llm
40 TopicsBuilding Interactive Agent UIs with AG-UI and Microsoft Agent Framework
Introduction Picture this: You've built an AI agent that analyzes financial data. A user uploads a quarterly report and asks: "What are the top three expense categories?" Behind the scenes, your agent parses the spreadsheet, aggregates thousands of rows, and generates visualizations. All in 20 seconds. But the user? They see a loading spinner. Nothing else. No "reading file" message, no "analyzing data" indicator, no hint that progress is being made. They start wondering: Is it frozen? Should I refresh? The problem isn't the agent's capabilities - it's the communication gap between the agent running on the backend and the user interface. When agents perform multi-step reasoning, call external APIs, or execute complex tool chains, users deserve to see what's happening. They need streaming updates, intermediate results, and transparent progress indicators. Yet most agent frameworks force developers to choose between simple request/response patterns or building custom solutions to stream updates to their UIs. This is where AG-UI comes in. AG-UI is a fairly new event-based protocol that standardizes how agents communicate with user interfaces. Instead of every framework and development team inventing their own streaming solution, AG-UI provides a shared vocabulary of structured events that work consistently across different agent implementations. When an agent starts processing, calls a tool, generates text, or encounters an error, the UI receives explicit, typed events in real time. The beauty of AG-UI is its framework-agnostic design. While this blog post demonstrates integration with Microsoft Agent Framework (MAF), the same AG-UI protocol works with LangGraph, CrewAI, or any other compliant framework. Write your UI code once, and it works with any AG-UI-compliant backend. (Note: MAF supports both Python and .NET - this blog post focuses on the Python implementation.) TL;DR The Problem: Users don't get real-time updates while AI agents work behind the scenes - no progress indicators, no transparency into tool calls, and no insight into what's happening. The Solution: AG-UI is an open, event-based protocol that standardizes real-time communication between AI agents and user interfaces. Instead of each development team and framework inventing custom streaming solutions, AG-UI provides a shared vocabulary of structured events (like TOOL_CALL_START, TEXT_MESSAGE_CONTENT, RUN_FINISHED) that work across any compliant framework. Key Benefits: Framework-agnostic - Write UI code once, works with LangGraph, Microsoft Agent Framework, CrewAI, and more Real-time observability - See exactly what your agent is doing as it happens Server-Sent Events - Built on standard HTTP for universal compatibility Protocol-managed state - No manual conversation history tracking In This Post: You'll learn why AG-UI exists, how it works, and build a complete working application using Microsoft Agent Framework with Python - from server setup to client implementation. What You'll Learn This blog post walks through: Why AG-UI exists - how agent-UI communication has evolved and what problems current approaches couldn't solve How the protocol works - the key design choices that make AG-UI simple, reliable, and framework-agnostic Protocol architecture - the generic components and how AG-UI integrates with agent frameworks Building an AG-UI application - a complete working example using Microsoft Agent Framework with server, client, and step-by-step setup Understanding events - what happens under the hood when your agent runs and how to observe it Thinking in events - how building with AG-UI differs from traditional APIs, and what benefits this brings Making the right choice - when AG-UI is the right fit for your project and when alternatives might be better Estimated reading time: 15 minutes Who this is for: Developers building AI agents who want to provide real-time feedback to users, and teams evaluating standardized approaches to agent-UI communication To appreciate why AG-UI matters, we need to understand the journey that led to its creation. Let's trace how agent-UI communication has evolved through three distinct phases. The Evolution of Agent-UI Communication AI agents have become more capable over time. As they evolved, the way they communicated with user interfaces had to evolve as well. Here's how this evolution unfolded. Phase 1: Simple Request/Response In the early days of AI agent development, the interaction model was straightforward: send a question, wait for an answer, display the result. This synchronous approach mirrored traditional API calls and worked fine for simple scenarios. # Simple, but limiting response = agent.run("What's the weather in Paris?") display(response) # User waits... and waits... Works for: Quick queries that complete in seconds, simple Q&A interactions where immediate feedback and interactivity aren't critical. Breaks down: When agents need to call multiple tools, perform multi-step reasoning, or process complex queries that take 30+ seconds. Users see nothing but a loading spinner, with no insight into what's happening or whether the agent is making progress. This creates a poor user experience and makes it impossible to show intermediate results or allow user intervention. Recognizing these limitations, development teams began experimenting with more sophisticated approaches. Phase 2: Custom Streaming Solutions As agents became more sophisticated, teams recognized the need for incremental feedback and interactivity. Rather than waiting for the complete response, they implemented custom streaming solutions to show partial results as they became available. # Every team invents their own format for chunk in agent.stream("What's the weather?"): display(chunk) # But what about tool calls? Errors? Progress? This was a step forward for building interactive agent UIs, but each team solved the problem differently. Also, different frameworks had incompatible approaches - some streamed only text tokens, others sent structured JSON, and most provided no visibility into critical events like tool calls or errors. The problem: No standardization across frameworks - client code that works with LangGraph won't work with Crew AI, requiring separate implementations for each agent backend Each implementation