modernization
44 TopicsConvert geo-replicated databases to Hyperscale
Update: On 22 October 2025 we announced the General Availability for this improvement. We’re excited to introduce the next improvement in Hyperscale conversion: a new feature that allows customers to convert Azure SQL databases to Hyperscale by keeping active geo-replication or failover group configurations intact. This builds on our earlier improvements and directly addresses one of the most requested capabilities from customers. With this improvement, customers can now modernize your database architecture with Hyperscale while maintaining business continuity. Overview We have heard feedback from customers about possible improvements we could make while converting their databases to Hyperscale. Customers complained about the complex steps they needed to perform to convert a database to Hyperscale when the database is geo-replicated by active geo-replication or failover groups. Previously, converting to Hyperscale required tearing down geo-replication links and recreating them after the conversion. Now, that’s no longer necessary. This improvement allows customers to preserve their cross-region disaster recovery or read scale-out configurations and still allows conversion to Hyperscale which helps in minimizing downtime and operational complexity. This feature is especially valuable for applications that rely on failover group endpoints for connectivity. Before this improvement, if application needs to be available during conversion, then connection string needed modifications as a part of conversion because the failover group and its endpoints had to be removed. With this new improvement, the conversion process is optimized for minimal disruption, with telemetry showing majority of cutover times under one minute. Even with a geo-replication configuration in place, you can still choose between automatic and manual cutover modes, offering flexibility in scheduling the transition. Progress tracking is now more granular, giving customers better visibility into each stage of the conversion, including the conversion of the geo-secondary to Hyperscale. Customer feedback Throughout the preview phase, we have received overwhelmingly positive feedback from several customers about this improvement. Viktoriia Kuznetcova, Senior Automation Test Engineer from Nintex says: We needed a low-downtime way to move our databases from the Premium tier to Azure SQL Database Hyperscale, and this new feature delivered perfectly; allowing us to complete the migration in our test environments safely and smoothly, even while the service remained under continuous load, without any issues and without needing to break the failover group. We're looking forward to the public release so we can use it in production, where Hyperscale’s ability to scale storage both up and down will help us manage peak loads without overpaying for unused capacity. Get started The good news is that there are no changes needed to the conversion process. The workflow automatically detects that a geo-secondary is present and converts it to Hyperscale. There are no new parameters, and the method remains the same as the existing conversion process which works for non-geo-replicated databases. All you need is to make sure that: You have only one geo-secondary replica because Hyperscale doesn't support more than one geo-secondary replica. If a chained geo-replication configuration exists, it must be removed before starting the conversion to Hyperscale. Creating a geo-replica of a geo-replica (also known as "geo-replica chaining") isn't supported in Hyperscale. Once the above requirements are satisfied, you can use any of the following methods to initiate the conversion process. Conversion to Hyperscale must be initiated starting from the primary geo-replica. The following table provides sample commands to convert a database named WideWorldImporters on a logical server called contososerver to an 8-vcore Hyperscale database with manual cutover option. Method Command T-SQL ALTER DATABASE WideWorldImporters MODIFY (EDITION = 'Hyperscale', SERVICE_OBJECTIVE = 'HS_Gen5_8') WITH MANUAL_CUTOVER; PowerShell Set-AzSqlDatabase -ResourceGroupName "ResourceGroup01" -ServerName "contososerver" -DatabaseName "WideWorldImporters" -Edition "Hyperscale" -RequestedServiceObjectiveName "HS_Gen5_8" -ManualCutover Azure CLI az sql db update --resource-group ResourceGroup01 --server contososerver --name WideWorldImporters --edition Hyperscale --service-objective HS_Gen5_8 --manual-cutover Here are some notable details of this improvement: The geo-secondary database is automatically converted to Hyperscale with the same service level objective as the primary. All database configurations such as maintenance window, zone-resiliency, backup redundancy etc. remain the same as earlier (i.e., both geo-primary and geo-secondary would inherit from their own earlier configuration). A planned failover isn't possible while the conversion to Hyperscale is in progress. A forced failover is possible. However, depending on the state of the conversion when the forced failover occurs, the new geo-primary after failover might use either the Hyperscale service tier, or its original service tier. If the geo-secondary database is in an elastic pool before conversion, it is taken out of the pool and might need to be added back to a Hyperscale elastic pool separately after the conversion. This feature has been fully deployed across all Azure regions. In case you see error (Update to service objective '<SLO name>' with source DB geo-replicated is not supported for entity '<Database Name>') while converting primary to Hyperscale, we would like to hear from you. Do send us an email to the email ID give in next section. If you don’t want to use this capability, make sure to remove any geo-replication configuration before converting your databases to Hyperscale. Conclusion This update marks a significant step forward in the Hyperscale conversion process, offering simple steps, less downtime and keeping the geo-secondary available during the conversion process. We encourage you to try this capability and provide your valuable feedback and help us refine this feature. You can contact us by commenting on this blog post and we’ll be happy to get back to you. Alternatively, you can also email us at sqlhsfeedback AT microsoft DOT com. We are eager to hear from you all!1.9KViews2likes0CommentsGenerally Available: Azure SQL Managed Instance Next-gen General Purpose
