ai
1035 TopicsproMX Project Operations + AI Summit 2026
Ready to learn how you can turn your project challenges into business success with Dynamics 365 AI solutions? Join Microsoft and proMX on April 21st and 22nd at Microsoft Munich for the in-person proMX Project Operations + AI Summit 2026 – Turning data into productivity assets with Copilot + Agents in Dynamics 365 solutions. On DAY 1, discover how Dynamics 365 Project Operations, Copilot, Project Online, proMX 365 PPM, and Contact Center can strategically transform business processes and drive organizational growth. On DAY 2, we’ll take a deep dive into the technical side of these solutions. ✅Book a one-to-one slot with proMX, proMX customers or our Microsoft guests ✅ Explore our booths to talk to Microsoft MVPs and proMX experts ✅ Exchange ideas, project expertise, and more! Register now to secure your spot at this exclusive and free event: proMX Project Operations + AI Summit 2026 You still have questions? Feel free to contact us! Jelena Yaruchyk (Global Marketing Director) - Jelena.Yaruchyk@promx.net Kateryna Marchak (Marketing and Content Lead) - Kateryna.Marchak@promx.net12Views1like0CommentsBuilding an AI solution is just the first step - turning it into revenue is where real growth begins
As partners bring AI-powered apps and agents to market at record speed, many struggle with how to price, license, and operationalize their offers for long-term success. This article breaks down how to design monetization early and avoid common pitfalls when publishing on Microsoft Marketplace. Learn how the Marketplace Monetization Checklist helps SaaS and container offers establish secure licensing, effective pricing models, and scalable fulfillment. See how App Advisor translates guidance into action, and how AI Envisioning sessions help align teams on strategy before you build and publish. If you want Marketplace to become a predictable revenue engine—not just a distribution channel read the full article to learn how to monetize your AI apps and agents and drive sustainable growth. Read more: Monetize your AI apps and agents on Marketplace to realize growthLevel up your Python + AI skills with our complete series
We've just wrapped up our live series on Python + AI, a comprehensive nine-part journey diving deep into how to use generative AI models from Python. The series introduced multiple types of models, including LLMs, embedding models, and vision models. We dug into popular techniques like RAG, tool calling, and structured outputs. We assessed AI quality and safety using automated evaluations and red-teaming. Finally, we developed AI agents using popular Python agents frameworks and explored the new Model Context Protocol (MCP). To help you apply what you've learned, all of our code examples work with GitHub Models, a service that provides free models to every GitHub account holder for experimentation and education. Even if you missed the live series, you can still access all the material using the links below! If you're an instructor, feel free to use the slides and code examples in your own classes. If you're a Spanish speaker, check out the Spanish version of the series. Python + AI: Large Language Models 📺 Watch recording In this session, we explore Large Language Models (LLMs), the models that power ChatGPT and GitHub Copilot. We use Python to interact with LLMs using popular packages like the OpenAI SDK and LangChain. We experiment with prompt engineering and few-shot examples to improve outputs. We also demonstrate how to build a full-stack app powered by LLMs and explain the importance of concurrency and streaming for user-facing AI apps. Slides for this session Code repository with examples: python-openai-demos Python + AI: Vector embeddings 📺 Watch recording In our second session, we dive into a different type of model: the vector embedding model. A vector embedding is a way to encode text or images as an array of floating-point numbers. Vector embeddings enable similarity search across many types of content. In this session, we explore different vector embedding models, such as the OpenAI text-embedding-3 series, through both visualizations and Python code. We compare distance metrics, use quantization to reduce vector size, and experiment with multimodal embedding models. Slides for this session Code repository with examples: vector-embedding-demos Python + AI: Retrieval Augmented Generation 📺 Watch recording In our third session, we explore one of the most popular techniques used with LLMs: Retrieval Augmented Generation. RAG is an approach that provides context to the LLM, enabling it to deliver well-grounded answers for a particular domain. The RAG approach works with many types of data sources, including CSVs, webpages, documents, and databases. In this session, we walk through RAG flows in Python, starting with a simple flow and culminating in a full-stack RAG application based on Azure AI Search. Slides for this session Code repository with examples: python-openai-demos Python + AI: Vision models 📺 Watch recording Our fourth session is all about vision models! Vision models are LLMs that can accept both text and images, such as GPT-4o and GPT-4o mini. You can use these models for image captioning, data extraction, question answering, classification, and more! We use Python to send images to vision models, build a basic chat-with-images app, and create a multimodal search engine. Slides for this session Code repository with examples: openai-chat-vision-quickstart Python + AI: Structured outputs 📺 Watch recording In our fifth session, we discover how to get LLMs to output structured responses that adhere to a schema. In Python, all you need to do is define a Pydantic BaseModel to get validated output that perfectly meets your needs. We focus on the structured outputs mode available in OpenAI models, but you can use similar techniques with other model providers. Our examples demonstrate the many ways you can use structured responses, such as entity extraction, classification, and agentic workflows. Slides for this session Code repository with examples: python-openai-demos Python + AI: Quality and safety 📺 Watch recording This session covers a crucial topic: how to use AI safely and how to evaluate the quality of AI outputs. There are multiple mitigation layers when working with LLMs: the model itself, a safety system on top, the prompting and context, and the application user experience. We focus on Azure tools that make it easier to deploy safe AI systems into production. We demonstrate how to configure the Azure AI Content Safety system when working with Azure AI models and how to handle errors in Python code. Then we use the Azure AI Evaluation SDK to evaluate the safety and quality of output from your LLM. Slides for this session Code repository with examples: ai-quality-safety-demos Python + AI: Tool calling 📺 Watch recording In the final part of the series, we focus on the technologies needed to build AI agents, starting with the foundation: tool calling (also known as function calling). We define tool call specifications using both JSON schema and Python function definitions, then send these definitions to the LLM. We demonstrate how to properly handle tool call responses from LLMs, enable parallel tool calling, and iterate over multiple tool calls. Understanding tool calling is absolutely essential before diving into agents, so don't skip over this foundational session. Slides for this session Code repository with examples: python-openai-demos Python + AI: Agents 📺 Watch recording In the penultimate session, we build AI agents! We use Python AI agent frameworks such as the new agent-framework from Microsoft and the popular LangGraph framework. Our agents start simple and then increase in complexity, demonstrating different architectures such as multiple tools, supervisor patterns, graphs, and human-in-the-loop workflows. Slides for this session Code repository with examples: python-ai-agent-frameworks-demos Python + AI: Model Context Protocol 📺 Watch recording In the final session, we dive into the hottest technology of 2025: MCP (Model Context Protocol). This open protocol makes it easy to extend AI agents and chatbots with custom functionality, making them more powerful and flexible. We demonstrate how to use the Python FastMCP SDK to build an MCP server running locally and consume that server from chatbots like GitHub Copilot. Then we build our own MCP client to consume the server. Finally, we discover how easy it is to connect AI agent frameworks like LangGraph and Microsoft agent-framework to MCP servers. With great power comes great responsibility, so we briefly discuss the security risks that come with MCP, both as a user and as a developer. Slides for this session Code repository with examples: python-mcp-demo4KViews1like0CommentsBringing AI fluency to every corner of the organization (even yours!)