handles tool calls differently - some send nothing during tool execution, others send unstructured messages Complex state management - clients must track conversation history, manage reconnections, and handle edge cases manually The industry needed a better solution - a common protocol that could work across all frameworks while maintaining the benefits of streaming. Phase 3: Standardized Protocol (AG-UI) AG-UI emerged as a response to the fragmentation problem. Instead of each framework and development team inventing their own streaming solution, AG-UI provides a shared vocabulary of events that work consistently across different agent implementations. # Standardized events everyone understands async for event in agent.run_stream("What's the weather?"): if event.type == "TEXT_MESSAGE_CONTENT": display_text(event.delta) elif event.type == "TOOL_CALL_START": show_tool_indicator(event.tool_name) elif event.type == "TOOL_CALL_RESULT": show_tool_result(event.result) The key difference is structured observability. Rather than guessing what the agent is doing from unstructured text, clients receive explicit events for every stage of execution: when the agent starts, when it generates text, when it calls a tool, when that tool completes, and when the entire run finishes. What's different: A standardized vocabulary of event types, complete observability into agent execution, and framework-agnostic clients that work with any AG-UI-compliant backend. You write your UI code once, and it works whether the backend uses Microsoft Agent Framework, LangGraph, or any other framework that speaks AG-UI. Now that we've seen why AG-UI emerged and what problems it solves, let's examine the specific design decisions that make the protocol work. These choices weren't arbitrary - each one addresses concrete challenges in building reliable, observable agent-UI communication. The Design Decisions Behind AG-UI Why Server-Sent Events (SSE)? Aspect WebSockets SSE (AG-UI) Complexity Bidirectional Unidirectional (simpler) Firewall/Proxy Sometimes blocked Standard HTTP Reconnection Manual implementation Built-in browser support Use case Real-time games, chat Agent responses (one-way) For agent interactions, you typically only need server→client communication, making SSE a simpler choice. SSE solves the transport problem - how events travel from server to client. But once connected, how does the protocol handle conversation state across multiple interactions? Why Protocol-Managed Threads? # Without protocol threads (client manages): conversation_history = [] conversation_history.append({"role": "user", "content": message}) response = agent.complete(conversation_history) conversation_history.append({"role": "assistant", "content": response}) # Complex, error-prone, doesn't work with multiple clients # With AG-UI (protocol manages): thread = agent.get_new_thread() # Server creates and manages thread agent.run_stream(message, thread=thread) # Server maintains context # Simple, reliable, shareable across clients With transport and state management handled, the final piece is the actual messages flowing through the connection. What information should the protocol communicate, and how should it be structured? Why Standardized Event Types? Instead of parsing unstructured text, clients get typed events: RUN_STARTED - Agent begins (start loading UI) TEXT_MESSAGE_CONTENT - Text chunk (stream to user) TOOL_CALL_START - Tool invoked (show "searching...", "calculating...") TOOL_CALL_RESULT - Tool finished (show result, update UI) RUN_FINISHED - Complete (hide loading) This lets UIs react intelligently without custom parsing logic. Now that we understand the protocol's design choices, let's see how these pieces fit together in a complete system. Architecture Overview Here's how the components interact: The communication between these layers relies on a well-defined set of event types. Here are the core events that flow through the SSE connection: Core Event Types AG-UI provides a standardized set of event types to describe what's happening during an agent's execution: RUN_STARTED - agent begins execution TEXT_MESSAGE_START, TEXT_MESSAGE_CONTENT, TEXT_MESSAGE_END - streaming segments of text TOOL_CALL_START, TOOL_CALL_ARGS, TOOL_CALL_END, TOOL_CALL_RESULT - tool execution events RUN_FINISHED - agent has finished execution RUN_ERROR - error information This model lets the UI update as the agent runs, rather than waiting for the final response. The generic architecture above applies to any AG-UI implementation. Now let's see how this translates to Microsoft Agent Framework. AG-UI with Microsoft Agent Framework While AG-UI is framework-agnostic, this blog post demonstrates integration with Microsoft Agent Framework (MAF) using Python. MAF is available in both Python and .NET, giving you flexibility to build AG-UI applications in your preferred language. Understanding how MAF implements the protocol will help you build your own applications or work with other compliant frameworks. Integration Architecture The Microsoft Agent Framework integration involves several specialized layers that handle protocol translation and execution orchestration: Understanding each layer: FastAPI Endpoint - Handles HTTP requests and establishes SSE connections for streaming AgentFrameworkAgent - Protocol wrapper that translates between AG-UI events and Agent Framework operations Orchestrators - Manage execution flow, coordinate tool calling sequences, and handle state transitions ChatAgent - Your agent implementation with instructions, tools, and business logic ChatClient - Interface to the underlying language model (Azure OpenAI, OpenAI, or other providers) The good news? When you call add_agent_framework_fastapi_endpoint, all the middleware layers are configured automatically. You simply provide your ChatAgent, and the integration handles protocol translation, event streaming, and state management behind the scenes. Now that we understand both the protocol architecture and the Microsoft Agent Framework integration, let's build a working application. Hands-On: Building Your First AG-UI Application This section demonstrates how to build an AG-UI server and client using Microsoft Agent Framework and FastAPI. Prerequisites Before building your first AG-UI application, ensure you have: Python 3.10 or later installed Basic understanding of async/await patterns