Overview Next-gen General Purpose is the evolution of General Purpose service tier that brings significantly improved performance and scalability to power up your existing Azure SQL Managed Instance fleet and helps you bring more mission-critical SQL workloads to Azure. We are happy to announce that Next-gen General Purpose is now Generally Available (GA) delivering even more scalability, flexibility, and value for organizations looking to modernize their data platform in a cost-effective way. The new #SQLMINextGen General Purpose tier delivers a built-in performance upgrade available to all customers at no extra cost. If you are an existing SQL MI General Purpose user, you get faster I/O, higher database density, and expanded storage - automatically. Summary Table: Key Improvements Capability Current GP Next-gen GP Improvement Average I/O Latency 5-10 ms 3-4 ms 2x lower Max Data IOPS 30-50k 80k 60% better Max Storage 16 TB 32 TB 2x better Max Databases/Instance 100 500 5x better Max vCores 80 128 40% better But that’s just the beginning. The new configuration sliders for additional IOPS and memory provide enhanced flexibility to tailor performance according to your requirements. Whether you require more resources for your application or seek to optimize resource utilization, you can adjust your instance settings to maximize efficiency and output. This release isn’t just about speed - It’s about giving you improved performance where it matters, and mechanisms to go further when you need them. Customer story - A recent customer case highlights how Hexure reduced processing time by up to 97.2% using Azure SQL Managed Instance on Next-gen General Purpose. What’s new in Next-gen General Purpose (Nov 2025)? 1. Improved baseline performance with the latest storage tech The SQL Managed Instance General Purpose tier is designed with full separation of compute and storage layers. The Classic GP version uses premium page blobs for the storage layer, while the Next-generation GP tier has transitioned to Azure’s latest storage solution, Elastic SAN. Azure Elastic SAN is a cloud-native storage service that offers high performance and excellent scalability, making it a perfect fit for the storage layer of a data-intensive PaaS service like Azure SQL Managed Instance. Simplified Performance Management With ESAN as the storage layer, the performance quotas for the Next-gen General Purpose tier are no longer enforced for each database file. The entire performance quota for the instance is shared across all the database files, making performance management much easier (one fewer thing to worry about). This adjustment brings the General Purpose tier into alignment with the Business Critical service tier experience. 2. Resource flexibility and cost optimization The GA of Next-gen General Purpose comes together with the GA of a transformative memory slider, enabling up to 49 memory configurations per instance. This lets you right-size workloads for both performance and cost. Memory is billed only for the additional amount beyond the default allocation. Users can independently configure vCores, memory, and IOPS for optimal efficiency. To learn more about the new option for configuring additional memory, check the article: Unlocking More Power with Flexible Memory in Azure SQL Managed Instance. 3. Enhanced resource elasticity through decoupled compute and storage scaling operations With Next-gen GP, both storage and IOPS can be resized independently of the compute infrastructure, and these changes now typically finish within five minutes - a process known as an in-place upgrade. There are three distinct types of storage upgrade experiences depending on the kind of storage upgrade performed and whether failover occurs. In-place update: same storage (no data copy), same compute (no failover) Storage re-attach: Same storage (no data copy), changed compute (with failover) Data copy: Changed storage (data copy), changed compute (with failover) The following matrix describes user experience with management operations: Operation Data copying Failover Storage upgrade type IOPS scaling No No In-place Storage scaling* No* No In-place vCores scaling No Yes** Re-attach Memory scaling No Yes** Re-attach Maintenance Window change No Yes** Re-attach Hardware change No Yes** Re-attach Update policy change Yes Yes Data copy * If scale down is >5.5TB, seeding ** In case of update operations that do not require seeding and are not completed in place (examples are scaling vCores, scaling memory, changing hardware or maintenance window), failover duration of databases on the Next-gen General Purpose service tier scales with the number of databases, up to 10 minutes. While the instance becomes available after 2 minutes, some databases might be available after a delay. Failover duration is measured from the moment when the first