Ashley Masters Hall joined Microsoft more than five years ago, just a month after earning her undergraduate degree. She’s currently a learning manager at Microsoft, focused on AI skilling for business pros. In this first blog post in a series of three, she shares her insightful and relatable perspective on AI fluency and skills for everyone in the organization. I was driving to an appointment recently, and I was reminded of the days when we used to print out directions at home and then try to follow them while driving. That was until GPS and later map apps came along. Suddenly, we had real-time guidance and rerouting from our phones. At first, we might have been reluctant to give up our familiar (though inefficient and unsafe) habit of wrangling printed directions behind the wheel. But once we experienced the speed and simplicity of GPS, there was no going back. AI is having its GPS moment. Two years ago, AI was this mysterious thing, a shiny object we weren’t sure we needed. Now, it’s the default way to navigate (and even orchestrate) work. Just like GPS didn’t replace driving, AI doesn’t replace thinking. It removes friction, gives us faster paths, and lets us focus on better outcomes. So the question isn’t, “Will AI change work?” It already has. The real question is, “Are you fluent enough to lead with it?” Regardless of your role or team, AI is likely already part of your world. In this blog post, the first in a series of three, I share practical tips, including six easy steps, that turn AI from a buzzword into your work GPS. What I mean by AI fluency (no jargon, I promise) Let me first define AI fluency. AI fluency is the degree of understanding and ability to interact effectively with generative AI. It’s recognizing when AI will add value and inspiration, plus having the skills to incorporate it into your workflows and tasks. AI skills are now foundational for everyone in every department. These skills not only help set you apart but also help keep you in the mix as work and roles evolve. We’ve seen a shift in the job market toward skills efficiency rather than work experience. In fact, according to the January 2025 LinkedIn Economic Graph Work Change Report: AI Is Coming to Work, “By 2030, 70% of the skills used in most jobs will change, with AI emerging as a catalyst.” Five years ago, when I was interviewing for jobs, my differentiators were my work experience and the Microsoft Certifications I had earned, which verified my expertise and abilities with Microsoft Office apps. But in interviews last year, most of the questions I got were about how I use AI today and how I’d apply it in the role. That’s the reality: AI fluency isn’t a future skill, it’s a “now skill.” It’s the differentiator that hiring managers seek. They want to know the real-world ways that you’re putting AI to work. Why this matters for your role (for every role, actually) If you’re wondering what AI looks like in your day-to-day work, you’re not alone. Let’s explore its practical applications for different teams and tasks. Marketing. If you’ve ever stared at a blank page trying to translate “We need a campaign” into an actual brief, AI can get you to a starting point fast. Maybe not the final answer, but a decent first draft that you can shape in your voice, for your audience and your goals. Sales and other customer-facing roles. AI is fantastic for meeting prep and follow-ups, like summarizing account notes, pulling themes from call transcripts (if they’re available), and drafting a clean recap email for you to personalize. The magic isn’t the email itself; it’s being able to more quickly and more clearly join in the conversation. Finance. Sometimes the hard part isn’t the analysis but the explanation. AI can help you draft the narrative: what moved, why, what questions a leader might ask, and what you should verify before you hit Send. Human resources (HR). AI can help turn good intentions into clear language, like job descriptions that match the role, onboarding plans that don’t overwhelm people, and summaries of themes you’re hearing so you can act on them before they get lost in the noise. Operations and program management. If your job involves herding context across multiple stakeholders, AI can help you turn chaos into structure, with action trackers, risk lists, crisp status updates, and decision logs you don’t have to rewrite every time. Legal/compliance (with the right guardrails). AI can help you triage, summarize, and spot inconsistencies. And then (pay close attention to this part) people do the actual review. Fluency includes knowing when to stop and bring a human into the loop. If you’re looking for a practical first step, regardless of your role, start with something familiar: email. Watch How to Prompt: Drafting Emails, and learn how Microsoft 365 Copilot can help you get to a first draft in seconds. One thing we shouldn’t gloss over here: AI can speed you up, but it doesn’t take responsibility for you. If you send it to a customer, put it in a deck, or use it to make a decision, you own it, so don’t forget the human layer. That’s the job. It doesn’t need to be scary, but it shouldn’t be overlooked. Get started with AI this week (an easy six-step plan that fits in your real life) If you do one thing after reading this post, don’t make it “Learn AI.” Make it “Pick one task you already do, and run it through a better workflow.” Choose one repeatable workflow. Think of something you do weekly, like meeting prep, a status update, a customer recap, a brief, or a summary. Decide what “better” means to you. Faster? Clearer? Fewer back-and-forth edits? More consistent output? Start with low-risk inputs. Use public info or your own notes while you get more comfortable with the tools. Give Microsoft 365 Copilot a task. Tell it the goal, context, source, and expectations, including the format you need, like bullets, a table, an email, or a memo. Check the work. Verify the facts, including names, numbers, and anything sensitive. Ask Copilot what might be missing. Save the good prompt. Keep it for future reference and reuse. No need to reinvent the wheel every time. Start strong with AI Skills Navigator When people ask me where to start, I have a simple answer: AI Skills Navigator, an agentic learning space that helps you build AI skills (even without a technical background) by bringing together AI-powered skilling experiences, credentials, and training. It makes learning feel approachable. Flexible formats, like short videos, AI‑generated podcasts, quick summaries, and guided skilling sessions, fit naturally into your day in the ways you learn best. This mix of formats helps you get started without feeling overwhelmed, stay engaged as priorities change, and keep up your momentum. AI doesn’t have to feel big. Make it small. Pick one task. Do it once with help. Keep what worked. Repeat it next week. And if you want an easy way to stay on track, start with (and keep coming back to) AI Skills Navigator. It’s like a learning “home base.” Assess where you are, choose a pathway by role or function, and build a habit of learning with small, steady steps. You may be surprised by how far a little AI fluency can take you.240Views1like0CommentsSharePoint at 25: The knowledge platform for Copilot and agents
Join us for a global digital event to celebrate the 25th birthday of SharePoint! Gear up for an exciting look at SharePoint’s historic moments along with an exclusive look ahead to the next chapter of SharePoint’s AI future! You will discover how SharePoint’s new content AI capabilities and intelligent experiences will transform the way people create, manage, and collaborate. Be sure to stick around after for our live Ask Microsoft Anything (AMA), where you can ask your questions about the exciting new SharePoint features directly to the product team! 🛠️ Don’t miss the SharePoint Hackathon in March 2026 Design, create, share! We are excited to invite you to a hackathon dedicated to crafting exceptional employee experiences using AI and the latest SharePoint features. More details coming soon. Event Link5.4KViews19likes16CommentsMonetize your AI apps and agents on Marketplace to realize growth
Ready to stop guessing how to monetize your offer? Skip right to App Advisor Software development companies are building faster than ever. But when it comes to sales, the key to monetization happens early. Monetization, packaging, and operational execution helps determine whether your AI solution becomes a growth engine on Microsoft Marketplace. New data reinforces the opportunity. According to Omdia research highlighted in Microsoft’s blog on the partner revenue opportunity: 88% of partners selling through Marketplace report revenue growth, 75% close deals faster, 69% secure larger deals, 60% agree Marketplace improved their deal structure. The Omdia study found that among partners that sell through Marketplace (compared to direct go-to-market and sales motions), they saw incredible gains with Marketplace. The opportunity is clear. The question is how to capture it consistently. How the AI app and agent monetization checklist helps The time to think about sales is when you’re building, not just when you hit “publish” on an offer. That’s why the Microsoft Marketplace Monetization Checklist for SaaS and Container Offers was created as part of the AI envisioning sessions. It gives your team a structured, practical framework to move from idea to revenue with confidence. A solution can offer immense value, but because monetization decisions are made too late, it can perform worse than expected. Pricing models, packaging tiers, metering accuracy, and subscription flows are often bolted on after architecture is finalized. The checklist changes that. It organizes monetization strategy around the five pillars of the Well-Architected Framework so that revenue design and technical design stay aligned. This checklist is also featured in App Advisor Build and Publish stage, so that you don’t miss a single step along the way. This ensures your offer is: Secure and enterprise-ready, Reliable across subscription lifecycle events, Cost-optimized for margin protection, Performance-aligned to your pricing model, Operationally structured for scale. Instead of guessing, you follow a clear path. Monetizing your offer the right way While designed for Saas and Azure Container offers, this checklist