in Python Azure CLI installed and authenticated (az login) Azure OpenAI service endpoint and deployment configured (setup guide) Cognitive Services OpenAI Contributor role for your Azure OpenAI resource You'll also need to install the AG-UI integration package: pip install agent-framework-ag-ui --pre This automatically installs agent-framework-core, fastapi, and uvicorn as dependencies. With your environment configured, let's create the server that will host your agent and expose it via the AG-UI protocol. Building the Server Let's create a FastAPI server that hosts an AI agent and exposes it via AG-UI: # server.py import os from typing import Annotated from dotenv import load_dotenv from fastapi import FastAPI from pydantic import Field from agent_framework import ChatAgent, ai_function from agent_framework.azure import AzureOpenAIChatClient from agent_framework_ag_ui import add_agent_framework_fastapi_endpoint from azure.identity import DefaultAzureCredential # Load environment variables from .env file load_dotenv() # Validate environment configuration openai_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") model_deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME") if not openai_endpoint: raise RuntimeError("Missing required environment variable: AZURE_OPENAI_ENDPOINT") if not model_deployment: raise RuntimeError("Missing required environment variable: AZURE_OPENAI_DEPLOYMENT_NAME") # Define tools the agent can use @ai_function def get_order_status( order_id: Annotated[str, Field(description="The order ID to look up (e.g., ORD-001)")] ) -> dict: """Look up the status of a customer order. Returns order status, tracking number, and estimated delivery date. """ # Simulated order lookup orders = { "ORD-001": {"status": "shipped", "tracking": "1Z999AA1", "eta": "Jan 25, 2026"}, "ORD-002": {"status": "processing", "tracking": None, "eta": "Jan 23, 2026"}, "ORD-003": {"status": "delivered", "tracking": "1Z999AA3", "eta": "Delivered Jan 20"}, } return orders.get(order_id, {"status": "not_found", "message": "Order not found"}) # Initialize Azure OpenAI client chat_client = AzureOpenAIChatClient( credential=DefaultAzureCredential(), endpoint=openai_endpoint, deployment_name=model_deployment, ) # Configure the agent with custom instructions and tools agent = ChatAgent( name="CustomerSupportAgent", instructions="""You are a helpful customer support assistant. You have access to a get_order_status tool that can look up order information. IMPORTANT: When a user mentions an order ID (like ORD-001, ORD-002, etc.), you MUST call the get_order_status tool to retrieve the actual order details. Do NOT make up or guess order information. After calling get_order_status, provide the actual results to the user in a friendly format.""", chat_client=chat_client, tools=[get_order_status], ) # Initialize FastAPI application app = FastAPI( title="AG-UI Customer Support Server", description="Interactive AI agent server using AG-UI protocol with tool calling" ) # Mount the AG-UI endpoint add_agent_framework_fastapi_endpoint(app, agent, path="/chat") def main(): """Entry point for the AG-UI server.""" import uvicorn print("Starting AG-UI server on http://localhost:8000") uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info") # Run the application if __name__ == "__main__": main() What's happening here: We define a tool: get_order_status with the AI_function decorator Use Annotated and Field for parameter descriptions to help the agent understand when and how to use the tool We create an Azure OpenAI chat client with credential authentication The ChatAgent is configured with domain-specific instructions and the tools parameter add_agent_framework_fastapi_endpoint automatically handles SSE streaming and tool execution The server exposes the agent at the /chat endpoint Note: This example uses Azure OpenAI, but AG-UI works with any chat model. You can also integrate with Azure AI Foundry's model catalog or use other LLM providers. Tool calling is supported by most modern LLMs including GPT-4, GPT-4o, and Claude models. To run this server: # Set your Azure OpenAI credentials export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com/" export AZURE_OPENAI_DEPLOYMENT_NAME="gpt-4o" # Start the server python server.py With your server running and exposing the AG-UI endpoint, the next step is building a client that can connect and consume the event stream. Streaming Results to Clients With the server running, clients can connect and stream events as the agent processes requests. Here's a Python client that demonstrates the streaming capabilities: # client.py import asyncio import os from dotenv import load_dotenv from agent_framework import ChatAgent, FunctionCallContent, FunctionResultContent from agent_framework_ag_ui import AGUIChatClient # Load environment variables from .env file load_dotenv() async def interactive_chat(): """Interactive chat session with streaming responses.""" # Connect to the AG-UI server base_url = os.getenv("AGUI_SERVER_URL", "http://localhost:8000/chat") print(f"Connecting to: {base_url}\n") # Initialize the AG-UI client client = AGUIChatClient(endpoint=base_url) # Create a local agent representation agent = ChatAgent(chat_client=client) # Start a new conversation thread conversation_thread = agent.get_new_thread() print("Chat started! Type 'exit' or 'quit' to end the session.\n") try: while True: # Collect user input user_message = input("You: ") # Handle empty input if not user_message.strip(): print("Please enter a message.