llm
2 TopicsAI Sparks: Unleashing Agents with the AI Toolkit
The final episode of our "AI Sparks" series delved deep into the exciting world of AI Agents and their practical implementation. We also covered a fair part of MCP with Microsoft AI Toolkit extension for VS Code. We kicked off by charting the evolutionary path of intelligent conversational systems. Starting with the rudimentary rule-based Basic Chatbots, we then explored the advancements brought by Basic Generative AI Chatbots, which offered contextually aware interactions. Then we explored the Retrieval-Augmented Generation (RAG), highlighting its ability to ground generative models in specific knowledge bases, significantly enhancing accuracy and relevance. The limitations were also discussed for the above mentioned techniques. The session was then centralized to the theme – Agents and Agentic Frameworks. We uncovered the fundamental shift from basic chatbots to autonomous agents capable of planning, decision-making, and executing tasks. We moved forward with detailed discussion on the distinction between Single Agentic systems, where one core agent orchestrates the process, and Multi-Agent Architectures, where multiple specialized agents collaborate to achieve complex goals. A key part of building robust and reliable AI Agents, as we discussed, revolves around carefully considering four critical factors. Firstly, Knowledge-Providing agents with the right context is paramount for them to operate effectively and make informed decisions. Secondly, equipping agents with the necessary Actions by granting them access to the appropriate tools allows them to execute tasks and achieve desired outcomes. Thirdly, Security is non-negotiable; ensuring agents have access only to the data and services they genuinely need is crucial for maintaining privacy and preventing unintended actions. Finally, establishing robust Evaluations mechanisms is essential to verify that agents are completing tasks correctly and meeting the required standards. These four pillars – Knowledge, Actions, Security, and Evaluation – form the bedrock of any successful agentic implementation. To illustrate the transformative power of AI Agents, we explored several interesting use cases and applications. These ranged from intelligent personal assistants capable of managing schedules and automating workflows to sophisticated problem-solving systems in domains like customer service. A significant portion of the session was dedicated to practical implementation through demonstrations. We highlighted key frameworks that are empowering developers to build agentic systems.: Semantic Kernel: We highlighted its modularity and rich set of features for integrating various AI services and tools. Autogen Studio: The focus here was on its capabilities for facilitating the creation and management of multi-agent conversations and workflows. Agent Service: We discussed its role in providing a more streamlined and managed environment for deploying and scaling AI agents. The major point of attraction was that these were demonstrated using the local LLMs which were hosted using AI Toolkit. This showcased the ease with which developers can utilize VS Code AI toolkit to build and experiment with agentic workflows directly within their familiar development environment. Finally, we demystified the concept of Model Context Protocol (MCP) and demonstrated how seamlessly it can be implemented using the Agent Builder within the VS Code AI Toolkit. We demonstrated this with a basic Website development using MCP. This practical demonstration underscored the toolkit's power in simplifying the development of complex solutions that can maintain context and engage in more natural, multi-step interactions. The "AI Sparks" series concluded with a discussion, where attendees had a clearer understanding of the evolution, potential and practicalities of AI Agents. The session underscored that we are on the cusp of a new era of intelligent systems that are not just reactive but actively work alongside us to achieve goals. The tools and frameworks are maturing, and the possibilities for agentic applications are sparking innovation across various industries. It was an exciting journey, and engagement during the final session on AI Sparks around Agents truly highlighted the transformative potential of this field. "AI Sparks" Series Roadmap: The "AI Sparks" series delved deeper into specific topics using AI Toolkit for Visual Studio Code, including: Introduction to AI toolkit and feature walkthrough: Introduction to the AI Toolkit extension for VS Code a powerful way to explore and integrate the latest AI models from OpenAI, Meta, Deepseek, Mistral, and more. Introduction to SLMs and local model with use cases: Explore Small Language Models (SLMs) and how they compare to larger models. Building RAG Applications: Create powerful applications that combine the strengths of LLMs with