can be helpful for any offer. It guides you through key decisions that directly impact growth: Define your revenue model early during design, not after deployment, Model cost of goods sold against pricing tiers to protect margin, Package plans intentionally (Starter, Pro, Enterprise) to drive upsell, Implement secure licensing and Marketplace API validation to prevent revenue leakage, Optimize trial-to-paid conversion with structured upgrade paths. The checklist also reinforces operational execution with best practices for both SaaS and Azure Container offers. The result: an offer built for revenue, not just deployment. From build to publish to monetization on Microsoft Marketplace Building a great app or agent for your customers is the goal, but scaling your sales helps you grow. You’re not just publishing an offer, you’re building: A pricing strategy aligned to architecture, A subscription model aligned to customer value, An operational model aligned to Marketplace growth. This is how your company can turn Marketplace from a just listing platform into a revenue multiplier. Ready to monetize apps and agents on Microsoft Marketplace? You don’t have to guess how to grow. Use these resources to monetize your app or agent and get world-class Microsoft best practices, curated for you: Download the Marketplace Monetization Checklist, See the opportunity for your revenue growth in App Advisor, Watch sessions with experts by signing up for the AI Envisioning sessions.75Views6likes0CommentsBuilding HIPAA-Compliant Medical Transcription with Local AI
Building HIPAA-Compliant Medical Transcription with Local AI Introduction Healthcare organizations generate vast amounts of spoken content, patient consultations, research interviews, clinical notes, medical conferences. Transcribing these recordings traditionally requires either manual typing (time-consuming and expensive) or cloud transcription services (creating immediate HIPAA compliance concerns). Every audio file sent to external APIs exposes Protected Health Information (PHI), requires Business Associate Agreements, creates audit trails on third-party servers, and introduces potential breach vectors. This sample solution lies in on-premises voice-to-text systems that process audio entirely locally, never sending PHI beyond organizational boundaries. This article demonstrates building a sample medical transcription application using FLWhisper, ASP.NET Core, C#, and Microsoft Foundry Local with OpenAI Whisper models. You'll learn how to build sample HIPAA-compliant audio processing, integrate Whisper models for medical terminology accuracy, design privacy-first API patterns, and build responsive web UIs for healthcare workflows. Whether you're developing electronic health record (EHR) integrations, building clinical research platforms, or implementing dictation systems for medical practices, this sample could be a great starting point for privacy-first speech recognition. Why Local Transcription Is Critical for Healthcare Healthcare data handling is fundamentally different from general business data due to HIPAA regulations, state privacy laws, and professional ethics obligations. Understanding these requirements explains why cloud transcription services, despite their convenience, create unacceptable risks for medical applications. HIPAA compliance mandates strict controls over PHI. Every system that touches patient data must implement administrative, physical, and technical safeguards. Cloud transcription APIs require Business Associate Agreements (BAAs), but even with paperwork, you're entrusting PHI to external systems. Every API call creates logs on vendor servers, potentially in multiple jurisdictions. Data breaches at transcription vendors expose patient information, creating liability for healthcare organizations. On-premises processing eliminates these third-party risks entirely, PHI never leaves your controlled environment. US State laws increasingly add requirements beyond HIPAA. California's CCPA, New York's SHIELD Act, and similar legislation create additional compliance obligations. International regulations like GDPR prohibit transferring health data outside approved jurisdictions. Local processing simplifies compliance by keeping data within organizational boundaries. Research applications face even stricter requirements. Institutional Review Boards (IRBs) often require explicit consent for data sharing with external parties. Cloud transcription may violate study protocols that promise "no third-party data sharing." Clinical trials in pharmaceutical development handle proprietary information alongside PHI, double jeopardy for data exposure. Local transcription maintains research integrity while enabling audio analysis. Cost considerations favor local deployment at scale. Medical organizations generate substantial audio, thousands of patient encounters monthly. Cloud APIs charge per minute of audio, creating significant recurring costs. Local models have fixed infrastructure costs that scale economically. A modest GPU server can process hundreds of hours monthly at predictable expense. Latency matters for clinical workflows. Doctors and nurses need transcriptions available immediately after patient encounters to review and edit while details are fresh. Cloud APIs introduce network delays, especially problematic in rural health facilities with limited connectivity. Local inference provides <1 second turnaround for typical consultation lengths. Application Architecture: ASP.NET Core with Foundry Local The sample FLWhisper application implements clean separation between audio handling, AI inference, and state management using modern .NET patterns: The ASP.NET Core 10 minimal API provides HTTP endpoints for health checks, audio transcription, and sample file streaming. Minimal APIs reduce boilerplate while maintaining full middleware support for error handling, authentication, and CORS. The API design follows OpenAI's transcription endpoint specification, enabling drop-in replacement for existing integrations. The service layer encapsulates business logic: FoundryModelService manages model loading and lifetime, TranscriptionService handles audio processing and AI inference, and SampleAudioService provides demonstration files for testing. This separation enables easy testing, dependency injection, and service swapping. Foundry Local integration uses the Microsoft.AI.Foundry.Local.WinML SDK. Unlike cloud APIs requiring authentication and network calls, this SDK communicates directly with the local Foundry service via in-process calls. Models load once at startup, remaining resident in memory for sub-second inference on subsequent requests. The static file frontend delivers vanilla HTML/CSS/JavaScript, no framework overhead. This simplicity aids healthcare IT security audits and enables deployment on locked-down hospital networks. The UI provides file upload, sample selection, audio preview, transcription requests, and result display with copy-to-clipboard functionality. Here's the architectural flow for transcription requests: Web UI (Upload Audio File) ↓ POST /v1/audio/transcriptions (Multipart Form Data) ↓ ASP.NET Core API Route ↓ TranscriptionService.TranscribeAudio(audioStream) ↓ Foundry Local Model (Whisper Medium locally) ↓ Text Result + Metadata (language, duration) ↓ Return JSON/Text Response ↓ Display in UI This architecture embodies several healthcare system design principles: Data never leaves the device: All processing occurs on-premises, no external API calls No data persistence by default: Audio and transcripts are session-only, never saved unless explicitly configured Comprehensive health checks: System readiness verification before accepting PHI Audit logging support: Structured logging for compliance documentation Graceful degradation: Clear error messages when models unavailable rather than silent failures Setting Up Foundry Local with Whisper Models Foundry Local supports multiple Whisper model sizes, each with different accuracy/speed tradeoffs. For medical transcription, accuracy is paramount—misheard drug names or dosages create patient safety risks: # Install Foundry Local (Windows) winget install Microsoft.FoundryLocal # Verify installation foundry --version # Download Whisper Medium model (optimal for medical accuracy) foundry model add openai-whisper-medium-generic-cpu:1 # Check model availability foundry model list Whisper Medium (769M parameters) provides the best balance for medical use. Smaller models (Tiny, Base) miss medical terminology frequently. Larger models (Large) offer marginal accuracy gains at 3x inference time. Medium handles medical vocabulary well, drug names, anatomical terms, procedure names, while processing typical consultation audio (5-10 minutes) in under 30 seconds. The application detects and loads the model automatically: // Services/FoundryModelService.cs using Microsoft.AI.Foundry.Local.WinML; public class FoundryModelService { private readonly ILogger _logger; private readonly FoundryOptions _options; private ILocalAIModel? _loadedModel; public FoundryModelService( ILogger logger, IOptions options) { _logger = logger; _options = options.Value; } public async Task InitializeModelAsync() { try { _logger.LogInformation( "Loading Foundry model: {ModelAlias}", _options.ModelAlias ); // Load model from Foundry Local _loadedModel = await FoundryClient.LoadModelAsync( modelAlias: _options.ModelAlias, cancellationToken: CancellationToken.None ); if (_loadedModel == null) { _logger.LogWarning("Model loaded but returned null instance"); return false; } _logger.LogInformation( "Successfully loaded model: {ModelAlias}", _options.ModelAlias ); return true; } catch (Exception ex) { _logger.LogError( ex, "Failed to load Foundry model: {ModelAlias}", _options.ModelAlias ); return false; } } public ILocalAIModel? GetLoadedModel() => _loadedModel; public async Task UnloadModelAsync() { if (_loadedModel != null) { await FoundryClient.UnloadModelAsync(_loadedModel); _loadedModel = null; _logger.LogInformation("Model unloaded"); } } } Configuration lives in appsettings.json , enabling easy customization without code changes: { "Foundry": { "ModelAlias": "whisper-medium", "LogLevel": "Information" }, "Transcription": { "MaxAudioDurationSeconds": 300, "SupportedFormats": ["wav", "mp3", "m4a", "flac"], "DefaultLanguage": "en" } } Implementing Privacy-First Transcription Service The transcription service handles audio processing while maintaining strict privacy controls. No audio or transcript persists beyond the HTTP request lifecycle unless explicitly configured: // Services/TranscriptionService.cs public class TranscriptionService { private readonly FoundryModelService _modelService; private readonly ILogger _logger; public async Task TranscribeAudioAsync( Stream audioStream, string originalFileName, TranscriptionOptions? options = null) { options ??