database goes offline, until the moment when the last database comes online. Furthermore, resizing vCores and memory is now 50% faster following the introduction of the Faster scaling operations release. No matter if you have end-of-month peak periods, or there are ups and downs of usage during the weekdays and the weekend, with fast and reliable management operations, you can run multiple configurations over your instance and respond to peak usage periods in a cost-effective way. 4. Reserved instance (RI) pricing With Azure Reservations, you can commit to using Azure SQL resources for either one or three years, which lets you benefit from substantial discounts on compute costs. When purchasing a reservation, you'll need to choose the Azure region, deployment type, performance tier, and reservation term. Reservations are only available for products that have reached general availability (GA), and with this update, next-generation GP instances now qualify as well. What's even better is that classic and next-gen GP share the same SKU, just with different remote storage types. This means any reservations you've purchased automatically apply to Next-gen GP, whether you're upgrading an existing classic GP instance or creating a new one. What’s Next? The product group has received considerable positive feedback and welcomes continued input. The initial release will not include zonal redundancy; however, efforts are underway to address this limitation. Next-generation General Purpose (GP) represents the future of the service tier, and all existing classic GP instances will be upgraded accordingly. Once upgrade plans are finalized, we will provide timely communication regarding the announcement. Conclusion Now in GA, Next-gen General Purpose sets a new standard for cloud database performance and flexibility. Whether you’re modernizing legacy applications, consolidating workloads, or building for the future, these enhancements put more power, scalability, and control in your hands - without breaking the bank. If you haven’t already, try out the Next-gen General Purpose capabilities for free with Azure SQL Managed Instance free offer. For users operating SQL Managed Instance on the General Purpose tier, it is recommended to consider upgrading existing instances to leverage the advantages of next-gen upgrade – for free. Welcome to #SQLMINextGen. Boosted by default. Tuned by you. Learn more What is Azure SQL Managed Instance Try Azure SQL Managed Instance for free Next-gen General Purpose – official documentation Analyzing the Economic Benefits of Microsoft Azure SQL Managed Instance How 3 customers are driving change with migration to Azure SQL Accelerate SQL Server Migration to Azure with Azure Arc1.5KViews4likes0CommentsIntroducing Azure SQL Managed Instance Next-gen GP
The next generation of the general purpose service tier for Azure SQL Managed Instance is a major upgrade that will considerably improve the storage performance of your instances while keeping the same price as current general purpose tier. Key improvements in the next generation of general purpose storage include support for 32 TB of storage, support for 500 DBs, lower storage latency, improved storage performance, and the ability to configure the amount of IOPS (I/O operations per second).35KViews9likes9CommentsUnlocking More Power with Flexible Memory in Azure SQL Managed Instance
Service update - Nov 18th 2025 Additional memory in Next-gen General Purpose service tier is now generally available! As data workloads grow in complexity and scale, so does the need for more adaptable and performant database infrastructure. That’s why we’re excited to introduce a new capability in Azure SQL Managed Instance: Flexible Memory, now generally available. What Is Flexible Memory? Flexible Memory allows you to customize the memory-to-vCore ratio in your SQL Managed Instance, giving you the ability to fine-tune performance and cost based on your workload needs. This feature is part of the next-generation General Purpose tier, and it introduces a memory slider that lets you scale memory independently within defined limits. The memory slider is enabled only for premium series hardware. Why It Matters Traditionally, memory allocation in SQL Managed Instance was fixed per vCore. With Flexible Memory, you can now: Increase memory beyond the default allocation Optimize for memory-intensive workloads without overprovisioning compute Pay only for what you use — additional memory is billed per GB/hour This flexibility is especially valuable for scenarios like analytics, caching, or workloads with large buffer pool requirements. How It Works Memory scales based on the number of vCores and the selected hardware tier: Hardware Tier Memory per vCore (GB) Standard-series 5.1 Premium series 7–12 Premium series (memory-optimized) Up to 13.6 You can select from predefined memory ratios (e.g., 7, 8, 10, 12 GB per vCore) depending on your configuration. For example, a 10 vCore instance can be configured with 70 GB to 120 GB of memory. One of the most powerful aspects of the Flexible Memory feature is the ability to select from a range of memory-to-vCore ratios. These “click stops” allow you to tailor memory allocation precisely to your workload’s needs — whether you’re optimizing for performance, cost, or both. The table below outlines the available configurations for Premium Series hardware, showing how memory scales across 16 vCore sizes: vCores Available Ratios Total Memory Options (GB) 4 7, 8, 10, 12 28, 32, 40, 48 6 7, 8, 10, 12 42, 48, 60, 72 8 7, 8, 10, 12 56, 64, 80, 96 10 7, 8, 10, 12 70, 80, 100, 120 12 7, 8, 10, 12 84, 96, 120, 144 16 7, 8, 10, 12 112, 128, 