azure openai
44 TopicsAzure Logic App AI-Powered Monitoring Solution: Automate, Analyze, and Act on Your Azure Data
Introduction In today’s cloud-driven world, monitoring and analyzing application health is critical for business continuity and operational excellence. However, the sheer volume of monitoring data can make it challenging to extract actionable insights quickly. Enter the Azure Logic App AI-Powered Monitoring Solution—an intelligent, serverless pipeline that leverages Azure Logic Apps and Azure OpenAI to automate monitoring, analyze data, and deliver comprehensive reports right to your inbox. This solution is ideal for organizations seeking to modernize their monitoring workflows, reduce manual analysis, and empower teams with AI-driven insights for faster decision-making. What Does This Solution Accomplish? The Azure Logic App AI-Powered Monitoring Solution creates an automated pipeline that: Extracts monitoring data from Azure Log Analytics using KQL queries. Analyzes data with AI using the Azure OpenAI GPT-4o model. Generates intelligent reports and sends them via email. Runs automatically on a daily schedule. Uses managed identity for secure authentication across Azure services. Business Case Solved Automated Monitoring: No more manual log reviews—let AI do the heavy lifting. Actionable Insights: Receive daily, AI-generated summaries highlighting system health, key metrics, potential issues, and recommendations. Operational Efficiency: Reduce time-to-insight and empower teams to act faster on critical events. Secure and Scalable: Built on Azure’s serverless and identity-driven architecture. Key Features Serverless Architecture: Built on Azure Logic Apps Standard for scalability and cost efficiency. AI-Powered Insights: Uses Azure OpenAI for advanced data analysis and summarization. Infrastructure as Code: Deployable via Bicep templates for reproducibility and automation. Secure by Design: Managed identity and Azure RBAC ensure secure access. Cost Effective: Pay-per-execution model with optimized resource usage. Customizable: Easily modify KQL queries and AI prompts to fit your monitoring needs. Solution Architecture Technologies Involved Azure Logic Apps Standard: Orchestrates the workflow. Azure OpenAI Service (GPT-4o): Performs AI-powered data analysis and summarization. Azure Log Analytics: Source for monitoring data, queried via KQL. Application Insights: Monitors workflow execution and telemetry. Azure Storage Account: Stores Logic App runtime data. Managed Identity: Secures authentication across Azure services. Infrastructure as Code (Bicep): Enables automated, repeatable deployments. Office 365 Connector: Sends email notifications. Support Documentation: https://docs.microsoft.com/en-us/azure/logic-apps/ Issues: https://github.com/vinod-soni-microsoft/logicapp-ai-summarize/issues Star this repository if you find it helpful!1.3KViews0likes0CommentsConfigure Embedding Models on Azure AI Foundry with Open Web UI
Introduction Let’s take a closer look at an exciting development in the AI space. Embedding models are the key to transforming complex data into usable insights, driving innovations like smarter chatbots and tailored recommendations. With Azure AI Foundry, Microsoft’s powerful platform, you’ve got the tools to build and scale these models effortlessly. Add in Open Web UI, a intuitive interface for engaging with AI systems, and you’ve got a winning combo that’s hard to beat. In this article, we’ll explore how embedding models on Azure AI Foundry, paired with Open Web UI, are paving the way for accessible and impactful AI solutions for developers and businesses. Let’s dive in! To proceed with configuring the embedding model from Azure AI Foundry on Open Web UI, please firstly configure the requirements below. Requirements: Setup Azure AI Foundry Hub/Projects Deploy Open Web UI – refer to my previous article on how you can deploy Open Web UI on Azure VM. Optional: Deploy LiteLLM with Azure AI Foundry models to work on Open Web UI - refer to my previous article on how you can do this as well. Deploying Embedding Models on Azure AI Foundry Navigate to the Azure AI Foundry site and deploy an embedding model from the “Model + Endpoint” section. For the purpose of this demonstration, we will deploy the “text-embedding-3-large” model by OpenAI. You should be receiving a URL endpoint and API Key to the embedding model deployed just now. Take note of that credential because we will be using it in Open Web UI. Configuring the embedding models on Open Web UI Now head to the Open Web UI Admin Setting Page > Documents and Select Azure Open AI as the Embedding Model Engine. Copy and Paste the Base URL, API Key, the Embedding Model deployed on Azure AI Foundry and the API version (not the model version) into the fields below: Click “Save” to reflect the changes. Expected Output Now let us look into the scenario for when the embedding model configured on Open Web UI and when it is not. Without Embedding Models configured. With Azure Open AI Embedding models configured. Conclusion And there you have it! Embedding models on Azure AI Foundry, combined with the seamless interaction offered by Open Web UI, are truly revolutionizing how we approach AI solutions. This powerful duo not only simplifies the process of building and deploying intelligent systems but also makes cutting-edge technology more accessible to developers and businesses of all sizes. As we move forward, it’s clear that such integrations will continue to drive innovation, breaking down barriers and unlocking new possibilities in the AI landscape. So, whether you’re a seasoned developer or just stepping into this exciting field, now’s the time to explore what Azure AI Foundry and Open Web UI can do for you. Let’s keep pushing the boundaries of what’s possible!1.3KViews0likes0CommentsBuilding a Basic Chatbot with Azure OpenAI