= new TranscriptionOptions(); var startTime = DateTime.UtcNow; try { // Validate audio format ValidateAudioFormat(originalFileName); // Get loaded model var model = _modelService.GetLoadedModel(); if (model == null) { throw new InvalidOperationException("Whisper model not loaded"); } // Create temporary file (automatically deleted after transcription) using var tempFile = new TempAudioFile(audioStream); // Execute transcription _logger.LogInformation( "Starting transcription for file: {FileName}", originalFileName ); var transcription = await model.TranscribeAsync( audioFilePath: tempFile.Path, language: options.Language, cancellationToken: CancellationToken.None ); var duration = (DateTime.UtcNow - startTime).TotalSeconds; _logger.LogInformation( "Transcription completed in {Duration:F2}s", duration ); return new TranscriptionResult { Text = transcription.Text, Language = transcription.Language ?? options.Language, Duration = transcription.AudioDuration, ProcessingTimeSeconds = duration, FileName = originalFileName, Timestamp = DateTime.UtcNow }; } catch (Exception ex) { _logger.LogError( ex, "Transcription failed for file: {FileName}", originalFileName ); throw; } } private void ValidateAudioFormat(string fileName) { var extension = Path.GetExtension(fileName).TrimStart('.'); var supportedFormats = new[] { "wav", "mp3", "m4a", "flac", "ogg" }; if (!supportedFormats.Contains(extension.ToLowerInvariant())) { throw new ArgumentException( $"Unsupported audio format: {extension}. " + $"Supported: {string.Join(", ", supportedFormats)}" ); } } } // Temporary file wrapper that auto-deletes internal class TempAudioFile : IDisposable { public string Path { get; } public TempAudioFile(Stream sourceStream) { Path = System.IO.Path.GetTempFileName(); using var fileStream = File.OpenWrite(Path); sourceStream.CopyTo(fileStream); } public void Dispose() { try { if (File.Exists(Path)) { File.Delete(Path); } } catch { // Ignore deletion errors in temp folder } } } This service demonstrates several privacy-first patterns: Temporary file lifecycle management: Audio written to temp storage, automatically deleted after transcription No implicit persistence: Results returned to caller, not saved by service Format validation: Accept only supported audio formats to prevent processing errors Comprehensive logging: Audit trail for compliance without logging PHI content Error isolation: Exceptions contain diagnostic info but no patient data Building the OpenAI-Compatible REST API The API endpoint mirrors OpenAI's transcription API specification, enabling existing integrations to work without modifications: // Program.cs var builder = WebApplication.CreateBuilder(args); // Configure services builder.Services.Configure( builder.Configuration.GetSection("Foundry") ); builder.Services.AddSingleton(); builder.Services.AddScoped(); builder.Services.AddHealthChecks() .AddCheck("foundry-health"); var app = builder.Build(); // Load model at startup var modelService = app.Services.GetRequiredService(); await modelService.InitializeModelAsync(); app.UseHealthChecks("/health"); app.MapHealthChecks("/api/health/status"); // OpenAI-compatible transcription endpoint app.MapPost("/v1/audio/transcriptions", async ( HttpRequest request, TranscriptionService transcriptionService, ILogger logger) => { if (!request.HasFormContentType) { return Results.BadRequest(new { error = "Content-Type must be multipart/form-data" }); } var form = await request.ReadFormAsync(); // Extract audio file var audioFile = form.Files.GetFile("file"); if (audioFile == null || audioFile.Length == 0) { return Results.BadRequest(new { error = "Audio file required in 'file' field" }); } // Parse options var format = form["format"].ToString() ?? "text"; var language = form["language"].ToString() ?? "en"; try { // Process transcription using var stream = audioFile.OpenReadStream(); var result = await transcriptionService.TranscribeAudioAsync( audioStream: stream, originalFileName: audioFile.FileName, options: new TranscriptionOptions { Language = language } ); // Return in requested format if (format == "json") { return Results.Json(new { text = result.Text, language = result.Language, duration = result.Duration }); } else { // Default: plain text return Results.Text(result.Text); } } catch (Exception ex) { logger.LogError(ex, "Transcription request failed"); return Results.StatusCode(500); } }) .DisableAntiforgery() // File uploads need CSRF exemption .WithName("TranscribeAudio") .WithOpenApi(); app.Run(); Example API usage: # PowerShell $audioFile = Get-Item "consultation-recording.wav" $response = Invoke-RestMethod ` -Uri "http://localhost:5192/v1/audio/transcriptions" ` -Method Post ` -Form @{ file = $audioFile; format = "json" } Write-Output $response.text # cURL curl -X POST http://localhost:5192/v1/audio/transcriptions \ -F "file=@consultation-recording.wav" \ -F "format=json" Building the Interactive Web Frontend The web UI provides a user-friendly interface for non-technical medical staff to transcribe recordings: SarahCare Medical Transcription The JavaScript handles file uploads and API interactions: // wwwroot/app.js let selectedFile = null; async function checkHealth() { try { const response = await fetch('/health'); const statusEl = document.getElementById('status'); if (response.ok) { statusEl.className = 'status-badge online'; statusEl.textContent = '✓ System Ready'; } else { statusEl.className = 'status-badge offline'; statusEl.textContent = '✗ System Unavailable'; } } catch (error) { console.error('Health check failed:', error); } } function handleFileSelect(event) { const file = event.target.files[0]; if (!file) return; selectedFile = file; // Show file info const fileInfo = document.getElementById('fileInfo'); fileInfo.textContent = `Selected: ${file.name} (${formatFileSize(file.size)})`; fileInfo.classList.remove('hidden'); // Enable audio preview const preview = document.getElementById('audioPreview'); preview.src = URL.createObjectURL(file); preview.classList.remove('hidden'); // Enable transcribe button document.getElementById('transcribeBtn').disabled = false; } async function transcribeAudio() { if (!selectedFile) return; const loadingEl = document.getElementById('loadingIndicator'); const resultEl = document.getElementById('resultSection'); const transcribeBtn = document.getElementById('transcribeBtn'); // Show loading state loadingEl.classList.remove('hidden'); resultEl.classList.add('hidden'); transcribeBtn.disabled = true; try { const formData = new FormData(); formData.append('file', selectedFile); formData.append('format', 'json'); const startTime = Date.now(); const response = await fetch('/v1/audio/transcriptions', { method: 'POST', body: formData }); if (!response.ok) { throw new Error(`HTTP ${response.status}: ${response.statusText}`); } const result = await response.json(); const processingTime = ((Date.now() - startTime) / 1000).toFixed(1); // Display results document.getElementById('transcriptionText').value = result.text; document.getElementById('resultDuration').textContent = `Duration: ${result.duration.toFixed(1)}s`; document.getElementById('resultLanguage').textContent = `Language: ${result.language}`; resultEl.classList.remove('hidden'); console.log(`Transcription completed in ${processingTime}s`); } catch (error) { console.error('Transcription failed:', error); alert(`Transcription failed: ${error.message}`); } finally { loadingEl.classList.add('hidden'); transcribeBtn.disabled = false; } } function copyToClipboard() { const text = document.getElementById('transcriptionText').value; navigator.clipboard.writeText(text) .then(() => alert('Copied to clipboard')) .catch(err => console.error('Copy failed:', err)); } // Initialize window.addEventListener('load', () => { checkHealth(); loadSamplesList(); }); Key Takeaways and Production Considerations Building HIPAA-compliant voice-to-text systems requires architectural decisions that prioritize data privacy over convenience. The FLWhisper application demonstrates that you can achieve accurate medical transcription, fast processing times, and intuitive user experiences entirely on-premises. Critical lessons for healthcare AI: Privacy by architecture: Design systems where PHI never exists outside controlled environments, not as a configuration option No persistence by default: Audio and transcripts should be ephemeral unless explicitly saved with proper access controls Model selection matters: Whisper Medium provides medical terminology accuracy that smaller models miss Health checks enable reliability: Systems should verify model availability before accepting PHI Audit logging without content logging: Track operations for compliance without storing sensitive data in logs For production deployment in clinical settings, integrate with EHR systems via HL7/FHIR interfaces. Implement role-based access control with Active Directory integration. Add digital signatures for transcript authentication. Configure automatic PHI redaction using clinical NLP models. Deploy on HIPAA-compliant infrastructure with proper physical security. Implement comprehensive audit logging meeting compliance requirements. The complete implementation with ASP.NET Core API, Foundry Local integration, sample audio files, and comprehensive tests is available at github.com/leestott/FLWhisper. Clone the repository and follow the setup guide to experience privacy-first medical transcription. Resources and Further Reading FLWhisper Repository - Complete C# implementation with .NET 10 Quick Start Guide - Installation and usage instructions Microsoft Foundry Local Documentation - SDK reference and model catalog OpenAI Whisper Documentation - Model architecture and capabilities HIPAA Compliance Guidelines - HHS official guidance Testing Guide - Comprehensive test suite documentationCopilot Pages & Notebooks, Microsoft Loop: IT Admin Update – December 2025