160, 192 20 7, 8, 10, 12 140, 160, 200, 240 24 7, 8, 10, 12 168, 192, 240, 288 32 7, 8, 10, 12 224, 256, 320, 384 40 7, 8, 10, 12 280, 320, 400, 480 48 7, 8, 10 336, 384, 480 56 7, 8 392, 448 64 7 448 80 7 560 96 5.83 560 128 4.38 560 Pricing model Flexible Memory introduces a usage-based pricing model that ensures you only pay for the memory you actually consume beyond the default allocation. This model is designed to give you the flexibility to scale memory without overcommitting on compute resources - and without paying for unused capacity. How it works: Default memory is calculated based on the minimum memory-to-vCore ratio Billable memory is the difference between your configured memory and the default allocation. Billing is per GB/hour, so you’re charged only for the additional memory used over time. Let’s take an example of SQL Managed Instance running on premium series hardware with 4 vCores and 40GB of memory. Configuration Value vCores 4 Configured Memory 40 GB Default Memory (4 × 7 GB) 28 GB Billable Memory 12 GB Billing Unit Per GB/hour Charged For 12 GB of additional memory Management Experience Changing memory behaves just like changing vCores: Seamless updates via Azure Portal, PowerShell, SDK or API Failover group guidance remains the same Upgrade secondary first Configurations between primary and secondary should match Adjusting the memory is fully online operation, with a short failover at the very end of it. The operation will go through the process of allocating the new compute with specified configuration, which takes approximately 60 minutes, with new faster management operations. API Support Flexible Memory is fully supported via API (the minimal API version that can be used is 2024-08-01) and Azure Portal. Here’s a sample API snippet to configure memory: { "properties": { "memorySizeInGB": 96 } } Portal support Summary The new Flexible Memory capability in Azure SQL Managed Instance empowers you to scale memory independently of compute, offering greater control over performance and cost. With customizable memory-to-vCore ratios, a transparent pricing model, and seamless integration into existing management workflows, this feature is ideal for memory-intensive workloads and dynamic scaling scenarios. Whether you're optimizing for analytics, caching, or simply want more headroom without overprovisioning vCores, Flexible Memory gives you the tools to do it - efficiently and affordably. Next Steps Review the Documentation: Explore detailed configuration options, supported tiers, and API usage. Additional memory Management operations overview Management operations duration Test Your Workloads: Use the memory slider in the Azure Portal, PowerShell, SDK or API to experiment with different configurations. Learn more What is Azure SQL Managed Instance Try Azure SQL Managed Instance for free Next-gen General Purpose – official documentation Analyzing the Economic Benefits of Microsoft Azure SQL Managed Instance How 3 customers are driving change with migration to Azure SQL Accelerate SQL Server Migration to Azure with Azure Arc1KViews3likes0CommentsSecuring Azure SQL Database with Microsoft Entra Password-less Authentication: Migration Guide
The Secure Future Initiative is Microsoft’s strategic framework for embedding security into every layer of the data platform—from infrastructure to identity. As part of this initiative, Microsoft Entra authentication for Azure SQL Database offers a modern, password less approach to access control that aligns with Zero Trust principles. By leveraging Entra identities, customers benefit from stronger security postures through multifactor authentication, centralized identity governance, and seamless integration with managed identities and service principals. Onboarding Entra authentication enables organizations to reduce reliance on passwords, simplify access management, and improve auditability across hybrid and cloud environments. With broad support across tools and platforms, and growing customer adoption, Entra authentication is a forward-looking investment in secure, scalable data access. Migration Steps Overview Organizations utilizing SQL authentication can strengthen database security by migrating to Entra Id-based authentication. The following steps outline the process. Identify your logins and users – Review the existing SQL databases, along with all related users and logins, to assess what’s needed for migration. Enable Entra auth on Azure SQL logical servers by assigning a Microsoft Entra admin. Identify all permissions associated with the SQL logins & Database users. Recreate SQL logins and users with Microsoft Entra identities. Upgrade application drivers and libraries to min versions & update application connections to SQL Databases to use Entra based managed identities. Update deployments for SQL logical server resources to have Microsoft Entra-only authentication enabled. For all existing Azure SQL Databases, flip to Entra‑only after validation. Enforce Entra-only for all Azure SQL Databases with Azure Policies (deny). Step 1: Identify your logins and users - Use SQL Auditing Consider using SQL Audit to monitor which identities are accessing your databases. Alternatively, you may use other methods or skip this step if you already have full visibility of all your logins. Configure server‑level SQL Auditing. For more information on turning the server level auditing: Configure Auditing for Azure SQL Database series - part1 | Microsoft Community Hub SQL Audit can be enabled on the logical server, which will enable auditing for all existing and new user databases. When you set up auditing, the audit log will be written to your storage account