msignite
5 TopicsOpen AI’s GPT-5.1-codex-max in Microsoft Foundry: Igniting a New Era for Enterprise Developers
Announcing GPT-5.1-codex-max: The Future of Enterprise Coding Starts Now We’re thrilled to announce the general availability of OpenAI's GPT-5.1-codex-max in Microsoft Foundry Models; a leap forward that redefines what’s possible for enterprise-grade coding agents. This isn’t just another model release; it’s a celebration of innovation, partnership, and the relentless pursuit of developer empowerment. At Microsoft Ignite, we unveiled Microsoft Foundry: a unified platform where businesses can confidently choose the right model for every job, backed by enterprise-grade reliability. Foundry brings together the best from OpenAI, Anthropic, xAI, Black Forest Labs, Cohere, Meta, Mistral, and Microsoft’s own breakthroughs, all under one roof. Our partnership with Anthropic is a testament to our commitment to giving developers access to the most advanced, safe, and high-performing models in the industry. And now, with GPT-5.1-codex-max joining the Foundry family, the possibilities for intelligent applications and agentic workflows have never been greater. GPT 5.1-codex-max is available today in Microsoft Foundry and accessible in Visual Studio Code via the Foundry extension . Meet GPT-5.1-codex-max: Enterprise-Grade Coding Agent for Complex Projects GPT-5.1-codex-max is engineered for those who build the future. Imagine tackling complex, long-running projects without losing context or momentum. GPT-5.1-codex-max delivers efficiency at scale, cross-platform readiness, and proven performance with top scores on SWE-Bench (77.9), the gold standard for AI coding. With GPT-5.1-codex-max, developers can focus on creativity and problem-solving, while the model handles the heavy lifting. GPT-5.1-codex-max isn’t just powerful; it’s practical, designed to solve real challenges for enterprise developers: Multi-Agent Coding Workflows: Automate repetitive tasks across microservices, maintaining shared context for seamless collaboration. Enterprise App Modernization: Effortlessly refactor legacy .NET and Java applications into cloud-native architectures. Secure API Development: Generate and validate secure API endpoints, with `compliance checks built-in for peace of mind. Continuous Integration Support: Integrate GPT-5.1-codex-max into CI/CD pipelines for automated code reviews and test generation, accelerating delivery cycles. These use cases are just the beginning. GPT-5.1-codex-max is your partner in building robust, scalable, and secure solutions. Foundry: Platform Built for Developers Who Build the Future Foundry is more than a model catalog—it’s an enterprise AI platform designed for developers who need choice, reliability, and speed. • Choice Without Compromise: Access the widest range of models, including frontier models from leading model providers. • Enterprise-Grade Infrastructure: Built-in security, observability, and governance for responsible AI at scale. • Integrated Developer Experience: From GitHub to Visual Studio Code, Foundry connects with tools developers love for a frictionless build-to-deploy journey. Start Building Smarter with GPT-5.1-codex-max in Foundry The future is here, and it’s yours to shape. Supercharge your coding workflows with GPT-5.1-codex-max in Microsoft Foundry today. Learn more about Microsoft Foundry: aka.ms/IgniteFoundryModels. Watch Ignite sessions for deep dives and demos: ignite.microsoft.com. Build faster, smarter, and with confidence on the platform redefining enterprise AI.3.6KViews2likes4CommentsAnnouncing Elastic MCP Server in Microsoft Foundry Tool Catalog
Introduction The future of enterprise AI is agentic - driven by intelligent, context-aware agents that deliver real business value. Microsoft Foundry is committed to enabling developers with the tools and integrations they need to build, deploy, and govern these advanced AI solutions. Today, we are excited to announce that Elastic MCP Server is now discoverable in the Microsoft Foundry Tool Catalog, unlocking seamless access to Elastic’s industry-leading vector search capabilities for Retrieval-Augmented Generation (RAG) scenarios. Seamless Integration: Elastic Meets Microsoft Foundry This integration is a major milestone in our ongoing effort to foster an open, extensible AI ecosystem. With Elastic MCP Server now available in the Azure MCP registry, developers can easily connect their agents to Elastic’s powerful search and analytics engine using the Model Context Protocol (MCP). This ensures that agents built on Microsoft