Overview In this turorial, we'll build a simple chatbot that uses Azure OpenAI to generate responses to user queries. To create a basic chatbot, we need to set up a language model resource that enables conversation capabilities. In this tutorial, we will: Set up the Azure OpenAI resource using the Azure AI Foundry portal. Retrieve the API key needed to connect the resource to your chatbot application. Once the API key is configured in your code, you will be able to integrate the language model into your chatbot and enable it to generate responses. By the end of this tutorial, you'll have a working chatbot that can generate responses using the Azure OpenAI model. Signing In and Setting Up Your Azure AI Foundry Workspace Signing In to Azure AI Foundry Open the Azure AI Foundry page in your web browser. Login to your Azure account. If you don't have an account, you can sign up. Setting Up Your Azure AI Foundry Workspace Select + Create project to create a new project. Perform the following tasks: Enter Project name. It must be a unique value. Select Hub you'd like to use (create a new one if needed). Select Create. Setting Up the Azure OpenAI Resource in Azure AI Foundry In this step, you'll learn how to set up the Azure OpenAI resource in Azure AI Foundry. Azure OpenAI is a pre-trained language model that can generate responses to user queries. We'll be using it in our chatbot. Select Models + endpoints from the left side menu. On this page, you can deploy language models and set up Azure AI resources. In this step, we will deploy the Azure OpenAI GPT-4 language model. Select + Deploy model. Select Deploy base model. In this tutorial, we will deploy the GPT-4o model. Select GPT-4o. Select Confirm. Select Deploy. The model will be deployed. Once the deployment is complete, you will see the model listed on the Models + endpoints page. Now that the model is deployed, you can retrieve the API key needed to connect the model to your chatbot application. Select the model you deployed on the Models + endpoints page. ` On the model details page, you can view information about the model, including the API key. We will come back this page later to add the required information into the environment variables. Setting Up the Project and Install the Libraries Now, you will create a folder to work in and set up a virtual environment to develop a program. Creating a Folder to Work Inside It Open a terminal window and type the following command to create a folder named basic-chatbot in the default path. mkdir basic-chatbot Type the following command inside your terminal to navigate to the basic-chatbot folder you created. cd basic-chatbot Creating a Virtual Environment Type the following command inside your terminal to create a virtual environment named .venv. python -m venv .venv Type the following command inside your terminal to activate the virtual environment. .venv\Scripts\activate.bat NOTE If it worked, you should see (.venv) before the command prompt. Installing the Required Packages Type the following commands inside your terminal to install the required packages. openai: A Python library that provides integration with the Azure OpenAI API. python-dotenv: A Python library for managing environment variables stored in an .env file. pip install openai python-dotenv Setting up the Project in Visual Studio Code To create a basic chatbot program, you will need two files: example.py: This file will contain the code to interact with Azure resources. .env: This file will store the Azure credentials and configuration details. NOTE Purpose of the .env File The .env file is essential for storing the Azure information required to connect and use the resources you created. By keeping the Azure credentials in the .env file, you can ensure a secure and organized way to manage sensitive information. Setting Up example.py File Open Visual Studio Code. Select File from the menu bar. Select Open Folder. Select the basic-chatbot folder that you created, which is located at C:\Users\yourUserName\basic-chatbot. In the left pane of Visual Studio Code, right-click and select New File to create a new file named example.py. Add the following code to the example.py file to import the required libraries. from openai import AzureOpenAI from dotenv import load_dotenv import os # Load environment variables from the .env file load_dotenv() # Retrieve environment variables AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT") AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY") AZURE_OPENAI_MODEL_NAME = os.getenv("AZURE_OPENAI_MODEL_NAME") AZURE_OPENAI_CHAT_DEPLOYMENT_NAME = os.getenv("AZURE_OPENAI_CHAT_DEPLOYMENT_NAME") AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION") # Initialize Azure OpenAI client client = AzureOpenAI( api_key=AZURE_OPENAI_API_KEY, api_version=AZURE_OPENAI_API_VERSION, base_url=f"{AZURE_OPENAI_ENDPOINT}/openai/deployments/{AZURE_OPENAI_CHAT_DEPLOYMENT_NAME}" ) print("Chatbot: Hello! How can I assist you today? Type 'exit' to end the conversation.") while True: user_input = input("You: ") if user_input.lower() == "exit": print("Chatbot: Ending the conversation. Have a great day!") break response = client.chat.completions.create( model=AZURE_OPENAI_MODEL_NAME, messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": user_input} ], max_tokens=200 ) print("Chatbot:", response.choices[0].message.content.strip()) Setting Up .env File To set up your development environment, we will create a .env file and store the necessary credentials directly. NOTE Complete folder structure: └── YourUserName . └── basic-chatbot . ├── example.py . └── .env In the left pane of Visual Studio Code, right-click and select New File to create a new file named .env. Add the following code to the .env file to include your Azure information. AZURE_OPENAI_API_KEY=your_azure_openai_api_key AZURE_OPENAI_ENDPOINT=https://your_azure_openai_endpoint AZURE_OPENAI_MODEL_NAME=your_model_name AZURE_OPENAI_CHAT_DEPLOYMENT_NAME=your_deployment_name AZURE_OPENAI_API_VERSION=your_api_version Retrieving Environment Variables from Azure AI Foundry Now, you will retrieve the required information from Azure AI Foundry and update the .env file. Go to the Models + endpoints page and select your deployed model. On the Model Details page, copy the following information in to the .env file.: AZURE_OPENAI_API_KEY AZURE_OPENAI_ENDPOINT AZURE_OPENAI_MODEL_NAME AZURE_OPENAI_CHAT_DEPLOYMENT_NAME Paste this information into the .env file in the respective placeholders. Running the Chatbot Program Type the following command inside your terminal to run the program and see if it can answer questions. python example.py Interact with the chatbot by typing your questions or messages. The chatbot will generate responses based on the Azure OpenAI model you deployed. NOTE You can find the full example of this chatbot, including the code and .env template, in my GitHub repository: GitHub Repository2.2KViews2likes1CommentBuilding AI-Powered Clinical Knowledge Stores with Azure AI Search
👀 Missed Session 01? Don’t worry—you can still catch up. But first, here’s what AI HLS Ignited is all about: What is AI HLS Ignited? AI HLS Ignited is a Microsoft-led technical series for healthcare innovators, solution architects, and AI engineers. Each session brings to life real-world AI solutions that are reshaping the Healthcare and Life Sciences (HLS) industry. Through live demos, architectural deep dives, and GitHub-hosted code, we equip you with the tools and knowledge to build with confidence. Session 01 Recap: In our first session, we introduced the accelerator MedIndexer - which is an indexing framework designed for the automated creation of structured knowledge bases from unstructured clinical sources. Whether you're dealing with X-rays, clinical notes, or scanned documents, MedIndexer converts these inputs into a schema-driven format optimized for Azure AI Search. This will allow your applications to leverage state-of-the-art retrieval methodologies, including vector search and re-ranking. Moreover, by applying a well-defined schema and vectorizing the data into high-dimensional representations, MedIndexer empowers AI applications to retrieve more precise and context-aware information... The result? AI systems that surface more relevant, accurate, and context-aware insights—faster. 🔍 Turning Your Unstructured Data into Value "About 80% of medical data remains unstructured and untapped after it is created (e.g., text, image, signal, etc.)" — Healthcare Informatics Research, Chungnam National University In the era of AI, the rise of AI copilots and assistants has led to a shift in how we access knowledge. But retrieving clinical data that lives in disparate formats is no trivial task. Building retrieval systems takes effort—and how you structure your knowledge store matters. It’s a cyclic, iterative, and constantly evolving process. That’s why we believe in leveraging enterprise-ready retrieval platforms like Azure AI Search—designed to power intelligent search experiences across structured and unstructured data. It serves as the foundation for building advanced retrieval systems in healthcare. However, implementing Azure AI Search alone is not enough. Mastering its capabilities and applying well-defined patterns can significantly enhance your ability to address repetitive tasks and complex retrieval scenarios. This project aims to accelerate your ability to transform raw clinical data into high-fidelity, high-value knowledge structures that can power your next-generation AI healthcare applications. 🚀 How to Get Started with MedIndexer New to Azure AI Search? Begin with our guided labs to build a strong foundation and get hands-on with the core capabilities. Already familiar with the tech? Jump ahead to the real-world use cases—learn how to build Coded Policy Knowledge Stores and X-ray Knowledge Stores. 🧪 Labs 🧪 Building Your Azure AI Search Index: 🧾 Notebook - Building your first Index Learn how to create and configure an Azure AI Search index to enable intelligent search capabilities for your applications. 🧪 Indexing Data into Azure AI Search: 🧾 Notebook - Ingest and Index Clinical Data Understand how to ingest, preprocess, and index clinical data into Azure AI Search using schema-first principles. 