\n") continue # Check for exit commands if user_message.lower() in ["exit", "quit", "bye"]: print("\nGoodbye!") break # Stream the agent's response print("Agent: ", end="", flush=True) # Track tool calls to avoid duplicate prints seen_tools = set() async for update in agent.run_stream(user_message, thread=conversation_thread): # Display text content if update.text: print(update.text, end="", flush=True) # Display tool calls and results for content in update.contents: if isinstance(content, FunctionCallContent): # Only print each tool call once if content.call_id not in seen_tools: seen_tools.add(content.call_id) print(f"\n[Calling tool: {content.name}]", flush=True) elif isinstance(content, FunctionResultContent): # Only print each result once result_id = f"result_{content.call_id}" if result_id not in seen_tools: seen_tools.add(result_id) result_text = content.result if isinstance(content.result, str) else str(content.result) print(f"[Tool result: {result_text}]", flush=True) print("\n") # New line after response completes except KeyboardInterrupt: print("\n\nChat interrupted by user.") except ConnectionError as e: print(f"\nConnection error: {e}") print("Make sure the server is running.") except Exception as e: print(f"\nUnexpected error: {e}") def main(): """Entry point for the AG-UI client.""" asyncio.run(interactive_chat()) if __name__ == "__main__": main() Key features: The client connects to the AG-UI endpoint using AGUIChatClient with the endpoint parameter run_stream() yields updates containing text and content as they arrive Tool calls are detected using FunctionCallContent and displayed with [Calling tool: ...] Tool results are detected using FunctionResultContent and displayed with [Tool result: ...] Deduplication logic (seen_tools set) prevents printing the same tool call multiple times as it streams Thread management maintains conversation context across messages Graceful error handling for connection issues To use the client: # Optional: specify custom server URL export AGUI_SERVER_URL="http://localhost:8000/chat" # Start the interactive chat python client.py Example Session: Connecting to: http://localhost:8000/chat Chat started! Type 'exit' or 'quit' to end the session. You: What's the status of order ORD-001? Agent: [Calling tool: get_order_status] [Tool result: {"status": "shipped", "tracking": "1Z999AA1", "eta": "Jan 25, 2026"}] Your order ORD-001 has been shipped! - Tracking Number: 1Z999AA1 - Estimated Delivery Date: January 25, 2026 You can use the tracking number to monitor the delivery progress. You: Can you check ORD-002? Agent: [Calling tool: get_order_status] [Tool result: {"status": "processing", "tracking": null, "eta": "Jan 23, 2026"}] Your order ORD-002 is currently being processed. - Status: Processing - Estimated Delivery: January 23, 2026 Your order should ship soon, and you'll receive a tracking number once it's on the way. You: exit Goodbye! The client we just built handles events at a high level, abstracting away the details. But what's actually flowing through that SSE connection? Let's peek under the hood. Event Types You'll See As the server streams back responses, clients receive a series of structured events. If you were to observe the raw SSE stream (e.g., using curl), you'd see events like: curl -N http://localhost:8000/chat \ -H "Content-Type: application/json" \ -H "Accept: text/event-stream" \ -d '{"messages": [{"role": "user", "content": "What'\''s the status of order ORD-001?"}]}' Sample event stream (with tool calling): data: {"type":"RUN_STARTED","threadId":"eb4d9850-14ef-446c-af4b-23037acda9e8","runId":"chatcmpl-xyz"} data: {"type":"TEXT_MESSAGE_START","messageId":"e8648880-a9ff-4178-a17d-4a6d3ec3d39c","role":"assistant"} data: {"type":"TOOL_CALL_START","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","toolCallName":"get_order_status","parentMessageId":"e8648880-a9ff-4178-a17d-4a6d3ec3d39c"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"{\""} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"order"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"_id"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"\":\""} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"ORD"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"-"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"001"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"\"}"} data: {"type":"TOOL_CALL_END","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y"} data: {"type":"TOOL_CALL_RESULT","messageId":"f048cb0a-a049-4a51-9403-a05e4820438a","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","content":"{\"status\": \"shipped\", \"tracking\": \"1Z999AA1\", \"eta\": \"Jan 25, 2026\"}","role":"tool"} data: {"type":"TEXT_MESSAGE_START","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","role":"assistant"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":"Your"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" order"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" ORD"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":"-"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":"001"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" has"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" been"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" shipped"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":"!"} ... (additional TEXT_MESSAGE_CONTENT events streaming the response) ... data: {"type":"TEXT_MESSAGE_END","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf"} data: {"type":"RUN_FINISHED","threadId":"eb4d9850-14ef-446c-af4b-23037acda9e8","runId":"chatcmpl-xyz"} Understanding the flow: RUN_STARTED - Agent begins processing the request TEXT_MESSAGE_START - First message starts (will contain tool calls) TOOL_CALL_START - Agent invokes the get_order_status tool Multiple TOOL_CALL_ARGS events - Arguments stream incrementally as JSON chunks ({"order_id":"ORD-001"}) TOOL_CALL_END - Tool invocation structure complete TOOL_CALL_RESULT - Tool execution finished with result data TEXT_MESSAGE_START - Second message starts (the final response) Multiple TEXT_MESSAGE_CONTENT events - Response text streams word-by-word TEXT_MESSAGE_END - Response message complete RUN_FINISHED - Entire run completed successfully This granular event model enables rich UI experiences - showing tool execution indicators ("Searching...", "Calculating..."), displaying intermediate results, and providing complete transparency into the agent's reasoning process. Seeing the raw events helps, but truly working with AG-UI requires a shift in how you think about agent interactions. Let's explore this conceptual change. The Mental Model Shift Traditional API Thinking # Imperative: Call and wait response = agent.run("What's 2+2?") print(response) # "The answer is 4" Mental model: Function call with return value AG-UI Thinking # Reactive: Subscribe to events async for event in agent.run_stream("What's 2+2?"): match event.type: case "RUN_STARTED": show_loading() case "TEXT_MESSAGE_CONTENT": display_chunk(event.delta) case "RUN_FINISHED": hide_loading() Mental model: Observable stream of events This shift feels similar to: Moving from synchronous to async code Moving from REST to event-driven