external knowledge sources. Multimodal Support and Image Analysis: Working with vision models and building multimodal applications. Evaluation and Model Selection: Evaluate model performance and choose the best model for your needs. Agents and Agentic Frameworks: Exploring the cutting edge of AI agents and how they can be used to build more complex and autonomous systems. The full playlist of the series with all the episodes of "AI Sparks" is available at AI Sparks Playlist. Continue the discussion and questions in Microsoft AI Discord Community where we have a dedicated AI-sparks channel. All the code samples can be found on AI_Toolkit_Samples .We look forward to continuing these insightful discussions in future series!246Views2likes0CommentsHow to use any Python AI agent framework with free GitHub Models
I ❤️ when companies offer free tiers for developer services, since it gives everyone a way to learn new technologies without breaking the bank. Free tiers are especially important for students and people between jobs, when the desire to learn is high but the available cash is low. That's why I'm such a fan of GitHub Models: free, high-quality generative AI models available to anyone with a GitHub account. The available models include the latest OpenAI LLMs (like o3-mini), LLMs from the research community (like Phi and Llama), LLMs from other popular providers (like Mistral and Jamba), multimodal models (like gpt-4o and llama-vision-instruct) and even a few embedding models (from OpenAI and Cohere). With access to such a range of models, you can prototype complex multi-model workflows to improve your productivity or heck, just make something fun for yourself. 🤗 To use GitHub Models, you can start off in no-code mode: open the playground for a model, send a few requests, tweak the parameters, and check out the answers. When you're ready to write code, select "Use this model". A screen will pop up where you can select a programming language (Python/JavaScript/C#/Java/REST) and select an SDK (which varies depending on model). Then you'll get instructions and code for that model, language, and SDK. But here's what's really cool about GitHub Models: you can use them with all the popular Python AI frameworks, even if the framework has no specific integration with GitHub Models. How is that possible? The vast majority of Python AI frameworks support the OpenAI Chat Completions API, since that API became a defacto standard supported by many LLM API providers besides OpenAI itself. GitHub Models also provide OpenAI-compatible endpoints for chat completion models. Therefore, any Python AI framework that supports OpenAI-like models can be used with GitHub Models as well. 🎉 To prove it, I've made a new repository with examples from eight different Python AI agent packages, all working with GitHub Models: python-ai-agent-frameworks-demos. There are examples for AutoGen, LangGraph, Llamaindex, OpenAI Agents SDK, OpenAI standard SDK, PydanticAI, Semantic Kernel, and SmolAgents. You can open that repository in GitHub Codespaces, install the packages, and get the examples running immediately. Now let's walk through the API connection code for GitHub Models for each framework. Even if I missed your favorite framework, I hope my tips here will help you connect any framework to GitHub Models. OpenAI I'll start with openai , the package that started it all! import openai client = openai.OpenAI( api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com") The code above demonstrates the two key parameters we'll need to configure for all frameworks: api_key : When using OpenAI.com, you pass your OpenAI API key here. When using GitHub Models, you pass in a Personal Access Token (PAT). If you open the repository (or any repository) in GitHub Codespaces, a PAT is already stored in the GITHUB_TOKEN environment variable. However, if you're working locally with GitHub Models, you'll need to generate a PAT yourself and store it. PATs expire after a while, so you need to generate new PATs every so often. base_url : This parameter tells the OpenAI client to send all requests to "https://models.inference.ai.azure.com" instead of the OpenAI.com API servers. That's the domain that hosts the OpenAI-compatible endpoint for GitHub Models, so you'll always pass that domain as the base URL. If we're working with the new openai-agents SDK, we use very similar code, but we must use the AsyncOpenAI client from openai instead. Lately, Python AI packages are defaulting to async, because it's so much better for performance. import agents import openai client = openai.AsyncOpenAI( base_url="https://models.inference.ai.azure.com", api_key=os.environ["GITHUB_TOKEN"]) model = agents.OpenAIChatCompletionsModel( model="gpt-4o", openai_client=client) spanish_agent = agents.Agent( name="Spanish agent", instructions="You only speak Spanish.", model=model) PydanticAI Now let's look at all of the packages that make it