For background, check out last year's Nov 2024 IT Admin update. Here's this year's progress and summary: Many key governance, lifecycle, and compliance features for Loop workspaces and Copilot Pages & Notebooks are now available. Learn more here Key deliverables remaining: M365 Group enforcement for shared Loop workspaces Departed User workflows for Copilot Pages, Notebooks, and the My workspace in Loop Multi-Geo Create in user's PDL for shared Loop workspaces Read the rest for details What’s Delivered (since Nov 2024) Sensitivity Labels for Loop workspaces Learn more here Guest Sharing for Loop (Entra B2B: Jul 2024 | for orgs with Sensitivity Labels: Mar 2025) Learn more here Retention Labels for Loop pages and components Learn more here Admin Management: Membership, ownership, deletion, restoration, search, filter, in SharePoint Embedded Admin Center and PowerShell for containers Learn more here Promote Members to Owners for Loop workspaces Learn more here M365 Group owned workspaces: managed by M365 Groups for workspaces created within Teams channels Learn more here Also, check out the latest from Ignite 2025 on Unlocking Productivity with Copilot Pages. What’s In Progress / Coming Soon Feature / Scenario Status Target Date Notes Enforce Microsoft 365 group-owned Loop workspaces In development Q1 CY'26 - 422725 IT policy to require Microsoft 365 groups for lifecycle management of shared Loop workspaces Multi-Geo Create In development Q4 CY'25 - 421616 All new Loop workspaces saved in creator’s PDL geo Departed User Workflow In development Q1 CY’26 - 421612 Temporary or permanent reassignment of existing user-owned containers, copy capability for data URL to Open Containers in app In development Q1 CY'26 - 421612 Application Redirect URL that opens in app when clicked if user has permissions User-Accessible Recycle Bin In development H1 CY’26 - 421615 Restore deleted Copilot Pages, Notebooks from Microsoft 365 Copilot app, restore deleted workspaces from Loop app Groups as Members (tenant-owned) In development H1 CY’26 Invite Microsoft 365 groups as members to Notebooks and workspaces Graph APIs for management In development H1 CY'26 For organizations with dev teams and in house management tools Read-only members Paused Due to lower overall feedback volumes, this work is paused Target date disclaimer: dates and features are estimates and may change. For the latest status, see the Microsoft 365 Public Roadmap links. Instead of creating and repeating content directly in the post this year, our IT Admin documentation on learn.microsoft.com and the Microsoft 365 Public Roadmap has been updated based on the above. We recognize that lack of some of these capabilities may still block your rollout. Please drop questions in the comments or reach out to us through your account team. We're excited to be enabling the rollouts of Copilot Pages, Notebooks, and Loop workspaces in your organization.2.2KViews1like2CommentsUpcoming webinar: Maximize the Cost Efficiency of AI Agents on Azure
AI agents are quickly becoming central to how organizations automate work, engage customers, and unlock new insights. But as adoption accelerates, so do questions about cost, ROI, and long-term sustainability. That’s exactly what the Maximize the Cost Efficiency of AI Agents on Azure webinar is designed to address. The webinar will provide practical guidance on building and scaling AI agents on Azure with financial discipline in mind. Rather than focusing only on technology, the session helps learners connect AI design decisions to real business outcomes—covering everything from identifying high-impact use cases and understanding cost drivers to forecasting ROI. Whether you’re just starting your AI journey or expanding AI agents across the enterprise, the session will equip you with strategies to make informed, cost-conscious decisions at every stage—from architecture and model selection to ongoing optimization and governance. Who should attend? If you are in one of these roles and are a decision maker or can influence decision makers in AI decisions or need to show ROI metrics on AI, this session is for you. Developer Administrator Solution Architect AI Engineer Business Analyst Business User Technology Manager Why attending the webinar? In the webinar, you’ll hear how to translate theory into real-world scenarios, walk through common cost pitfalls, and show how organizations are applying these principles in practice. Most importantly, the webinar helps you connect the dots faster, turning what you’ve learned into actionable insights you can apply immediately, ask questions live, and gain clarity on how to maximize ROI while scaling AI responsibly. If you care about building AI agents that are not only innovative but also efficient, governable, and financially sustainable, this training—and this webinar that complements it—are well worth your time. Register for the free webinar today for the event on March 5, 2026, 8:00 AM - 9:00 AM (UTC-08:00) Pacific Time (US & Canada). Who will speak at the webinar? Your speakers will be: Carlotta Castelluccio: Carlotta is a Senior AI Advocate with the mission of helping every developer to succeed with AI, by building innovative solutions responsibly. To achieve this goal, she develops technical content, and she hosts skilling sessions, enabling her audience to take the most out of AI technologies and to have an impact on Microsoft AI products’ roadmap. Nitya Narasimhan: Nitya is a PhD and Polyglot with 25+ years of software research & development experience spanning mobile, web, cloud and AI. She is an innovator (12+ patents), a visual storyteller (@sketchtedocs), and an experienced community builder in the Greater New York area. As a senior AI Advocate on the Core AI Developer Relations team, she acts as "developer 0" for the Microsoft Foundry platform, providing product feedback and empowering AI developers to build trustworthy AI solutions with code samples, open-source curricula and content-initiatives like Model Mondays. Prior to joining Microsoft, she spent a decade in Motorola Labs working on ubiquitous & mobile computing research, founded Google Developer Groups in New York, and consulted for startups building real-time experiences for enterprise. Her current interests span Model understanding & customization, E2E Observability & Safety, and agentic AI workflows for maintainable software. Moderator Lee Stott is a Principal Cloud Advocate at Microsoft, working in the Core AI Developer Relations Team. He helps developers and organizations build responsibly with AI and cloud technologies through open-source projects, technical guidance, and global developer programs. Based in the UK, Lee brings deep hands-on experience across AI, Azure, and developer tooling. .Logic Apps Agentic Workflows with SAP - Part 2: AI Agents
Part 2 focuses on the AI-shaped portion of the destination workflows: how the Logic Apps Agent is configured, how it pulls business rules from SharePoint, and how its outputs are converted into concrete workflow artifacts. In Destination workflow #1, the agent produces three structured outputs—an HTML validation summary, a CSV list of InvalidOrderIds , and an Invalid CSV payload—which drive (1) a verification email, (2) an optional RFC call to persist failed rows as IDocs, and (3) a filtered dataset used for the separate analysis step that returns only analysis (or errors) back to SAP. In Destination workflow #2, the same approach is applied to inbound IDocs: the workflow reconstructs CSV from the custom segment, runs AI validation against the same SharePoint rules, and safely appends results to an append blob using a lease-based write pattern for concurrency. 1. Introduction In Part 1, the goal was to make the integration deterministic: stable payload shapes, stable response shapes, and predictable error propagation across SAP and Logic Apps. Concretely, Part 1 established: how SAP reaches Logic Apps (Gateway/Program ID plumbing) the RFC contracts ( IT_CSV , response envelope, RETURN / MESSAGE , EXCEPTIONMSG ) how the source workflow interprets RFC responses (success vs error) how invalid rows can be persisted into SAP as custom IDocs ( Z_CREATE_ONLINEORDER_IDOC ) and how the second destination workflow receives those IDocs asynchronously With that foundation in place, Part 2 narrows in on the part that is not just plumbing: the agent loop, the tool boundaries, and the output schemas that make AI results usable inside a workflow rather than “generated text you still need to interpret.” The diagram below highlights the portion of the destination workflow where AI is doing real work. The red-circled section is the validation agent loop (rules in, structured validation outputs out), which then fans out into operational actions like email notification, optional IDoc persistence, and filtering for the analysis step. What matters here is the shape of the agent outputs and how they are consumed by the rest of the workflow. The agent is not treated as a black box; it is forced to emit typed, workflow-friendly artifacts (summary + invalid IDs + filtered CSV). Those artifacts are then used deterministically: invalid rows are reported (and optionally persisted as IDocs), while valid rows flow into the analysis stage and ultimately back to SAP. What this post covers In this post, I focus on five practical topics: Agent loop design in Logic Apps: tools, message design, and output schemas that make the agent’s results deterministic enough to automate. External rule retrieval: pulling validation rules from SharePoint and applying them consistently to incoming payloads. Structured validation outputs → workflow actions: producing InvalidOrderIds and a filtered CSV payload that directly drive notifications and SAP remediation. Two-model pattern: a specialized model for validation (agent) and a separate model call for analysis, with a clean handoff between the two. Output shaping for consumption: converting AI output into HTML for email and into the SAP response envelope (analysis/errors only). (Everything else—SAP plumbing, RFC wiring, and response/exception patterns—was covered in Part 1 and is assumed here.) Next, I’ll break down the agent loop itself—the tool sequence, the required output fields, and the exact points where the workflow turns AI output into variables, emails, and SAP actions. Huge thanks to KentWeareMSFT for helping me understand agent loops and design the validation agent structure. And thanks to everyone in 🤖 Agent Loop Demos 🤖 | Microsoft Community Hub for making such great material available. Note: For the full set of assets used here, see the companion GitHub repository (workflows, schemas, SAP ABAP code, and sample files). 