🧪 Retrieval Methods for Azure AI Search: 🧾 Notebook - Exploring Vector Search and Hybrid Retrieval Dive into retrieval techniques such as vector search, hybrid retrieval, and reranking to enhance the accuracy and relevance of search results. 🧪 Evaluation Methods for Azure AI Search: 🧾 Notebook - Evaluating Search Quality and Relevance Learn how to evaluate the performance of your search index using relevance metrics and ground truth datasets to ensure high-quality search results. 🏥 Use Cases 📝 Creating Coded Policy Knowledge Stores In many healthcare systems, policy documents such as pre-authorization guidelines are still trapped in static, scanned PDFs. These documents are critical—they contain ICD codes, drug name coverage, and payer-specific logic—but are rarely structured or accessible in real-time. To solve this, we built a pipeline that transforms these documents into intelligent, searchable knowledge stores. This diagram shows how pre-auth policy PDFs are ingested via blob storage, passed through an OCR and embedding skillset, and then indexed into Azure AI Search. The result: fast access to coded policy data for AI apps. 🧾 Notebook - Creating Coded Policies Knowledge Stores Transform payer policies into machine-readable formats. This use case includes: Preprocessing and cleaning PDF documents Building custom OCR skills Leveraging out-of-the-box Indexer capabilities and embedding skills Enabling real-time AI-assisted querying for ICDs, payer names, drug names, and policy logic Why it matters: This streamlines prior authorization and coding workflows for providers and payors, reducing manual effort and increasing transparency. 🩻 Creating X-ray Knowledge Stores In radiology workflows, X-ray reports and image metadata contain valuable clinical insights—but these are often underutilized. Traditionally, they’re stored as static entries in PACS systems or loosely connected databases. The goal of this use case is to turn those X-ray reports into a searchable, intelligent asset that clinicians can explore and interact with in meaningful ways. This diagram illustrates a full retrieval pipeline where radiology reports are uploaded, enriched through foundational models, embedded, and indexed. The output powers an AI-driven web app for similarity search and decision support. 🧾 Notebook - Creating X-rays Knowledge Stores Turn imaging reports and metadata into a searchable knowledge base. This includes: Leveraging push APIs with custom event-driven indexing pipeline triggered on new X-ray uploads Generating embeddings using Microsoft Healthcare foundation models Providing an AI-powered front-end for X-ray similarity search Why it matters: Supports clinical decision-making by retrieving similar past cases, aiding diagnosis and treatment planning with contextual relevance. 📣 Join Us for the Next Session Help shape the future of healthcare by sharing AI HLS Ignited with your network—and don’t miss what’s coming next! 📅 Register for the upcoming session → AI HLS Ignited Event Page 💻 Explore the code, demos, and architecture → AI HLS Ignited GitHub RepositoryNLP London Meetup - Microsoft Reactor
Hey everyone! Thanks for joining out session today at the NLP London meetup in the Microsoft Reactor. Here you can find the resources that we have shared during the session and our contact links. Resources Azure OpenAI Docs The Azure Developer CLI azd AI App Templates Azure AI Search Docs Azure OpenAI Assistants Responsible AI Contoso Creative Writer Example Application Our next event London Reactor meetup - 10th December Liam Hampton LinkedIn Chris Noring LinkedIn82Views0likes0CommentsEnhancing E-Commerce Product Search with Vector Similarity in Azure Cosmos DB
Learn how to implement vector similarity search in your e-commerce API using Azure Cosmos DB and TypeScript. Boost search accuracy and user experience with advanced embedding techniques and scalable NoSQL solutions.1.3KViews0likes0CommentsAutomate Markdown and Image Translations Using Co-op Translator: Phi-3 Cookbook Case Study
Co-op Translator is an open source tool designed to automate the translation of Markdown files and images containing embedded text into multiple languages. Powered by Azure AI Services, it streamlines the traditionally time-consuming translation process, allowing you to make your projects globally accessible with minimal manual effort.2.3KViews2likes1CommentA Beginner's Guide to Text Moderation and Prompt Shields for Large Language Model (LLM) Chatbots
Discover how to build an LLM chatbot using the Microsoft Azure OpenAI Service and Azure Content Safety. This guide walks you through integrating text moderation and prompt shields into your application to prevent 'jailbreaks' and output of harmful content.2KViews0likes0CommentsEnhancing Student Resumes: An Innovative Approach Using Azure OpenAI ChatGPT-4o
Discover the transformative power of AI in education with our innovative approach to enhancing student resumes. Leveraging Azure OpenAI ChatGPT-4o, we’ve automated the initial review and feedback process, ensuring meticulous examination of each resume. This not only saves time for career mentors but also significantly improves the quality of student resumes. Witness an increase in employment rates and a positive impact on our course reputation. Join us as we redefine educational and career support services, demonstrating the potential of AI in shaping the future of learning and career development.8.6KViews0likes1Comment