throughput so responses feel natural in real time. Quality control isn’t left to chance. Human override workflows are orchestrated through Azure Container Apps and Azure App Service, ensuring AI agents can carry conversations confidently until they’re ready for human agents. Enterprises gain the confidence to let AI handle revenue-critical moments, knowing Azure provides the foundation and SleekFlow provides the human-centered design. Shaping the next era of conversational AI on Azure The benefits of Azure show up not only in customer conversations but also in the way our own teams work. Faster processing speeds and high token-per-second throughput reduce latency, so we spend less time debugging and more time building. Stable infrastructure minimizes downtime and troubleshooting, lowering operational costs. That same reliability and scalability have transformed the way we engineer AgentFlow. AgentFlow started as part of our monolithic system. Shipping new features used to take about a month of development and another week of heavy testing to make sure everything held together. After moving AgentFlow to a microservices architecture on Azure Container Apps, we can now deploy updates almost daily with no down time or customer impact. And this is all thanks to native support for rolling updates and blue-green deployments. This agility is what excites us most about what's ahead. With Azure as our foundation, SleekFlow is not simply keeping pace with the evolution of conversational AI—we are shaping what comes next. Every interaction we refine, every second we save, and every workflow we streamline brings us closer to our mission: keeping conversations sleek, flowing, and valuable for enterprises everywhere.196Views3likes0Comments