2. Validation Agent Loop In this solution, the Data Validation Agent runs inside the destination workflow after the inbound SAP payload has been normalized into a single CSV string. The agent is invoked as a single Logic Apps Agent action, configured with an Azure OpenAI deployment and a short set of instructions. Its inputs are deliberately simple at this stage: the CSV payload (the dataset to validate), and the ValidationRules reference (where the rule document lives), shown in the instructions as a parameter token. The figure below shows the validation agent configuration used in the destination workflow. The top half is the Agent action configuration (model + instructions), and the bottom half shows the toolset that the agent is allowed to use. The key design choice is that the agent is not “free-form chat”: it’s constrained by a small number of tools and a workflow-friendly output contract. What matters most in this configuration is the separation between instructions and tools. The instructions tell the agent what to do (“follow business process steps 1–3”), while the tools define how the agent can interact with external systems and workflow state. This keeps the agent modular: you can change rules in SharePoint or refine summarization expectations without rewriting the overall SAP integration mechanics. Purpose This agent’s job is narrowly scoped: validate the CSV payload from SAP against externally stored business rules and produce outputs that the workflow can use deterministically. In other words, it turns “validation as reasoning” into workflow artifacts (summary + invalid IDs + invalid payload), instead of leaving validation as unstructured prose. In Azure Logic Apps terms, this is an agent loop: an iterative process where an LLM follows instructions and selects from available tools to complete a multi-step task. Logic Apps agent workflows explicitly support this “agent chooses tools to complete tasks” model (see Agent Workflows Concepts). Tools In Logic Apps agent workflows, a tool is a named sequence that contains one or more actions the agent can invoke to accomplish part of its task (see Agent Workflows Concepts). In the screenshot, the agent is configured with three tools, explicitly labeled Get validation rules, Get CSV payload, Summarize CSV payload review. These tool names match the business process in the “Instructions for agent” box (steps 1–3). The next sections of the post go deeper into what each tool does internally; at this level, the important point is simply that the agent is constrained to a small, explicit toolset. Agent execution The screenshot shows the agent configured with: AI model: gpt-5-3 (gpt-5) A connection line: “Connected to … (Azure OpenAI)” Instructions for agent that define the agent’s role and a 3-step business process: Get validation rules (via the ValidationRules reference) Get CSV payload Summarize the CSV payload review, using the validation document This pattern is intentional: The instructions provide the agent’s “operating procedure” in plain language. The tools give the agent: controlled ways to fetch the rule document, access the CSV input, and return structured results. Because the workflow consumes the agent’s outputs downstream, the instruction text is effectively part of your workflow contract (it must remain stable enough that later actions can trust the output shape). Note: If a reader wants to recreate this pattern, the fastest path is: Start with the official overview of agent workflows (Workflows with AI Agents and Models - Azure Logic Apps). Follow a hands-on walkthrough for building an agent workflow and connecting it to an Azure OpenAI deployment (Logic Apps Labs is a good step-by-step reference). [ azure.github.io ] Use the Azure OpenAI connector reference to understand authentication options and operations available in Logic Apps Standard (see Built-in OpenAI Connector) If you’re using Foundry for resource management, review how Foundry connections are created and used, especially when multiple resources/tools are involved (see How to connect to AI foundry). 2.1 Tool 1: Get validation rules The first tool in the validation agent loop is Get validation rules. Its job is to load the business validation rules that will be applied to the incoming CSV payload from SAP. I keep these rules outside the workflow (in a document) so they can be updated without redeploying the Logic App. In this example, the rules are stored in SharePoint, and the tool simply retrieves the document content at runtime. Get validation rules is implemented as a single action called Get validation document. In the designer, you can see it: uses a SharePoint Online connection (SharePoint icon and connector action) calls GetFileContentByPath (shown by the “File Path” input) reads the rule file from the configured Site Address uses the workflow parameter token ValidationRules for the File Path (so the exact rule file location is configurable per environment) The output of this tool is the raw rule document content, which the Data Validation Agent uses in the next steps to validate the CSV payload. The bottom half of the figure shows an excerpt of the rules document. The format is simple and intentionally human-editable: each rule is expressed as FieldName : condition. For example, the visible rules include: PaymentMethod : value must exist PaymentMethod : value cannot be “Cash” OrderStatus : value must be different from “Cancelled” CouponCode : value must have at least 1 character OrderID : value must be unique in the CSV array A scope note: “Do not validate the Date field.” These rules are the “source of truth” for validation. The workflow does not hardcode them into expressions; instead, it retrieves them from SharePoint and passes them into the agent loop so the validation logic remains configurable and auditable (you can always point to the exact rule document used for a given run). A small but intentional rule in the document is “Do not validate the Date field.” That line is there for a practical reason: in an early version of the source workflow, the date column was being corrupted during CSV generation. The validation agent still tried to validate dates (even though date validation wasn’t part of the original intent), and the result was predictable: every row failed validation, leaving nothing to analyze. The upstream issue is fixed now, but I kept this rule in the demo to illustrate an important point: validation is only useful when it’s aligned with the data contract you can actually guarantee at that point in the pipeline. Note: The rules shown here assume the CSV includes a header row (field names in the first line) so the agent can interpret each column by name. If you want the agent to be schema‑agnostic, you can extend the rules with an explicit column mapping, for example: Column 1: Order ID Column 2: Date Column 3: Customer ID … This makes the contract explicit even when headers are missing or unreliable. With the rules loaded, the next tool provides the second input the agent needs: the CSV payload that will be validated against this document. 2.2 Tool 2: Get CSV payload The second tool in the validation agent loop is Get CSV payload. Its purpose is to make the dataset-to-validate explicit: it defines exactly what the agent should treat as “the CSV payload,” rather than relying on implicit workflow context. In this workflow, the CSV is already constructed earlier (as Create_CSV_payload ), and this tool acts as the narrow bridge between that prepared string and the agent’s validation step. Figure: Tool #2 (“Get CSV payload”) defines a single agent parameter and binds it to the workflow’s generated CSV. The figure shows two important pieces: - The tool parameter contract (“Agent Parameters”) On the right, the tool defines an agent parameter named CSV Payload with type String, and the description (highlighted in yellow) makes the intent explicit: “The CSV payload received from SAP and that we validate based on the validation rules.” This parameter is the tool’s interface: it documents what the agent is supposed to provide/consume when using this tool, and it anchors the rest of the validation process to a single, well-defined input. Tools in Logic Apps agent workflows exist specifically to constrain and structure what an agent can do and what data it operates on (see Agent Workflows Concepts). - Why there is an explicit Compose action (“CSV payload”) In the lower-right “Code view,” the tool’s internal action is shown as a standard Compose: { "type": "Compose", "inputs": "@outputs('Create_CSV_payload')" } This is intentional. Even though the CSV already exists in the workflow, the tool still needs a concrete action that produces the value it returns to the agent. The Compose step: pins the tool output to a single source of truth ( Create_CSV_payload ), and creates a stable boundary: “this is the exact CSV string the agent validates,” independent of other workflow state. Put simply: the Compose action isn’t there because Logic Apps can’t access the CSV—it’s there to make the agent/tool interface explicit, repeatable, and easy to troubleshoot. What “tool parameters” are (in practical terms) In Logic Apps agent workflows, a tool is a named sequence of one or more actions that the agent can invoke while executing its instructions. A tool parameter is the tool’s input/output contract exposed to the agent. In this screenshot, that contract is defined under Agent Parameters, where you specify: Name: CSV Payload Type: String Description: “The CSV payload received from SAP…” This matters because it clarifies (for both the model and the human reader) what the tool represents and what data it is responsible for supplying. With Tool #1 providing the rules document and Tool #2 providing the CSV dataset, Tool #3 is where the agent produces workflow-ready outputs (summary + invalid IDs + filtered payload) that the downstream steps can act on. 2.3 Tool 3: Summarize CSV payload review The third tool, Summarize CSV payload review, is where the agent stops being “an evaluator” and