Foundry are grounded in trusted, enterprise-grade data - delivering accurate, relevant, and verifiable responses. Create Elastic cloud hosted deployments or Serverless Search Projects through the Microsoft Marketplace or the Azure Portal Discoverability: Elastic MCP Server is listed as a remote MCP server in the Azure MCP Registry and the Foundry Tool Catalog. Multi-Agent Workflows: Enable collaborative agent scenarios via the A2A protocol. Unlocking Vector Search for RAG Elastic’s advanced vector search capabilities are now natively accessible to Foundry agents, enabling powerful Retrieval-Augmented Generation (RAG) workflows: Semantic Search: Agents can perform hybrid and vector-based searches over enterprise data, retrieving the most relevant context for grounding LLM responses. Customizable Retrieval: With Elastic’s Agent Builder, you can define your custom tools specific to your indices and datasets and expose them to Foundry Agents via MCP. Enterprise Grounding: Ensure agent outputs are always based on proprietary, up-to-date data, reducing hallucinations and improving trust. Deployment: Getting Started Follow these steps to integrate Elastic MCP Server with your Foundry agents: Within your Foundry project, you can either: Go to Build in the top menu, then select Tools. Click on Connect a Tool. Select the Catalog tab, search for Elasticsearch, and click Create. Once prompted, configure the Elasticsearch details by providing a name, your Kibana endpoint, and your Elasticsearch API key. Click on Use in an agent and select an existing Agent to integrate Elastic MCP Server. Alternatively, within your Agent: Click on Tools. Click Add, then select Custom. Search for Elasticsearch, add it, and configure the tool as described above. The tool will now appear in your Agent’s configuration. You are all set to now interact with your Elasticsearch projects and deployments! Conclusion & Next Steps The addition of Elastic MCP Server to the Foundry Tool Catalog empowers developers to build the next generation of intelligent, grounded AI agents - combining Microsoft’s agentic platform with Elastic’s cutting-edge vector search. Whether you’re building RAG-powered copilots, automating workflows, or orchestrating multi-agent systems, this integration accelerates your journey from prototype to production. Ready to get started? Get started with Elastic via the Azure Marketplace or Azure portal. New users get a 7-day free trial! Explore agent creation in Microsoft Foundryportal and try the Foundry Tool Catalog. Deep dive into Elastic MCP and Agent Builder Join us at Microsoft Ignite 2025 for live demos, deep dives, and more on building agentic AI with Elastic and Microsoft Foundry!487Views1like2CommentsFoundry Agent Service at Ignite 2025: Simple to Build. Powerful to Deploy. Trusted to Operate.
The upgraded Foundry Agent Service delivers a unified, simplified platform with managed hosting, built-in memory, tool catalogs, and seamless integration with Microsoft Agent Framework. Developers can now deploy agents faster and more securely, leveraging one-click publishing to Microsoft 365 and advanced governance features for streamlined enterprise AI operations.6.7KViews3likes1CommentRosettaFold3 Model at Ignite 2025: Extending Frontier of Biomolecular Modeling in Microsoft Foundry
Today at Microsoft Ignite 2025, we are excited to launch RosettaFold3 (RF3) on Microsoft Foundry - making a new generation of multi-molecular structure prediction models available to researchers, biotech innovators, and scientific teams worldwide. RF3 was developed by the Baker lab and DiMaio lab from the Institute for Protein Design (IPD) at the University of Washington, in collaboration with Microsoft’s AI for Good lab and other research partners. RF3 is now available in Foundry Models, offering scalable access to a new generation of biomolecular modeling capabilities. Try RF3 now in Foundry Models A new multi-molecular modeling system, now accessible in Foundry Models RF3 represents a leap forward in biomolecular structure prediction. Unlike previous generation models focused narrowly on proteins, RF3 can jointly model: Proteins (enzymes, antibodies, peptides) Nucleic acids (DNA, RNA) Small molecules/ligands Multi-chain complexes This unified modeling approach allows researchers to explore entire interaction systems—protein–ligand docking, protein–RNA assembly, protein–DNA binding, and more—in a single end-to-end workflow. Key advances in RF3 RF3 incorporates several advancements in protein and complex prediction, making it the state-of-the-art open-source