really easy for us, by allowing us to directly bring in an instance of either OpenAI or AsyncOpenAI . For PydanticAI, we configure an AsyncOpenAI client, then construct an OpenAIModel object from PydanticAI, and pass that model to the agent: import openai import pydantic_ai import pydantic_ai.models.openai client = openai.AsyncOpenAI( api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com") model = pydantic_ai.models.openai.OpenAIModel( "gpt-4o", provider=OpenAIProvider(openai_client=client)) spanish_agent = pydantic_ai.Agent( model, system_prompt="You only speak Spanish.") Semantic Kernel For Semantic Kernel, the code is very similar. We configure an AsyncOpenAI client, then construct an OpenAIChatCompletion object from Semantic Kernel, and add that object to the kernel. import openai import semantic_kernel.connectors.ai.open_ai import semantic_kernel.agents chat_client = openai.AsyncOpenAI( api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com") chat = semantic_kernel.connectors.ai.open_ai.OpenAIChatCompletion( ai_model_id="gpt-4o", async_client=chat_client) kernel.add_service(chat) spanish_agent = semantic_kernel.agents.ChatCompletionAgent( kernel=kernel, name="Spanish agent" instructions="You only speak Spanish") AutoGen Next, we'll check out a few frameworks that have their own wrapper of the OpenAI clients, so we won't be using any classes from openai directly. For AutoGen, we configure both the OpenAI parameters and the model name in the same object, then pass that to each agent: import autogen_ext.models.openai import autogen_agentchat.agents client = autogen_ext.models.openai.OpenAIChatCompletionClient( model="gpt-4o", api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com") spanish_agent = autogen_agentchat.agents.AssistantAgent( "spanish_agent", model_client=client, system_message="You only speak Spanish") LangGraph For LangGraph, we configure a very similar object, which even has the same parameter names: import langchain_openai import langgraph.graph model = langchain_openai.ChatOpenAI( model="gpt-4o", api_key=os.environ["GITHUB_TOKEN"], base_url="https://models.inference.ai.azure.com", ) def call_model(state): messages = state["messages"] response = model.invoke(messages) return {"messages": [response]} workflow = langgraph.graph.StateGraph(MessagesState) workflow.add_node("agent", call_model) SmolAgents Once again, for SmolAgents, we configure a similar object, though with slightly different parameter names: import smolagents model = smolagents.OpenAIServerModel( model_id="gpt-4o", api_key=os.environ["GITHUB_TOKEN"], api_base="https://models.inference.ai.azure.com") agent = smolagents.CodeAgent(model=model) Llamaindex I saved Llamaindex for last, as it is the most different. The llama-index package has a different constructor for OpenAI.com versus OpenAI-like servers, so I opted to use that OpenAILike constructor instead. However, I also needed an embeddings model for my example, and the package doesn't have an OpenAIEmbeddingsLike constructor, so I used the standard OpenAIEmbedding constructor. import llama_index.embeddings.openai import llama_index.llms.openai_like import llama_index.core.agent.workflow Settings.llm = llama_index.llms.openai_like.OpenAILike( model="gpt-4o", api_key=os.environ["GITHUB_TOKEN"], api_base="https://models.inference.ai.azure.com", is_chat_model=True) Settings.embed_model = llama_index.embeddings.openai.OpenAIEmbedding( model="text-embedding-3-small", api_key=os.environ["GITHUB_TOKEN"], api_base="https://models.inference.ai.azure.com") agent = llama_index.core.agent.workflow.ReActAgent( tools=query_engine_tools, llm=Settings.llm) Choose your models wisely! In all of the examples above, I specified the gpt-4o model. The gpt-4o model is a great choice for agents because it supports function calling, and many agent frameworks only work (or work best) with models that natively support function calling. Fortunately, GitHub Models includes multiple models that support function calling, at least in my basic experiments: gpt-4o gpt-4o-mini o3-mini AI21-Jamba-1.5-Large AI21-Jamba-1.5-Mini Codestral-2501 Cohere-command-r Ministral-3B Mistral-Large-2411 Mistral-Nemo Mistral-small You might find that some models work better than others, especially if you're using agents with multiple tools. With GitHub Models, it's very easy to experiment and see for yourself, by simply changing the model name and re-running the code. Join the AI Agents Hackathon We are currently running a free virtual hackathon from April 8th - 30th, to challenge developers to create agentic applications using Microsoft technologies. You could build an agent entirely using GitHub Models and submit it to the hackathon for a chance to win amazing prizes! You can also join our 30+ streams about building AI agents, including a stream all about prototyping with GitHub Models. Learn more and register at https://aka.ms/agentshack1.4KViews3likes0Comments