becomes a producer of workflow-ready outputs. It does most of the heavy lifting so let's go into the details. Instead of returning one blob of prose, the tool defines three explicit agent parameters—each with a specific format and purpose—so the workflow can reliably consume the results in downstream actions. In Logic Apps agent workflows, tools are explicitly defined tasks the agent can invoke, and each tool can be structured around actions and schemas that keep the loop predictable (see Agent Workflows Concepts). Figure: Tool #3 (“Summarize CSV payload review”) defines three structured agent outputs Description is not just documentation—it’s the contract the model is expected to satisfy, and it strongly shapes what the agent considers “relevant” when generating outputs. The parameters are: Validation summary (String) Goal: a human-readable summary that can be dropped straight into email. In the screenshot, the description is very explicit about shape and content: “expected format is an HTML table” “create a list of all orderids that have failed” “create a CSV document… only for the orderid values that failed… each row on a separate line” “include title row only in the email body” This parameter is designed for presentation: it’s the thing you want humans to read first. InvalidOrderIds (String, CSV format) Goal: a machine-friendly list of identifiers the workflow can use deterministically. The key part of the description (highlighted in the image) is: “The format is CSV.” That single sentence is doing a lot of work: it tells the model to emit a comma-separated list, which you then convert into an array in the workflow using split(...). Invalid CSV payload (String, one row per line) Goal: the failed rows extracted from the original dataset, in a form that downstream steps can reuse. The description constrains the output tightly: “original CSV rows… for the orderid values that failed validation” “each row must be on a separate line” “keep the title row only for the email body and remove it otherwise” This parameter is designed for automation: it becomes input to remediation steps (like transforming rows to XML and creating IDocs), not just a report. What “agent parameters” do here (and why they matter) A useful way to think about agent parameters is: they are the “typed return values” of a tool. Tools in agent workflows exist to structure work into bounded tasks the agent can perform, and a schema/parameter contract makes the results consumable by the rest of the workflow (see Agent Workflows Concepts). In this tool, the parameters serve two purposes at once: They guide the agent toward salient outputs. The descriptions explicitly name what matters: “failed orderids,” “HTML table,” “CSV format,” “one row per line,” “header row rules.” That phrasing makes it much harder for the model to “wander” into irrelevant commentary. They align with how the workflow will parse and use the results. By stating “ InvalidOrderIds is CSV,” you make it trivially parseable (split), and by stating “Invalid CSV payload is one row per line,” you make it easy to feed into later transformations. Why the wording works (and what wording tends to work best) What’s interesting about the parameter descriptions is that they combine three kinds of constraints: Output format constraints (make parsing deterministic) “expected format is an HTML table” “The format is CSV.” “each row must be on a separate line” These format cues help the agent decide what to emit and help you avoid brittle parsing later. Output selection constraints (force relevance) “only for the orderid values that failed validation” “Create a list of all orderids that have failed” This tells the agent what to keep and what to ignore. Output operational constraints (tie outputs to downstream actions) “Include title row only in the email body” “remove it otherwise” This explicitly anticipates downstream usage (email vs remediation), which is exactly the kind of detail models often miss unless you state it. Rule of thumb: wording works best when it describes what to produce, in what format, with what filtering rules, and why the workflow needs it. How these parameters tie directly to the downstream actions The next picture makes the design intent very clear: each parameter is immediately “bound” to a normal workflow value via Compose actions and then used by later steps. This is the pattern we want: agent output → Compose → (optional) normalization → reused by deterministic workflow actions. It’s the opposite of “read the model output and hope.” This is the reusable pattern: Decide the minimal set of outputs the workflow needs. Specify formats that are easy to parse. Write parameter descriptions that encode both selection and formatting constraints. Immediately bind outputs to workflow variables via Compose/ SetVariable actions. The main takeaway from this tool is that the agent is being forced into a structured contract: three outputs with explicit formats and clear intent. That contract is what makes the rest of the workflow deterministic—Compose actions can safely read @agentParameters(...), the workflow can safely split(...) the invalid IDs, and downstream actions can treat the “invalid payload” as real data rather than narrative. I'll show later how this same “parameter-first” design scales to other agent tools. 2.4 Turning agent outputs into a verification email Once the agent has produced structured outputs (Validation summary, InvalidOrderIds , and Invalid CSV payload), the next goal is to make those outputs operational: humans need a quick summary of what failed, and the workflow needs machine‑friendly values it can reuse downstream. The design here is intentionally straightforward: the workflow converts each agent parameter into a first‑class workflow output (via Compose actions and one variable assignment), then binds those values directly into the Office 365 email body. The result is an email that is both readable and actionable—without anyone needing to open run history. The figure below shows how the outputs of Summarize CSV payload review are mapped into the verification email. On the left, the tool produces three values via subsequent actions (Summary, Invalid order ids, and Invalid CSV payload), and the workflow also normalizes the invalid IDs into an array (Save invalid order ids). On the right, the Send verification summary action composes the email body using those same values as dynamic content tokens. Figure: Mapping agent outputs to the verification email The important point is that the email is not constructed by “re-prompting” or “re-summarizing.” It is assembled from already-structured outputs. This mapping is intentionally direct: each piece of the email corresponds to one explicit output from the agent tool. The workflow doesn’t interpret or transform the summary beyond basic formatting—its job is to preserve the agent’s structured outputs and present them consistently. The only normalization step happens for InvalidOrderIds , where the workflow also converts the CSV string into an array ( ArrayOfInvalidOrderIDs ) for later filtering and analysis steps. The next figure shows a sample verification email produced by this pipeline. It illustrates the three-part structure: an HTML validation summary table, the raw invalid order ID list, and the extracted invalid CSV rows: Figure: Sample verification email — validation summary table + invalid order IDs + invalid CSV rows. The extracted artifacts InvalidOrderIds and Invalid CSV payload are used in the downstream actions that persist failed rows as IDocs for later processing, which were presented in Part 1. I will get back to this later to talk about reusing the validation agent. Next however I will go over the data analysis part of the AI integration. 3. Analysis Phase: from validated dataset to HTML output After the validation agent loop finishes, the workflow enters a second AI phase: analysis. The validation phase is deliberately about correctness (what to exclude and why). The analysis phase is about insight, and it runs on the remaining dataset after invalid rows are filtered out. At a high level, this phase has three steps: Call Azure OpenAI to analyze the CSV dataset while explicitly excluding invalid OrderIDs . Extract the model’s text output from the OpenAI response object. Convert the model’s markdown output into HTML so it renders cleanly in email (and in the SAP response envelope). 3.1 OpenAI component: the “Analyze data” call The figure below shows the Analyze data action that drives the analysis phase. This action is executed after the Data Validation Agent completes, and it uses three messages: a system instruction that defines the task, the CSV dataset as input, and a second user message that enumerates the OrderIDs to exclude (the invalid IDs produced by validation). Figure: Azure OpenAI analysis call. The analysis call is structured as: system: define the task and constraints user: provide the dataset user: provide exclusions derived from validation system: Analyze dataset; provide trends/predictions; exclude specified orderids. user: <csv payload=""> user: Excluded orderids: <comma-separated ids="" invalid=""></comma-separated></csv> Two design choices are doing most of the work here: The model is given the dataset and the exclusions separately. This avoids ambiguity: the dataset is one message, and the “do not include these OrderIDs ” constraint is another. The exclusion list is derived from validation output, not re-discovered during analysis. The analysis step doesn’t re-validate; it consumes the validation phase’s results and focuses purely on trends/predictions. 3.2 Processing the response The next figure shows how the workflow turns the Azure OpenAI response into a single string that can be reused for email and for the SAP response. The workflow does three things in sequence: it parses the response JSON, extracts the model’s text content, and then passes that text into an HTML formatter. Figure: Processing the OpenAI response. This is the only part of the OpenAI response you need to understand for this workflow: Analyze_data response └─ choices[] (array) └─ [0] (object) └─ message (object) └─ content (string) <-- analysis text Everything else in the OpenAI response (filters, indexes, metadata) is useful for auditing but not required to build the final user-facing output. 