with the SQL Database audit log format. Use sys.fn_get_audit_file_v2 to query the audit logs in SQL. You can join the audit data with sys.server_principals and sys.database_principals to view users and logins connecting to your databases. The following query is an example of how to do this: SELECT (CASE WHEN database_principal_id > 0 THEN dp.type_desc ELSE NULL END) AS db_user_type , (CASE WHEN server_principal_id > 0 THEN sp.type_desc ELSE NULL END) AS srv_login_type , server_principal_name , server_principal_sid , server_principal_id , database_principal_name , database_principal_id , database_name , SUM(CASE WHEN succeeded = 1 THEN 1 ELSE 0 END) AS sucessful_logins , SUM(CASE WHEN succeeded = 0 THEN 1 ELSE 0 END) AS failed_logins FROM sys.fn_get_audit_file_v2( '<Storage_endpoint>/<Container>/<ServerName>', DEFAULT, DEFAULT, '2023-11-17T08:40:40Z', '2023-11-17T09:10:40Z') -- join on database principals (users) metadata LEFT OUTER JOIN sys.database_principals dp ON database_principal_id = dp.principal_id -- join on server principals (logins) metadata LEFT OUTER JOIN sys.server_principals sp ON server_principal_id = sp.principal_id -- filter to actions DBAF (Database Authentication Failed) and DBAS (Database Authentication Succeeded) WHERE (action_id = 'DBAF' OR action_id = 'DBAS') GROUP BY server_principal_name , server_principal_sid , server_principal_id , database_principal_name , database_principal_id , database_name , dp.type_desc , sp.type_desc Step 2: Enable Microsoft Entra authentication (assign admin) Follow this to enable Entra authentication and assign a Microsoft Entra admin at the server. This is mixed mode; existing SQL auth continues to work. WARNING: Do NOT enable Entra‑only (azureADOnlyAuthentications) yet. That comes in Step 7. Entra admin Recommendation: For production environments, it is advisable to utilize an PIM Enabled Entra group as the server administrator for enhanced access control. Step 3: Identity & document existing permissions (SQL Logins & Users) Retrieve a list of all your SQL auth logins. Make sure to run on the master database.: SELECT * FROM sys.sql_logins List all SQL auth users, run the below query on all user Databases. This would list the users per Database. SELECT * FROM sys.database_principals WHERE TYPE = 'S' Note: You may need only the column ‘name’ to identify the users. List permissions per SQL auth user: SELECT database_principals.name , database_principals.principal_id , database_principals.type_desc , database_permissions.permission_name , CASE WHEN class = 0 THEN 'DATABASE' WHEN class = 3 THEN 'SCHEMA: ' + SCHEMA_NAME(major_id) WHEN class = 4 THEN 'Database Principal: ' + USER_NAME(major_id) ELSE OBJECT_SCHEMA_NAME(database_permissions.major_id) + '.' + OBJECT_NAME(database_permissions.major_id) END AS object_name , columns.name AS column_name , database_permissions.state_desc AS permission_type FROM sys.database_principals AS database_principals INNER JOIN sys.database_permissions AS database_permissions ON database_principals.principal_id = database_permissions.grantee_principal_id LEFT JOIN sys.columns AS columns ON database_permissions.major_id = columns.object_id AND database_permissions.minor_id = columns.column_id WHERE type_desc = 'SQL_USER' ORDER BY database_principals.name Step 4: Create SQL users for your Microsoft Entra identities You can create users(preferred) for all Entra identities. Learn more on Create user The "FROM EXTERNAL PROVIDER" clause in TSQL distinguishes Entra users from SQL authentication users. The most straightforward approach to adding Entra users is to use a managed identity for Azure SQL and grant the required three Graph API permissions. These permissions are necessary for Azure SQL to validate Entra users. User.Read.All: Allows access to Microsoft Entra user information. GroupMember.Read.All: Allows access to Microsoft Entra group information. Application.Read.ALL: Allows access to Microsoft Entra service principal (application) information. For creating Entra users with non-unique display names, use Object_Id in the Create User TSQL: -- Retrieve the Object Id from the Entra blade from the Azure portal. CREATE USER [myapp4466e] FROM EXTERNAL PROVIDER WITH OBJECT_ID = 'aaaaaaaa-0000-1111-2222-bbbbbbbbbbbb' For more information on finding the Entra Object ID: Find tenant ID, domain name, user object ID - Partner Center | Microsoft Learn Alternatively, if granting these API permissions to SQL is undesirable, you may add Entra users directly using the T-SQL commands provided below. In these scenarios, Azure SQL will bypass Entra user validation. Create SQL user for managed identity or an application - This T-SQL code snippet establishes a SQL user for an application or managed identity. Please substitute the `MSIname` and `clientId` (note: use the client id, not the object id), variables with the Display Name and Client ID of your managed identity or application. -- Replace the two variables with the managed identity display name and client ID declare @MSIname sysname = '<Managed Identity/App Display Name>' declare @clientId uniqueidentifier = '<Managed Identity/App Client ID>'; -- convert the guid to the right type and create the SQL user declare @castClientId nvarchar(max) = CONVERT(varchar(max), convert (varbinary(16), @clientId), 1); -- Construct command: CREATE USER [@MSIname] WITH SID = @castClientId, TYPE = E; declare nvarchar(max) = N'CREATE USER [' + @MSIname + '] WITH SID = ' + @castClientId + ', TYPE = E;' EXEC (@cmd) For more information on finding the Entra Client ID: Register a client application in Microsoft Entra ID for the Azure Health Data Services | Microsoft Learn Create SQL user for Microsoft