model. Joint atom-level modeling across molecular types RF3 can simultaneously model all atom types across proteins, nucleic acids, and ligands—enabled by innovations in multimodal transformers and generative diffusion models. Unprecedented control: atom-level conditioning Users can provide the 3D structure of a ligand or compound, and RF3 will fold a protein around it. This atom-level conditioning unlocks: Targeted drug-design workflows Protein pocket and surface engineering Complex interaction modeling Example showing how RF3 allows conditioning on user inputs offering greater control of the model’s predictions. Broad templating support for structure-guided design RF3 allows users to guide structure prediction using: Distance constraints Geometric templates Experimental data (e.g., cryo-EM) This flexibility is limited in other models and makes RF3 ideal for hybrid computation–wet-lab workflows. Extensible foundation for scientific and industrial research RF3 can be adapted to diverse application areas—including enzyme engineering, materials science, agriculture, sustainability, and synthetic biology. Use cases RF3’s multimolecular modeling capabilities have broad applicability beyond fundamental biology. The model enables breakthroughs across medicine, materials science, sustainability, and defense—where structure-guided design directly translates into measurable innovation. Sector Illustrative Use Cases Medicine Gene therapy research: RF3 enables the design of custom proteins that bind specific DNA sequences for targeted genome repair. Materials Science Inspired by natural protein fibers such as wool and silk, IPD researchers are designing synthetic fibers with tunable mechanical properties and texture—enabling sustainable textiles and advanced materials. Sustainability RF3 supports enzyme design for plastic degradation and waste recycling, contributing to circular bioeconomy initiatives. Disease & Vaccine Development RF3-powered workflows will contribute to structure-guided vaccine design, building on IPD’s prior success with the SKYCovione COVID-19 nanoparticle vaccine developed with SK Bioscience and GSK. Crop Science and Food security Support for gene-editing technology (due to protein-DNA binding prediction capabilities) for agricultural research, design of small proteins called Anti-Microbial Peptides or Anti-Fungal peptides to fight crop diseases and tree diseases such as citrus greening. Defense & Biosecurity Enables detection and rapid countermeasure design against toxins or novel pathogens; models of this class are being studied for biosafety applications (Horvitz et al., Science, 2025). Aerospace & Extreme Environments Supports design of lightweight, self-healing, and radiation-resistant biomaterials capable of functioning under non-terrestrial conditions (e.g., high temperature, pressure, or radiation exposure). RF3 has the potential to lower the cost of exploratory modeling, raise success rates in structure-guided discovery, and expand biomolecular AI into domains that were previously limited by sparse experimental structures or difficult multimolecular interactions. Because the model and training framework are open and extensible, partners can also adapt RF3 for their own research, making it a foundation for the next generation of biomolecular AI on Microsoft Foundry. Get started today RosettaFold3 (RF3) brings advanced multimolecular modeling capabilities into Foundry Models, enabling researchers and biotech teams to run structure-guided workflows with greater flexibility and speed. Within Microsoft Foundry, you can integrate RF3 into your existing scientific processes—combining your data, templates, and downstream analysis tools in one connected environment. Start exploring the next frontier of biomolecular modeling with RosettaFold3 in the Foundry Models. You can also discover other early-stage AI innovations in Foundry Labs. If you’re attending Microsoft Ignite 2025, or watching on demand, be sure to check out our session: Session: AI Frontier in Foundry Labs: Experiment Today, Lead Tomorrow About the session: “Curious about the next wave of AI breakthroughs? Get a sneak peek into the future of AI with Azure AI Foundry Labs—your front door to experimental models, multi-agent orchestration prototypes, Agent Factory blueprints, and edge innovations. If you’re a researcher eager to test, validate, and influence what’s next in enterprise AI, this session is your launchpad. See how Labs lets you experiment fast, collaborate with innovators, and turn new ideas into real impact.”482Views0likes0Comments