machine learning
84 TopicsTiny But Mighty: Unleashing the Power of Small Language Models 🚀
While Large Language Models (LLMs) like GPT-4 dominate headlines with their extensive capabilities, they often come at the cost of high computational requirements and complexity. For developers and organizations looking to implement AI solutions on edge devices or with limited resources, Small Language Models (SLMs) are emerging as a practical alternative. SLMs are not just "smaller" versions of their larger counterparts—they're designed to be faster, more efficient, and adaptable for specific tasks. With fewer parameters and lower computational needs, SLMs open the door to deploying AI on mobile devices, IoT systems, and edge environments without compromising performance. What You Stand to Learn 🧠 Introduction to Microsoft's AI Ecosystem Discover Microsoft's end-to-end AI development tools, from Azure AI Services to ONNX Runtime, enabling efficient and secure deployment of AI models across cloud and edge environments. The Advantages of SLMs over LLMs SLMs are game-changers for edge AI applications, providing faster training and inference times, reduced energy costs, and scalability across diverse devices. Hands-On with Phi-3 and ONNX Runtime Experience live demonstrations of SLMs in action with tools like Phi-3 and ONNX Runtime, showcasing how to fine-tune and deploy models on mobile devices, IoT, and hybrid cloud environments. Responsible AI Practices Understand how to safeguard your AI applications with Microsoft's Responsible AI toolkit, ensuring ethical and trustworthy deployments. Watch the Full Session 👨💻 📅 Date: December 12, 2024 ⏰ Time: 4 PM GMT | 5 PM CEST | 8 AM PT | 11 AM ET | 7 PM EAT A session packed with live demos, practical examples, and Q&A opportunities. Register NOW | Events | Microsoft Reactor Agenda 🔍 Introduction (5 min) A brief overview of the session and its focus on SLMs and LLMs. Microsoft AI Tooling (5 min) Explore the latest tools like Azure AI Services, Azure Machine Learning, and Responsible AI Tooling. How to Choose the Right Model (10 min) Key considerations such as performance, customizability, and ethical implications. Comparing SLMs vs LLMs (10 min) The strengths, weaknesses, and best use cases for both Small and Large Language Models. Deploying Models at the Edge (10 min) Insights into optimizing AI for mobile, IoT, and edge devices. Q&A Addressing participant questions about AI development and deployment.142Views1like0Comments120 Days Study Plan to Become an AI-Focused Full-Stack Software Engineer
Hello there, my name is Oumaima, and I am an MLSA studentambassador from Morocco, studying at the University Of The People. Welcome to the first step in my exciting, unpredictable journey, one I’ve chosen to embark on with you! For the past three years, I’ve watched the AI industry evolve dramatically. Generative AI has shifted from a fascinating experiment to an integral part of our everyday lives, whether at school, work, or even in our personal routines. In fact, my ChatGPT app is now my go-to therapist, lawyer, and all-around advisor! As a software engineering student for over three years, I’ve seen the growth of generative AI up close. But this shift didn’t just inspire me; it made me realize that I don’t want to remain only a consumer of this technology. I want to contribute to it! Seeing AI’s ability to mimic human thought, draw connections from vast amounts of information, and deliver impressive results sparked something in me. It showed me that the best way to break into AI might just be to use AI itself as my guide. That’s when the idea came to ask ChatGPT O1-preview for a personalized study plan, crafted uniquely for me. It takes into account my available time, coding background, learning preferences, mental health, and energy. Here’s how my journey began with a simple prompt: I want to become an AI-focused full-stack software engineer and have 120 days to dedicate to this goal. Please create a detailed 120-day study plan tailored for me, dedicating 3-4 hours daily. The study plan should: - Cover all essential topics including programming foundations, data structures and algorithms (DS&A), mathematics for AI, machine learning fundamentals, deep learning, advanced AI topics, integrating AI into applications, web development basics for AI integration, advanced web development, full-stack project development, scripting, DevOps, and career development. - Include weekly breakdowns and daily tasks. - Provide recommended resources for each topic (e.g., online courses, tutorials, documentation). - Suggest hands-on projects or exercises to apply the concepts learned. - Incorporate tips for success, such as active engagement, seeking feedback, balancing depth and breadth, and maintaining well-being. - Emphasize developing all the skills that will make me an irreplaceable software developer, including scripting and DevOps skills. - Conclude with a summary and final advice. Please ensure the plan is structured, comprehensive, and practical for someone balancing work and study. Then it generated the following plan, that I tried to follow by using Microsoft Learn learning paths that offer in