Entra user - Use this T-SQL to create a SQL user for a Microsoft Entra account. Enter your username and object Id: -- Replace the two variables with the MS Entra user alias and object ID declare sysname = '<MS Entra user alias>'; -- (e.g., username@contoso.com) declare uniqueidentifier = '<User Object ID>'; -- convert the guid to the right type declare @castObjectId nvarchar(max) = CONVERT(varchar(max), convert (varbinary(16), ), 1); -- Construct command: CREATE USER [@username] WITH SID = @castObjectId, TYPE = E; declare nvarchar(max) = N'CREATE USER [' + + '] WITH SID = ' + @castObjectId + ', TYPE = E;' EXEC (@cmd) Create SQL user for Microsoft Entra group - This T-SQL snippet creates a SQL user for a Microsoft Entra group. Set groupName and object Id to your values. -- Replace the two variables with the MS Entra group display name and object ID declare @groupName sysname = '<MS Entra group display name>'; -- (e.g., ContosoUsersGroup) declare uniqueidentifier = '<Group Object ID>'; -- convert the guid to the right type and create the SQL user declare @castObjectId nvarchar(max) = CONVERT(varchar(max), convert (varbinary(16), ), 1); -- Construct command: CREATE USER [@groupName] WITH SID = @castObjectId, TYPE = X; declare nvarchar(max) = N'CREATE USER [' + @groupName + '] WITH SID = ' + @castObjectId + ', TYPE = X;' EXEC (@cmd) For more information on finding the Entra Object ID: Find tenant ID, domain name, user object ID - Partner Center | Microsoft Learn Validate SQL user creation - When a user is created correctly, the EntraID column in this query shows the user's original MS Entra ID. select CAST(sid as uniqueidentifier) AS EntraID, * from sys.database_principals Assign permissions to Entra based users – After creating Entra users, assign them SQL permissions to read or write by either using GRANT statements or adding them to roles like db_datareader. Refer to your documentation from Step 3, ensuring you include all necessary user permissions for new Entra SQL users and that security policies remain enforced. Step 5: Update Programmatic Connections Change your application connection strings to managed identities for SQL authentication and test each app for Microsoft Entra compatibility. Upgrade your drivers to these versions or newer. JDBC driver version 7.2.0 (Java) ODBC driver version 17.3 (C/C++, COBOL, Perl, PHP, Python) OLE DB driver version 18.3.0 (COM-based applications) Microsoft.Data.SqlClient 5.2.2+ (ADO.NET) Microsoft.EntityFramework.SqlServer 6.5.0 (Entity Framework) System.Data.SqlClient(SDS) doesn't support managed identity; switch to Microsoft.Data.SqlClient(MDS). If you need to port your applications from SDS to MDS the following cheat sheet will be helpful: https://github.com/dotnet/SqlClient/blob/main/porting-cheat-sheet.md. Microsoft.Data.SqlClient also takes a dependency on these packages & most notably the MSAL for .NET (Version 4.56.0+). Here is an example of Azure web application connecting to Azure SQL, using managed identity. Step 6: Validate No Local Auth Traffic Be sure to switch all your connections to managed identity before you redeploy your Azure SQL logical servers with Microsoft Entra-only authentication turned on. Repeat the use of SQL Audit, just as you did in Step 1, but now to confirm that every connection has moved away from SQL authentication. Once your server is up and running with only Entra authentication, any connections still based on SQL authentication will not work, which could disrupt services. Test your systems thoroughly to verify that everything operates correctly. Step 7: Enable Microsoft Entra‑only & disable local auth Once all your connections & applications are built to use managed identity, you can disable the SQL Authentication, by turning the Entra-only authentication via Azure portal, or using the APIs. Step 8: Enforce at scale (Azure Policy) Additionally, after successful migration and validation, it is recommended to deploy the built-in Azure Policy across your subscriptions to ensure that all SQL resources do not use local authentication. During resource creation, Azure SQL instances will be required to have Microsoft Entra-only authentication enabled. This requirement can be enforced through Azure policies. Best Practices for Entra-Enabled Azure SQL Applications Use exponential backoff with decorrelated jitter for retrying transient SQL errors, and set a max retry cap to avoid resource drain. Separate retry logic for connection setup and query execution. Cache and proactively refresh Entra tokens before expiration. Use Microsoft.Data.SqlClient v3.0+ with Azure.Identity for secure token management. Enable connection pooling and use consistent connection strings. Set appropriate timeouts to prevent hanging operations. Handle token/auth failures with targeted remediation, not blanket retries. Apply least-privilege identity principles; avoid global/shared tokens. Monitor retry counts, failures, and token refreshes via telemetry. Maintain auditing for compliance and security. Enforce TLS 1.2+ (Encrypt=True, TrustServerCertificate=False). Prefer pooled over static connections. Log SQL exception codes for precise error handling. Keep libraries and drivers up to date for latest features and resilience. References Use this resource to troubleshoot issues with Entra authentication (previously known as Azure AD Authentication): Troubleshooting problems related to Azure AD authentication with Azure SQL DB and DW | Microsoft Community Hub To add Entra users from an external tenant, invite them as guest users to the Azure SQL Database's Entra administrator tenant. For more information on adding Entra guest users: Quickstart: Add a guest user and send an invitation - Microsoft Entra External ID | Microsoft Learn Conclusion Migrating to Microsoft Entra password-less authentication for Azure SQL Database is a strategic investment in security, compliance, and operational efficiency. By following this guide and adopting best practices, organizations can reduce risk, improve resilience, and future-proof their data platform in alignment with Microsoft’s Secure Future Initiative.320Views0likes1CommentIntroducing the Azure SQL hub: A simpler, guided entry into Azure SQL
Choosing the right Azure SQL service can be challenging. To make this easier, we built the Azure SQL hub, a new home for everything related to Azure SQL in the Azure portal. Whether you’re new to Azure SQL or an experienced user, the hub helps you find the right service quickly and decide, without disrupting your existing workflows. For existing users: Your current workflows remain unchanged. The only visible update is a streamlined navigation pane where you access Azure SQL resources. For new users: Start from the Azure SQL hub home page. Get personalized recommendations by answering a few quick questions or chatting with Azure portal Copilot. Or compare services side by side and explore key resources, all without leaving the portal. This is one way to find it: Searching for "azure sql" in main search box or marketplace is also efficient way to get to Azure SQL hub Answer a few questions to get our recommendation and use Copilot to refine your requirements. Get a detailed side-by-side comparison without leaving the hub. Still deciding? Explore a selection of Azure SQL services for free. This option takes you straight to the resource creation page with a pre-applied free offer. Try the Azure SQL hub today in the Azure portal, and share your feedback in the comments!1.6KViews3likes0CommentsNew database migration experience for SQL Server enabled by Azure Arc – Public Preview
We’re excited to announce a new database migration experience for SQL Server enabled by Azure Arc - now in public preview. This experience is designed to simplify and accelerate SQL Server migration journey to Azure SQL Managed Instance offering a unified, end-to-end workflow directly within the Azure portal. 🚀 What Is It? This new migration experience integrates existing Azure Database Migration Service capabilities into Azure Arc by enabling the entire end to end migration journey with the following capabilities: Continuous database migration assessments with Azure SQL target recommendations and cost estimates. Seamless provisioning of Azure SQL Managed Instance as destination target, also with an option of free instance evaluation. Option to choose between two built-in migration methods: real-time database replication using Distributed Availability Groups (powered by the MI link feature), or log shipping via backup and restore (powered by the Log Replay Service feature). Unified interface that eliminates the need to use multiple tools or to jump between various places in Azure portal. Microsoft Copilot is integrated to assist you at select points during the migration journey. 💡 Why It Matters Traditionally, migrating SQL Server workloads to Azure required juggling between multiple tools, various places in portal, and some manual steps. This new experience changes that by: Providing a single pane of glass in the Azure portal for the entire migration journey. Reducing migration timelines from months to days. Offering real-time replication and minimal downtime migration Enabling validation of target environments using read-only replicas before cutover. Automatically capturing application client connection data to simplify mapping between applications and databases. With built-in support for both MI link and Log Replay Service (LRS), customers can choose the migration method that best fits their SQL Server version and business needs. Optional failback for SQL Server 2022 and above with external tooling. Providing intelligent step-by-step guidance with Microsoft Copilot at select points of the migration journey, helping users make informed decisions. 🧭 Start Your Migration Journey Today In case your SQL Server is Arc enabled, you could proceed right away to Azure portal. If you need to enable it, then onboard your SQL Server to Azure Arc today. In the portal, navigate to Arc enabled SQL Server resource, and on the left-hand side select Migration, then Database Migration (preview). This is where you will navigate to the new database migration experience. ▶️ Demo Video Included below is a short YouTube video demonstrating the database migration experience you can expect. From the main screen, you can navigate through each stage of the migration journey - starting with the database migration readiness assessment, followed by selecting or provisioning an Azure SQL Managed Instance as the target destination, choosing the appropriate migration method, monitoring progress, and performing the final cutover. By selecting the Azure SQL Benefits tab, you’ll gain insights into the advantages of Azure SQL - helping you make well-informed decisions about your migration. You can consult the integrated Microsoft Copilot at select points in the journey for guidance and support to ensure confident and informed decision-making. ➡️ Next steps To get started with the new database migration experience for SQL Server enabled by Azure Arc, visit Microsoft Learn: Learn more about new migration experience in Azure Arc on Microsoft Learn We love hearing from our customers! Any feedback or suggestions for the product group, use the following online form to let us know: Provide feedback on database migrations for SQL Server enabled by Azure Arc to the product group We hope that you will enjoy our solution, and we look forward to your feedback as you embark on your migration journey!1.7KViews2likes0CommentsAzure Data Studio Retirement
We’re announcing the upcoming retirement of Azure Data Studio (ADS) on February 6, 2025, as we focus on delivering a modern, streamlined SQL development experience. ADS will remain supported until February 28, 2026, giving developers ample time to transition. This decision aligns with our commitment to simplifying SQL development by consolidating efforts on Visual Studio Code (VS Code) with the MSSQL extension, a powerful and versatile tool designed for modern developers. Why Retire Azure Data Studio? Azure Data Studio has been an essential tool for SQL developers, but evolving developer needs and the rise of more versatile platforms like VS Code have made it the right time to transition. Here’s why: Focus on innovation VS Code, widely adopted across the developer community, provides a robust platform for delivering advanced features like cutting-edge schema management and improved query execution. Streamlined tools Consolidating SQL development on VS Code eliminates duplication, reduces engineering maintenance overhead, and accelerates feature delivery, ensuring developers have access to the latest innovations. Why Transition to Visual Studio Code? VS Code is the #1 developer tool, trusted by millions worldwide. It is a modern, versatile platform that meets the evolving demands of SQL and application developers. By transitioning, you gain access to cutting-edge tools, seamless workflows, and an expansive ecosystem designed to enhance productivity and innovation. We’re committed to meeting developers where they are, providing a modern SQL development experience within VS Code. Here’s how: Modern development environment VS Code is a lightweight, extensible, and community-supported code editor trusted by millions of developers. It provides: Regular updates. An active extension marketplace. A seamless cross-platform experience for Windows, macOS, and Linux. Comprehensive SQL features With the MSSQL extension in VS Code, you can: Execute queries faster with filtering, sorting, and export options for JSON, Excel, and CSV. Manage schemas visually with Table Designer, Object Explorer, and support for keys, indexes, and constraints. Connect to SQL Server, Azure SQL (all offerings), and SQL database in Fabric using an improved Connection Dialog. Streamline development with scripting, object modifications, and a unified SQL experience. Optimize performance with an enhanced Query Results Pane and execution plans. Integrate with DevOps and CI/CD pipelines using SQL Database Projects. Stay tuned for upcoming features—we’re continuously building new experiences based on feedback from the community. Make sure to follow the MSSQL repository on GitHub to stay updated and contribute to the project! Streamlined workflow VS Code supports cloud-native development, real-time collaboration, and thousands of extensions to enhance your workflows. Transitioning to Visual Studio Code: What You Need to Know We understand that transitioning tools can raise concerns, but moving from Azure Data Studio (ADS) to Visual Studio Code (VS Code) with the MSSQL extension is designed to be straightforward and hassle-free. Here’s why you can feel confident about this transition: No Loss of Functionality If you use ADS to connect to Azure SQL databases, SQL Server, or SQL database in Fabric, you’ll find that the MSSQL extension supports these scenarios seamlessly. Your database projects, queries, and scripts created in ADS are fully compatible with VS Code and can be opened without additional migration steps. Familiar features, enhanced experience VS Code provides advanced tools like improved query execution, modern schema management, and CI/CD integration. Additionally, alternative tools and extensions are available to replace ADS capabilities like SQL Server Agent and Schema Compare. Cross-Platform and extensible Like ADS, VS Code runs on Windows, macOS, and Linux, ensuring a consistent experience across operating systems. Its extensibility allows you to adapt it to your workflow with thousands of extensions. If you have further questions or need detailed guidance, visit the ADS Retirement page. The page includes step-by-step instructions, recommended alternatives, and additional resources. Continued Support With the Azure Data Studio retirement, we’re committed to supporting you during this transition: Documentation: Find detailed guides, tutorials, and FAQs on the ADS Retirement page. Community Support: Engage with the active Visual Studio Code community for tips and solutions. You can also explore forums like Stack Overflow. GitHub Issues: If you encounter any issues, submit a request or report bugs on the MSSQL extension’s GitHub repository. Microsoft Support: For critical issues, reach out to Microsoft Support directly through your account. Transitioning to VS Code opens the door to a more modern and versatile SQL development experience. We encourage you to explore the new possibilities and start your journey today! Conclusion Azure Data Studio has served the SQL community well,but the Azure Data Studio retirement marks an opportunity to embrace the modern capabilities of Visual Studio Code. Transitioning now ensures you’re equipped with cutting-edge tools and a future-ready platform to enhance your SQL development experience. For a detailed guide on ADS retirement , visit aka.ms/ads-retirement. To get started with the MSSQL extension, check out the official documentation. We’re excited to see what you build with VS Code!31KViews4likes23Comments