Video and screen sharing are fundamental methods of delivering your message with efficiency and impact. We’re focused on optimizing these capabilities to deliver quality, dependable, and resilient experiences regardless of content type or network constraints.
Previously, we’ve shared how Microsoft uses AI to reduce background noise and improve the encoding of audio via our Satin codec so that it is more resilient in poor networks. This blog explains how we extend the use of AI to improve video and screen sharing quality for meetings leading to improved quality and reliability even in environments with network constraints.
While most organizations’ network infrastructure has improved greatly over the last few years, remote work guidance during COVID-19 has led to a surge in real time conferencing and collaboration from home networks. Such networks often have two key constraints:
Constrained network bandwidth and network loss might lead to frozen video, low frame rates, or poor picture quality. Let’s explore how Teams innovations address constraints that can impact video quality during meetings.
In situations where not enough bandwidth is available for the highest quality video, the encoder must make a trade-off between better picture quality versus smoother frame rate. To optimize the user experience, this trade-off must consider aspects of the source content we are trying to encode. Sharing screen content such as documents with small fonts requires optimizing the spatial resolution for the document to remain legible. Alternatively, if the user shares their desktop while playing a video, it’s important to optimize for a high frame rate, otherwise the shared video will not look smooth. Since shared screen content is often a mix of both scenarios it’s challenging whether to prioritize high spatial quality or smooth motion. Some apps ask the end user to make that choice by exposing a setting for this, which can be a cumbersome and potentially confusing step.
To make it easier for the end user, Teams uses machine learning to understand the characteristics of the content the user is sharing to ensure participants experience the highest video quality in constrained bandwidth scenarios. If we detect static content such as documents or slide decks, we optimize for readability. If motion is detected, then we instead optimize for a smooth playback experience. This detection runs continuously on the user’s Teams client so that we can switch easily back and forth. To ensure that this experience is great across devices, the classifier is optimized for hardware offloading and is able to run real-time with minimal impact on CPU and GPU usage. In the video below you can see how this optimizes the end user experience.
In addition, when users share content with their webcam enabled, Teams balances requirements for video and shared content by adaptively allocating bandwidth based on the needs of each content type. We have recently improved this capability by using machine learning to train models using different network characteristics and source content. This enables Teams to transmit video at higher quality and frame rate while maintaining the screensharing experience, all while utilizing the same bandwidth.
Teams uses three complementary mechanisms to protect against network loss:
The real challenge is in balancing these three approaches to minimize the bandwidth spent protecting against network loss and maximizing the bandwidth used to encode the source content. To achieve the right trade-off, we use data-driven insights from our telemetry on network characteristics and their impact to perceived quality by the end user. Two videos below show how the combinations of these approaches allow Teams to maintain great quality video even when the burst network loss increases from 5% to 10%.
Video (750kbps, 5% burst loss)
Video (750kbps, 10% burst loss)
If you couldn’t detect a difference in video quality between these examples of packet loss, that’s the point. By combining packet loss protection and AI-based content classification and rate control, Teams is able to deliver quality video and screen sharing even amidst network challenges.
In the not-so-distant past, presenters used video and screen sharing sparingly due to network constraints. Today, AI-driven optimizations allow Teams users to realize the benefits of video without the worry of poor bandwidth detracting from their message.
Stay tuned to this blog to learn more about Teams audio and video optimization features and improvements designed to help you get the most from your meetings and calls.
You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.