depth trainings on each topic I got: Days 1–25:Programming Foundations & Data Structures and Algorithms (DS&A) Microsoft Learn path suggestion: Python for beginners Days 26–50:Mathematics for AI & Machine Learning Fundamentals Microsoft Learn path suggestion:Introduction to machine learning Days 51–80:Deep Learning & Advanced AI Topics Microsoft Learn path suggestion:Train and evaluate deep learning models Days 81–100:Integrating AI into Applications Microsoft Learn path suggestion:Microsoft Azure AI Fundamentals: Generative AI Days 101–115:Advanced Web Development & Full-Stack Project Development Microsoft Learn path suggestion:Build an AI web app by using Python and Flask Days 116–120:Portfolio Projects and Industry Trends. Not going to lie, the roadmap turned out to be even more exciting than I’d expected! When I asked for it, I specified that it should guide me through developing problem-solving skills directly tied to full-stack development. I wanted a path that not only sharpens my abilities but also allows me to build interesting, hands-on applications where I canseethe results of what I’m learning. And now, my friends, the journey has officially begun! I’ll be following the roadmap closely, documenting my weekly progress to learn AI, noting the challenges, and celebrating the accomplishments. The goal is to see if artificial intelligence can really help create a customized study plan that aligns with my personal goals, circumstances, and unique learning rhythm. So, stay tuned — this is only the beginning! See you in my first step with DSA!688Views0likes0CommentsResponsible Synthetic Data Creation for Fine-Tuning with RAFT Distillation
This blog will explore the process of crafting responsible synthetic data, evaluating it, and using it for fine-tuning models. We’ll also dive intoAzure AI’sRAFT distillation recipe, a novel approach to generating synthetic datasets using Meta’s Llama 3.1 model and UC Berkeley’s Gorilla project.1.4KViews2likes0CommentsEvaluating Language Models with Azure AI Studio: A Step-by-Step Guide
Evaluating language models is a crucial step in achieving this goal. By assessing the performance of language models, we can identify areas of improvement, optimize their performance, and ensure that they are reliable and accurate. However, evaluating language models can be a challenging task, requiring significant expertise and resources.6KViews1like0CommentsAzure AI Model Inference API
The Azure AI Model Inference API provides a unified interface for developers to interact with various foundational models deployed in Azure AI Studio. This API allows developers to generate predictions from multiple models without changing their underlying code. By providing a consistent set of capabilities, the API simplifies the process of integrating and switching between different models, enabling seamless model selection based on task requirements.3.7KViews0likes1Comment#14DaysOfData Science: A Developer Tools & AI Workshop
Welcome to the final post in our 3-part series celebrating #DataScienceDay with our #14DaysOfDataScience content to help you make the Leap into Data Science. Our first post covered Week 1 of your journey with a look at Data Fundamentals. And the second post celebrated Data Science Day with a full schedule of talks from community and Microsoft experts - including mytalk onsimplifying data analysis with developer tools and AI.Which sets us up perfectly for the second leg of that journey with a focus onDeveloper Tools & AI. Let's dive in and learn how you can go from understanding the data science lifecycle, to streamlining your development journey with agoal-oriented learningfocus.1.8KViews0likes0CommentsTraining a Time-Series Forecasting Model Using Automated Machine Learning
Imagine having the power to predict the unpredictable, to foresee the future of your business, your health, or your environment. What if you could unlock the secrets of time itself? Welcome to the world of time-series forecasting, where machine learning meets magic. Join us to discover how Automated Machine Learning can revolutionize your understanding of the future and uncover the hidden patterns that shape our world. Read on to unlock the secrets of time, and unleash the power of prediction.6.7KViews0likes0CommentsTrain a simple Recommendation Engine using the new Azure AI Studio
The AI Studio Odyssey: Embark on a journey to the heart of personalization with our latest guide, “Train a Simple Recommendation Engine using the new Azure AI Studio.” Unlock the secrets of the all-new Azure AI Studio intuitive tools to craft a recommendation system that feels like magic, yet is grounded in data and user preferences.Ready to enchant your audience? Grab some popcorn and read on!5.6KViews0likes0CommentsTrain a Simple Recommendation Engine using Azure Machine Learning Designer
“Unlock the Magic: Train Your AI Wizardry!”Dive into our guide on creating a recommendation engine with Azure Machine Learning Designer. Discover how to weave data spells, conjure personalized suggestions, and make your users feel like they’ve stumbled upon a digital fortune teller. Ready to enchant your audience? Read on!4.1KViews0likes0Comments