3.3 Crafting the output to HTML The model’s output is plain text and often includes lightweight markdown structures (headings, lists, separators). To make the analysis readable in email (and safe to embed in the SAP response envelope), the workflow converts the markdown into HTML. The script was generated with copilot. Source code snippet may be found in Part 1. The next figure shows what the formatted analysis looks like when rendered. Not the explicit reference to the excluded OrderIDs and summary of the remaining dataset before listing trend observations. Figure: Example analysis output after formatting. 4. Closing the loop: persisting invalid rows as IDocs In Part 1, I introduced an optional remediation branch: when validation finds bad rows, the workflow can persist them into SAP as custom IDocs for later handling. In Part 2, after unpacking the agent loop, I want to reconnect those pieces and show the “end of the story”: the destination workflow creates IDocs for invalid data, and a second destination workflow receives those IDocs and produces a consolidated audit trail in Blob Storage. This final section is intentionally pragmatic. It shows: where the IDoc creation call happens, how the created IDocs arrive downstream, and how to safely handle many concurrent workflow instances writing to the same storage artifact (one instance per IDoc). 4.1 From “verification summary” to “Create all IDocs” The figure below shows the tail end of the verification summary flow. Once the agent produces the structured validation outputs, the workflow first emails the human-readable summary, then converts the invalid CSV rows into an SAP-friendly XML shape, and finally calls the RFC that creates IDocs from those rows. Figure: End of the validation/remediation branch. This is deliberately a “handoff point.” After this step, the invalid rows are no longer just text in an email—they become durable SAP artifacts (IDocs) that can be routed, retried, and processed independently of the original workflow run. 4.2 Z_CREATE_ONLINEORDER_IDOC and the downstream receiver The next figure is the same overview from Part 1. I’m reusing it here because it captures the full loop: the workflow calls Z_CREATE_ONLINEORDER_IDOC , SAP converts the invalid rows into custom IDocs, and Destination workflow #2 receives those IDocs asynchronously (one workflow run per IDoc). Figure 2: Invalid rows persisted as custom IDocs. This pattern is intentionally modular: Destination workflow #1 decides which rows are invalid and optionally persists them. SAP encapsulates the IDoc creation mechanics behind a stable RFC ( Z_CREATE_ONLINEORDER_IDOC ). Destination workflow #2 processes each incoming IDoc independently, which matches how IDoc-driven integrations typically behave in production. 4.3 Two phases in Destination workflow #2: AI agent + Blob Storage logging In the receiver workflow, there are two distinct phases: AI agent phase (per-IDoc): reconstruct a CSV view from the incoming IDoc payload and (optionally) run the same validation logic. Blob storage phase (shared output): append a normalized “verification line” into a shared blob in a concurrency-safe way. It’s worth calling out: in this demo, the IDocs being received were created from already-validated outputs upstream, so you could argue the second validation is redundant. I keep it anyway for two reasons: it demonstrates that the agent tooling is reusable with minimal changes, and in a general integration, Destination workflow #2 may receive IDocs from multiple sources, not only from this pipeline—so “validate on receipt” can still be valuable. 4.3.1 AI agent phase The figure below shows the validation agent used in Destination workflow #2. The key difference from the earlier agent loop is the output format: instead of producing an HTML summary + invalid lists, this agent writes a single “audit line” that includes the IDoc correlation key ( DOCNUM ) along with the order ID and the failed rules. Figure: Destination workflow #2 agent configuration. The reusable part here is the tooling structure: rules still come from the same validation document, the dataset is still supplied as CSV, and the summarization tool outputs a structured value the workflow can consume deterministically. The only meaningful change is “what shape do I want the output to take,” which is exactly what the agent parameter descriptions control. The next figure zooms in on the summarization tool parameter in Destination workflow #2. Instead of three outputs, this tool uses a single parameter ( VerificationInfo ) whose description forces a consistent line format anchored on DOCNUM . Figure 4: VerificationInfo parameter. This is the same design principle as Tool #3 in the first destination workflow: describe the output as a contract, not as a vague request. The parameter description tells the agent exactly what must be present ( DOCNUM + OrderId + failed rules) and therefore makes it straightforward to append the output to a shared log without additional parsing. Interesting snippets Extracting DOCNUM from the IDoc control record and carry it through the run: xpath(xml(triggerBody()?['content']), 'string(/*[local-name()="Receive"] /*[local-name()="idocData"] /*[local-name()="EDI_DC40"] /*[local-name()="DOCNUM"])') 4.3.2 Blob Storage phase Destination workflow #2 runs one instance per inbound IDoc. That means multiple runs can execute at the same time, all trying to write to the same “ ValidationErrorsYYYYMMDD.txt ” artifact. The figure below shows the resulting appended output: one line per IDoc, each line beginning with DOCNUM , which becomes the stable correlation key. Destination workflow #2 runs one instance per inbound IDoc, so multiple instances can attempt to write to the same daily “validation errors” append blob at the same time. The figure below shows the concurrency control pattern I used to make those writes safe: a short lease acquisition loop that retries until it owns the blob lease, then appends the verification line(s), and finally releases the lease. Figure: Concurrency-safe append pattern. Reading the diagram top‑to‑bottom, the workflow uses a simple lease → append → release pattern to make concurrent writes safe. Each instance waits briefly (Delay), attempts to acquire a blob lease (Acquire validation errors blob lease), and loops until it succeeds (Set status code → Until lease is acquired). Once a lease is obtained, the workflow stores the lease ID (Save lease id), appends its verification output under that lease (Append verification results), and then releases the lease (Release the lease) so the next workflow instance can write. Implementation note: the complete configuration for this concurrency pattern (including the HTTP actions, headers, retries, and loop conditions) is included in the attached artifacts, in the workflow JSON for Destination workflow #2. 5. Concluding remarks Part 2 zoomed in on the AI boundary inside the destination workflows and made it concrete: what the agent sees, what it is allowed to do, what it must return, and how those outputs drive deterministic workflow actions. The practical outcomes of Part 2 are: A tool-driven validation agent that produces workflow artifacts, not prose. The validation loop is constrained by tools and parameter schemas so its outputs are immediately consumable: an email-friendly validation summary, a machine-friendly InvalidOrderIds list, and an invalid-row payload that can be remediated. A clean separation between validation and analysis. Validation decides what not to trust (invalid IDs / rows) and analysis focuses on what is interesting in the remaining dataset. The analysis prompt makes the exclusion rule explicit by passing the dataset and excluded IDs as separate messages. A repeatable response-processing pipeline. You extract the model’s text from a stable response path ( choices[0].message.content ), then shape it into HTML once (markdown → HTML) so the same formatted output can be reused for email and the SAP response envelope. A “reuse with minimal changes” pattern across workflows. Destination workflow #2 shows the same agent principles applied to IDoc reception, but with a different output contract optimized for logging: DOCNUM + OrderId + FailedRules . This demonstrates that the real reusable asset is the tool + parameter contract design. Putting It All Together We have a full integration story where SAP, Logic Apps, AI, and IDocs are connected with explicit contracts and predictable behavior: Part 1 established the deterministic integration foundation. SAP ↔ Logic Apps connectivity (gateway/program wiring) RFC payload/response contracts ( IT_CSV , response envelope, error semantics) predictable exception propagation back into SAP an optional remediation branch that persists invalid rows as IDocs via a custom RFC ( Z_CREATE_ONLINEORDER_IDOC ) and the end-to-end response handling pattern in the caller workflow. Part 2 layered AI on top without destabilizing the contracts. Agent loop + tools for rule retrieval and validation output schemas that convert “reasoning” into workflow artifacts a separate analysis step that consumes validated data and produces formatted results and an asynchronous IDoc receiver that logs outcomes safely under concurrency. The reason it works as a two-part series is that the two layers evolve at different speeds: The integration layer (Part 1) should change slowly. It defines interoperability: payload shapes, RFC names, error contracts, and IDoc interfaces. The AI layer (Part 2) is expected to iterate. Prompts, rule documents, output formatting, and agent tool design will evolve as you tune behavior and edge cases. References Logic Apps Agentic Workflows with SAP - Part 1: Infrastructure 🤖 Agent Loop Demos 🤖 | Microsoft Community Hub Agent Workflows Concepts Workflows with AI Agents and Models - Azure Logic Apps Built-in OpenAI Connector How to connect to AI foundry Create Autonomous AI Agent Workflows - Azure Logic Apps Handling Errors in SAP BAPI Transactions Access SAP from workflows Create common SAP workflows Generate Schemas for SAP Artifacts via Workflows Exception Handling | ABAP Keyword Documentation Handling and Propagating Exceptions - ABAP Keyword Documentation SAP .NET Connector 3.1 Overview SAP .NET Connector 3.1 Programming Guide Connect to Azure AI services from Workflows All supporting content for this post may be found in the companion GitHub repository.