architecture Moving from polling to pub/sub This mental shift isn't just philosophical - it unlocks concrete benefits that weren't possible with request/response patterns. What You Gain Observability # You can SEE what the agent is doing TOOL_CALL_START: "get_order_status" TOOL_CALL_ARGS: {"order_id": "ORD-001"} TOOL_CALL_RESULT: {"status": "shipped", "tracking": "1Z999AA1", "eta": "Jan 25, 2026"} TEXT_MESSAGE_START: "Your order ORD-001 has been shipped..." Interruptibility # Future: Cancel long-running operations async for event in agent.run_stream(query): if user_clicked_cancel: await agent.cancel(thread_id, run_id) break Transparency # Users see the reasoning process "Looking up order ORD-001..." "Order found: Status is 'shipped'" "Retrieving tracking information..." "Your order has been shipped with tracking number 1Z999AA1..." To put these benefits in context, here's how AG-UI compares to traditional approaches across key dimensions: AG-UI vs. Traditional Approaches Aspect Traditional REST Custom Streaming AG-UI Connection Model Request/Response Varies Server-Sent Events State Management Manual Manual Protocol-managed Tool Calling Invisible Custom format Standardized events Framework Varies Framework-locked Framework-agnostic Browser Support Universal Varies Universal Implementation Simple Complex Moderate Ecosystem N/A Isolated Growing You've now seen AG-UI's design principles, implementation details, and conceptual foundations. But the most important question remains: should you actually use it? Conclusion: Is AG-UI Right for Your Project? AG-UI represents a shift toward standardized, observable agent interactions. Before adopting it, understand where the protocol stands and whether it fits your needs. Protocol Maturity The protocol is stable enough for production use but still evolving: Ready now: Core specification stable, Microsoft Agent Framework integration available, FastAPI/Python implementation mature, basic streaming and threading work reliably. Choose AG-UI If You Building new agent projects - No legacy API to maintain, want future compatibility with emerging ecosystem Need streaming observability - Multi-step workflows where users benefit from seeing each stage of execution Want framework flexibility - Same client code works with any AG-UI-compliant backend Comfortable with evolving standards - Can adapt to protocol changes as it matures Stick with Alternatives If You Have working solutions - Custom streaming working well, migration cost not justified Need guaranteed stability - Mission-critical systems where breaking changes are unacceptable Build simple agents - Single-step request/response without tool calling or streaming needs Risk-averse environment - Large existing implementations where proven approaches are required Beyond individual project decisions, it's worth considering AG-UI's role in the broader ecosystem. The Bigger Picture While this blog post focused on Microsoft Agent Framework, AG-UI's true power lies in its broader mission: creating a common language for agent-UI communication across the entire ecosystem. As more frameworks adopt it, the real value emerges: write your UI once, work with any compliant agent framework. Think of it like GraphQL for APIs or OpenAPI for REST - a standardization layer that benefits the entire ecosystem. The protocol is young, but the problem it solves is real. Whether you adopt it now or wait for broader adoption, understanding AG-UI helps you make informed architectural decisions for your agent applications. Ready to dive deeper? Here are the official resources to continue your AG-UI journey. Resources AG-UI & Microsoft Agent Framework Getting Started with AG-UI (Microsoft Learn) - Official tutorial AG-UI Integration Overview - Architecture and concepts AG-UI Protocol Specification - Official protocol documentation Backend Tool Rendering - Adding function tools Security Considerations - Production security guidance Microsoft Agent Framework Documentation - Framework overview AG-UI Dojo Examples - Live demonstrations UI Components & Integration CopilotKit for Microsoft Agent Framework - React component library Community & Support Microsoft Q&A - Community support Agent Framework GitHub - Source code and issues Related Technologies Azure AI Foundry Documentation - Azure AI platform FastAPI Documentation - Web framework Server-Sent Events (SSE) Specification - Protocol standard This blog post introduces AG-UI with Microsoft Agent Framework, focusing on fundamental concepts and building your first interactive agent application.Agents League: Two Weeks, Three Tracks, One Challenge
We're inviting all developers to join Agents League, running February 16-27. It's a two-week challenge where you'll build AI agents using production-ready tools, learn from live coding sessions, and get feedback directly from Microsoft product teams. We've put together starter kits for each track to help you get up and running quickly that also includes requirements and guidelines. Whether you want to explore what GitHub Copilot can do beyond autocomplete, build reasoning agents on Microsoft Foundry, or create enterprise integrations for Microsoft 365 Copilot, we have a track for you. Important: Register first to be eligible for prizes and your digital badge. Without registration, you won't qualify for awards or receive a badge when you submit. What Is Agents League? It's a 2-week competition that combines learning with building: 📽️ Live coding battles – Watch Product teams, MVPs and community members tackle challenges in real-time on Microsoft Reactor 💻 Async challenges – Build at your own pace, on your schedule 💬 Discord community – Connect with other participants, join AMAs, and get help when you need it 🏆 Prizes – $500 per track winner, plus GitHub Copilot Pro subscriptions for top picks The Three Tracks 🎨 Creative Apps — Build with GitHub Copilot (Chat, CLI, or SDK) 🧠 Reasoning Agents — Build with Microsoft Foundry 💼 Enterprise Agents — Build with M365 Agents Toolkit (or Copilot Studio) More details on each track below, or jump straight to the starter kits. The Schedule Agents League starts on February 16th and runs through Feburary 27th. Within 2 weeks, we host live battles on Reactor and AMA sessions on Discord. Week 1: Live Battles (Feb 17-19) We're kicking off with live coding battles streamed on Microsoft Reactor. Watch experienced developers compete in real-time, explaining their approach and architectural decisions as they go. Tue Feb 17, 9 AM PT — 🎨 Creative Apps battle Wed Feb 18, 9 AM PT — 🧠 Reasoning Agents battle Thu Feb 19, 9 AM PT — 💼 Enterprise Agents battle All sessions are recorded, so you can watch on your own schedule. Week 2: Build + AMAs (Feb 24-26) This is your time to build and ask questions on Discord. The async format means you work when it suits you, evenings, weekends, whatever fits your schedule. We're also hosting AMAs on Discord where you can ask questions directly to Microsoft experts and product teams: Tue Feb 24, 9 AM PT — 🎨 Creative Apps AMA Wed Feb 25, 9 AM PT — 🧠 Reasoning Agents AMA Thu Feb 26, 9 AM PT — 💼 Enterprise Agents AMA Bring your questions, get help when you're stuck, and share what you're building with the community. Pick Your Track We've created a starter kit for each track with setup guides, project ideas, and example scenarios to help you get started quickly. 🎨 Creative Apps Tool: GitHub Copilot (Chat, CLI, or SDK) Build innovative, imaginative applications that showcase the potential of AI-assisted development. All application types are welcome, web apps, CLI tools, games, mobile apps, desktop applications, and more. The starter kit walks you through GitHub Copilot's different modes and provides prompting tips to get the best results. View the Creative Apps starter kit. 🧠 Reasoning Agents Tool: Microsoft Foundry (UI or SDK) and/or Microsoft Agent Framework Build a multi-agent system that leverages advanced reasoning capabilities to solve complex problems. This track focuses on agents that can plan, reason through multi-step problems, and collaborate. The starter kit includes architecture patterns, reasoning strategies (planner-executor, critic/verifier, self-reflection), and integration guides for tools and MCP servers. View the Reasoning Agents starter kit. 💼 Enterprise Agents Tool: M365 Agents Toolkit or Copilot Studio Create intelligent agents that extend Microsoft 365 Copilot to address real-world enterprise scenarios. Your agent must work on Microsoft 365 Copilot Chat. Bonus points for: MCP server integration, OAuth security, Adaptive Cards UI, connected agents (multi-agent architecture). View the Enterprise Agents starter kit. Prizes & Recognition To be eligible for prizes and your digital badge, you must register before submitting your project. Category Winners ($500 each): 🎨 Creative Apps winner 🧠 Reasoning Agents winner 💼 Enterprise Agents winner GitHub Copilot Pro subscriptions: Community Favorite (voted by participants on Discord) Product Team Picks (selected by Microsoft product teams) Everyone who registers and submits a project wins: A digital badge to showcase their participation. Beyond the prizes, every participant gets feedback from the teams who built these tools, a valuable opportunity to learn and improve your approach to AI agent development. How to Get Started Register first — This is required to be eligible for prizes and to receive your digital badge. Without registration, your submission won't qualify for awards or a badge. Pick a track — Choose one track. Explore the starter kits to help you decide. Watch the battles — See how experienced developers approach these challenges. Great for learning even if you're still deciding whether to compete. Build your project — You have until Feb 27. Work on your own schedule. Submit via GitHub — Open an issue using the project submission template. Join us on Discord — Get help, share your progress, and vote for your favorite projects on Discord. Links Register: https://aka.ms/agentsleague/register Starter Kits: https://github.com/microsoft/agentsleague/starter-kits Discord: https://aka.ms/agentsleague/discord Live Battles: https://aka.ms/agentsleague/battles Submit Project: Project submission templateGitHub Copilot SDK and Hybrid AI in Practice: Automating README to PPT Transformation
Introduction In today's rapidly evolving AI landscape, developers often face a critical choice: should we use powerful cloud-based Large Language Models (LLMs) that require internet connectivity, or lightweight Small Language Models (SLMs) that run locally but have limited capabilities? The answer isn't either-or—it's hybrid models—combining the strengths of both to create AI solutions that are secure, efficient, and powerful. This article explores hybrid model architectures through the lens of GenGitHubRepoPPT, demonstrating how to elegantly combine Microsoft Foundry Local, GitHub Copilot SDK, and other technologies to automatically generate professional PowerPoint presentations from GitHub README files. 1. Hybrid Model Scenarios and Value 1.1 What Are Hybrid Models? Hybrid AI Models strategically combine locally-running Small Language Models (SLMs) with cloud-based Large Language Models (LLMs) within the same application, selecting the most appropriate model for each task based on its unique characteristics. Core Principles: Local Processing for Sensitive Data: Privacy-critical content analysis happens on-device Cloud for Value Creation: Complex reasoning and creative generation leverage cloud power Balancing Cost and Performance: High-frequency, simple tasks run locally to minimize API costs 1.2 Typical Hybrid Model Use Cases Use Case Local SLM Role Cloud LLM Role Value Proposition Intelligent Document Processing Text extraction, structural analysis Content refinement, format conversion Privacy protection + Professional output Code Development Assistant Syntax checking, code completion Complex refactoring, architecture advice Fast response + Deep insights Customer Service Systems Intent recognition, FAQ handling Complex issue resolution Reduced latency + Enhanced quality Content Creation Platforms Keyword extraction, outline generation Article writing, multilingual translation Cost control + Creative assurance 1.3 Why Choose Hybrid Models? Three Core Advantages: Privacy and Security Sensitive data never leaves local devices Compliant with GDPR, HIPAA, and other regulations Ideal for internal corporate documents and personal information Cost Optimization Reduces cloud API call frequency Local models have zero usage fees Predictable operational costs Performance and Reliability Local processing eliminates network latency Partial functionality in offline environments Cloud models ensure high-quality output 2. Core Technology Analysis 2.1 Large Language Models (LLMs): Cloud Intelligence Representatives What are LLMs? Large Language Models are deep learning-based natural language processing models, typically with billions to trillions of parameters. Through training on massive text datasets, they've acquired powerful language understanding and generation capabilities. Representative Models: Claude Sonnet 4.5: Anthropic's flagship model, excelling at long-context processing and complex reasoning GPT-5.2 Series: OpenAI's general-purpose language models Gemini: Google's multimodal large models LLM Advantages: ✅ Exceptional text generation quality ✅ Powerful contextual understanding ✅ Support for complex reasoning tasks ✅ Continuous model updates and optimization Typical Applications: Professional document writing (technical reports, business plans) Code generation and refactoring Multilingual translation Creative content creation 2.2 Small Language Models (SLMs) and Microsoft Foundry Local 2.2.1 SLM Characteristics Small Language Models typically have 1B-7B parameters, designed specifically for resource-constrained environments. Mainstream SLM Model Families: Microsoft Phi Family (Phi Family): Inference-optimized efficient models Alibaba Qwen Family (Qwen Family): Excellent Chinese language capabilities Mistral Series: Outstanding performance with small parameter counts SLM Advantages: ⚡ Low-latency response (millisecond-level) 💰 Zero API costs 🔒 Fully local, data stays on-device 📱 Suitable for edge device deployment 2.2.2 Microsoft Foundry Local: The Foundation of Local AI Foundry Local is Microsoft's local AI runtime tool, enabling developers to easily run SLMs on Windows or macOS devices. Core Features: OpenAI-Compatible API # Using Foundry Local is like using OpenAI API from openai import OpenAI from foundry_local import FoundryLocalManager manager = FoundryLocalManager("qwen2.5-7b-instruct") client = OpenAI( base_url=manager.endpoint, api_key=manager.api_key ) Hardware Acceleration Support CPU: General computing support GPU: NVIDIA, AMD, Intel graphics acceleration NPU: Qualcomm, Intel AI-specific chips Apple Silicon: Neural Engine optimization Based on ONNX Runtime Cross-platform compatibility Highly optimized inference performance Supports model quantization (INT4, INT8) Convenient Model Management # View available models foundry model list # Run a model foundry model run qwen2.5-7b-instruct-generic-cpu:4 # Check running status foundry service ps Foundry Local Application Value: 🎓 Educational Scenarios: Students can learn AI development without cloud subscriptions 🏢 Enterprise Environments: Process sensitive data while maintaining compliance 🧪 R&D Testing: Rapid prototyping without API cost concerns ✈️ Offline Environments: Works on planes, subways, and other no-network scenarios 2.3 GitHub Copilot SDK: The Express Lane from Agent to Business Value 2.3.1 What is GitHub Copilot SDK? GitHub Copilot SDK, released as a technical preview on January 22, 2026, is a game-changer for AI Agent development. Unlike other AI SDKs, Copilot SDK doesn't just provide API calling interfaces—it delivers a complete, production-grade Agent execution engine. Why is it revolutionary? Traditional AI application development requires you to build: ❌ Context management systems (multi-turn conversation state) ❌ Tool orchestration logic (deciding when to call which tool) ❌ Model routing mechanisms (switching between different LLMs) ❌ MCP server integration ❌ Permission and security boundaries ❌ Error handling and retry mechanisms Copilot SDK provides all of this out-of-the-box, letting you focus on business logic rather than underlying infrastructure. 2.3.2 Core Advantages: The Ultra-Short Path from Concept to Code Production-Grade Agent Engine: Battle-Tested Reliability Copilot SDK uses the same Agent core as GitHub Copilot CLI, which means: ✅ Validated in millions of real-world developer scenarios ✅ Capable of handling complex multi-step task orchestration ✅ Automatic task planning and execution ✅ Built-in error recovery mechanisms Real-World Example: In the GenGitHubRepoPPT project, we don't need to hand-write the "how to convert outline to PPT" logic—we simply tell Copilot SDK the goal, and it automatically: Analyzes outline structure Plans slide layouts Calls file creation tools Applies formatting logic Handles multilingual adaptation # Traditional approach: requires hundreds of lines of code for logic def create_ppt_traditional(outline): slides = parse_outline(outline) for slide in slides: layout = determine_layout(slide) content = format_content(slide) apply_styling(content, layout) # ... more manual logic return ppt_file # Copilot SDK approach: focus on business intent session = await client.create_session({ "model": "claude-sonnet-4.5", "streaming": True, "skill_directories": [skills_dir] }) session.send_and_wait({"prompt": prompt}, timeout=600) Custom Skills: Reusable Encapsulation of Business Knowledge This is one of Copilot SDK's most powerful features. In traditional AI development, you need to provide complete prompts and context with every call. Skills allow you to: Define once, reuse forever: # .copilot_skills/ppt/SKILL.md # PowerPoint Generation Expert Skill ## Expertise You are an expert in business presentation design, skilled at transforming technical content into easy-to-understand visual presentations. ## Workflow 1. **Structure Analysis** - Identify outline hierarchy (titles, subtitles, bullet points) - Determine topic and content density for each slide 2. **Layout Selection** - Title slide: Use large title + subtitle layout - Content slides: Choose single/dual column based on bullet count - Technical details: Use code block or table layouts 3. **Visual Optimization** - Apply professional color scheme (corporate blue + accent colors) - Ensure each slide has a visual focal point - Keep bullets to 5-7 items per page 4. **Multilingual Adaptation** - Choose appropriate fonts based on language (Chinese: Microsoft YaHei, English: Calibri) - Adapt text direction and layout conventions ## Output Requirements Generate .pptx files meeting these standards: - 16:9 widescreen ratio - Consistent visual style - Editable content (not images) - File size < 5MB Business Code Generation Capability This is the core value of this project. Unlike generic LLM APIs, Copilot SDK with Skills can generate truly executable business code. Comparison Example: Aspect Generic LLM API Copilot SDK + Skills Task Description Requires detailed prompt engineering Concise business intent suffices Output Quality May need multiple adjustments Professional-grade on first try Code Execution Usually example code Directly generates runnable programs Error Handling Manual implementation required Agent automatically handles and retries Multi-step Tasks Manual orchestration needed Automatic planning and execution Comparison of manual coding workload: Task Manual Coding Copilot SDK Processing logic code ~500 lines ~10 lines configuration Layout templates ~200 lines Declared in Skill Style definitions ~150 lines Declared in Skill Error handling ~100 lines Automatically handled Total ~950 lines ~10 lines + Skill file Tool Calling & MCP Integration: Connecting to the Real World Copilot SDK doesn't just generate code—it can directly execute operations: 🗃️ File System Operations: Create, read, modify files 🌐 Network Requests: Call external APIs 📊 Data Processing: Use pandas, numpy, and other libraries 🔧 Custom Tools: Integrate your business logic 3. GenGitHubRepoPPT Case Study 3.1 Project Overview GenGitHubRepoPPT is an innovative hybrid AI solution that combines local AI models with cloud-based AI agents to automatically generate professional PowerPoint presentations from GitHub repository README files in under 5 minutes. Technical Architecture: 3.2 Why Adopt a Hybrid Model? Stage 1: Local SLM Processes Sensitive Data Task: Analyze GitHub README, extract key information, generate structured outline Reasons for choosing Qwen-2.5-7B + Foundry Local: Privacy Protection README may contain internal project information Local processing ensures data doesn't leave the device Complies with data compliance requirements Cost Effectiveness Each analysis processes thousands of tokens Cloud API costs are significant in high-frequency scenarios Local models have zero additional fees Performance Qwen-2.5-7B excels at text analysis tasks Outstanding Chinese support Acceptable CPU inference latency (typically 2-3 seconds) Stage 2: Cloud LLM + Copilot SDK Creates Business Value Task: Create well-formatted PowerPoint files based on outline Reasons for choosing Claude Sonnet 4.5 + Copilot SDK: Automated Business Code Generation Traditional approach pain points: Need to hand-write 500+ lines of code for PPT layout logic Require deep knowledge of python-pptx library APIs Style and formatting code is error-prone Multilingual support requires additional conditional logic Copilot SDK solution: Declare business rules and best practices through Skills Agent automatically generates and executes required code Zero-code implementation of complex layout logic Development time reduced from 2-3 days to 2-3 hours Ultra-Short Path from Intent to Execution Comparison: Different ways to implement "Generate professional PPT" 3. Production-Grade Reliability and Quality Assurance Battle-tested Agent engine: Uses the same core as GitHub Copilot CLI Validated in millions of real-world scenarios Automatically handles edge cases and errors Consistent output quality: Professional standards ensured through Skills Automatic validation of generated files Built-in retry and error recovery mechanisms 4. Rapid Iteration and Optimization Capability Scenario: Client requests PPT style adjustment The GitHub Repo https://github.com/kinfey/GenGitHubRepoPPT 4. Summary 4.1 Core Value of Hybrid Models + Copilot SDK The GenGitHubRepoPPT project demonstrates how combining hybrid models with Copilot SDK creates a new paradigm for AI application development. Privacy and Cost Balance The hybrid approach allows sensitive README analysis to happen locally using Qwen-2.5-7B, ensuring data never leaves the device while incurring zero API costs. Meanwhile, the value-creating work—generating professional PowerPoint presentations—leverages Claude Sonnet 4.5 through Copilot SDK, delivering quality that justifies the per-use cost. From Code to Intent Traditional AI development required writing hundreds of lines of code to handle PPT generation logic, layout selection, style application, and error handling. With Copilot SDK and Skills, developers describe what they want in natural language, and the Agent automatically generates and executes the necessary code. What once took 3-5 days now takes 3-4 hours, with 95% less code to maintain. Automated Business Code Generation Copilot SDK doesn't just provide code examples—it generates complete, executable business logic. When you request a multilingual PPT, the Agent understands the requirement, selects appropriate fonts, generates the implementation code, executes it with error handling, validates the output, and returns a ready-to-use file. Developers focus on business intent rather than implementation details. 4.2 Technology Trends The Shift to Intent-Driven Development We're witnessing a fundamental change in how developers work. Rather than mastering every programming language detail and framework API, developers are increasingly defining what they want through declarative Skills. Copilot SDK represents this future: you describe capabilities in natural language, and AI Agents handle the code generation and execution automatically. Edge AI and Cloud AI Integration The evolution from pure cloud LLMs (powerful but privacy-concerning) to pure local SLMs (private but limited) has led to today's hybrid architectures. GenGitHubRepoPPT exemplifies this trend: local models handle data analysis and structuring, while cloud models tackle complex reasoning and professional output generation. This combination delivers fast, secure, and professional results. Democratization of Agent Development Copilot SDK dramatically lowers the barrier to building AI applications. Senior engineers see 10-20x productivity gains. Mid-level engineers can now build sophisticated agents that were previously beyond their reach. Even junior engineers and business experts can participate by writing Skills that capture domain knowledge without deep technical expertise. The future isn't about whether we can build AI applications—it's about how quickly we can turn ideas into reality. References Projects and Code GenGitHubRepoPPT GitHub Repository - Case study project Microsoft Foundry Local - Local AI runtime GitHub Copilot SDK - Agent development SDK Copilot SDK Getting Started Tutorial - