model catalog
45 TopicsRAFT: A new way to teach LLMs to be better at RAG
In this article, we will look at the limitations of RAG and domain-specific Fine-tuning to adapt LLMs to existing knowledge and how a team of UC Berkeley researchers, Tianjun Zhang and Shishir G. Patil, may have just discovered a better approach.107KViews7likes5CommentsAnnouncing Healthcare AI Models in Azure AI Model Catalog
Modern medicine encompasses various data modalities, including medical imaging, genomics, clinical records, and other structured and unstructured data sources. Understanding the intricacies of this multimodal environment, Azure AI onboards specialized healthcare AI models that go beyond traditional text-based applications, providing robust solutions tailored to healthcare's unique challenges.11KViews5likes1CommentDeepening our Partnership with Mistral AI on Azure AI Foundry
We’re excited to mark a new chapter in our collaboration with Mistral AI, a leading European AI innovator, with the launch of Mistral Document AI in Azure AI Foundry Models. This marks the first in a series of Mistral models coming to Azure as a serverless API, giving customers seamless access to Mistral’s cutting-edge capabilities, fully hosted, managed, and integrated into the Foundry ecosystem. This launch also deepens our support for sovereign cloud customers —especially in Europe. At Microsoft, we believe Sovereign AI is essential for enabling organizations and regulated industries to harness the full potential of AI while maintaining control over their security, data, and governance. As Satya Nadella has said, “We want every country, every organization, to build AI in a way that respects their sovereignty—of data, of applications, and of infrastructure.” By combining Mistral’s state-of-the-art models with Azure’s enterprise-grade reliability and scale we’re enabling customers to confidently deploy AI that meets strict regulatory and data sovereignty requirements. Mistral Document AI By the Mistral AI Team “Enterprises today are overwhelmed with documents—contracts, forms, research papers, invoices—holding critical information that’s often trapped in scanned images and PDFs. With nearly 90% of enterprise data stored in unstructured formats, traditional OCR simply can’t keep up. Mistral Document AI is built with a multimodal approach that combines vision and language understanding, it interprets documents with contextual intelligence and delivers structured outputs that reflect the original layout—tables remain tables, headings remain headings, and images are preserved alongside the text.” Key Capabilities Document Parsing: Mistral Document AI interprets complex layouts and extracts rich structures such as tables, charts, and LaTeX-formatted equations with markdown-style clarity. Multilingual & Multimodal: The model supports dozens of languages and understands both text and visual elements, making it well-suited for global, diverse datasets. Structured Output & Doc-as-Prompt: Mistral Document AI delivers results in structured formats like JSON, enabling easy downstream integration with databases or AI agents. This supports use cases like Retrieval-Augmented Generation (RAG), where document content becomes a prompt for subsequent queries. Use Cases Document Digitization: Process archives of scanned PDFs or handwritten forms into structured digital records. Knowledge Extraction: Transform research papers, technical manuals, or customer guides into machine-readable formats. RAG pipelines and Intelligent Agents: Integrate structured output into pipelines that feed AI systems for Q&A, summarization, and more. Mistral Document AI on Azure AI Foundry You can now access Mistral Document AI’s capabilities through Azure AI Foundry as a serverless Azure model, sold directly from Microsoft. One-Click Deployment (Serverless) – With a few clicks, you can deploy the model as a serverless REST API, without needing to provision any GPU machines or container hosts. This makes it easy to get started. Enterprise-Grade Security & Privacy – Because the model runs within your Azure environment, you get network isolation and data security out of the box. All inferencing happens in Azure’s cloud under your account, so your documents aren’t sent to a third-party server. Azure AI Foundry ensures your data stays private (no data leaves the Azure region you choose) and offers compliance with enterprise security standards. This is critical for sensitive use cases like banking or healthcare documents. Integrated Responsible AI Capabilities – With Mistral Doc AI running in Azure AI Foundry, you can apply Azure’s built-in Responsible AI tools—such as content filtering, safety system monitoring, and evaluation frameworks—to ensure your deployments align with your organization’s ethical and compliance standards. Observability & Monitoring – Foundry’s monitoring features give you full visibility into model usage, performance, and cost. You can track API calls, latency, and error rates, enabling proactive troubleshooting and optimization. Agent Services Enablement – You can connect Mistral Document AI to Azure AI Agent Service, enabling intelligent agents to process, reason over, and act on extracted document data—unlocking new automation and decision-making scenarios. Azure Ecosystem Integration – Once deployed, the Mistral Document AI endpoint can easily plug into your existing Azure workflows. And because it’s part of Foundry, you can manage it alongside other models in a unified way. This interoperability accelerates the development of intelligent applications. Getting Started: Deploying and Using Mistral Document AI on Azure Setting up Mistral Document AI on Azure AI Foundry is straightforward. Here’s a quick guide to get you up and running: Create an Azure AI Foundry workspace – Ensure you have an Azure subscription (pay-as-you-go, not a free trial) and create an AI Foundry hub and project in the Azure portal Deploy the Mistral Document AI model – In the Azure AI Foundry Model Catalog, search for “mistral-document-ai-2505”. Then click the Deploy button. You’ll be prompted to select a pricing plan – choose deploy. Call the Mistral Document AI API – Once deployed, using the model is as easy as calling a REST API. You can do this from any programming language or even a command-line tool like cURL. Integrate and iterate – With the OCR results in hand, you can integrate Mistral Document AI into your workflows. Conclusion Mistral Document AI joins Azure AI Foundry as one of the several tools available to help organizations unlock insights from unstructured documents. This launch reflects our continued commitment to bringing the latest, most capable models into Foundry, giving developers and enterprises more choice than ever. Whether you’re digitizing records, building knowledge bases, or enhancing your AI workflows, Azure AI Foundry offers powerful and accessible solutions. Pricing Model Name Pricing /1K pages mistral-document-ai-2505 Global $3 mistral-document-ai-2505 DataZone $3.3 Resources Explore Mistral Document AI MS Learn Github Code Samples6.6KViews3likes3CommentsThe Future of AI: Customizing AI agents with the Semantic Kernel agent framework
The blog post Customizing AI agents with the Semantic Kernel agent framework discusses the capabilities of the Semantic Kernel SDK, an open-source tool developed by Microsoft for creating AI agents and multi-agent systems. It highlights the benefits of using single-purpose agents within a multi-agent system to achieve more complex workflows with improved efficiency. The Semantic Kernel SDK offers features like telemetry, hooks, and filters to ensure secure and responsible AI solutions, making it a versatile tool for both simple and complex AI projects.1.9KViews3likes0CommentsAutomate Quota Discovery in Azure AI Foundry: A Tale of 3 APIs
Automate the discovery of Azure regions that meet your AI deployment needs using three essential APIs: Models API, Usages API, and Locations API. This process helps reduce decision fatigue and ensures compliance with enterprise-wide model deployment standards. Key learnings: Model Deployment Requirements: Understand the needs of a standard Retrieval-Augmented Generation (RAG) application, which involves deploying multiple models. Automation Benefits: Streamline your deployment process and ensure compliance with enterprise standards. Three Essential APIs: Models API: Query available models for a specific subscription within a chosen location. Usages API: Assess current usages and limits to infer available quotas. Locations API: Obtain a list of all available regions. A comprehensive Jupyter notebook with the implementation steps is available in the accompanying GitHub repository. This resource is invaluable for AI developers looking to streamline their deployment processes and ensure their applications meet all necessary requirements561Views3likes0Comments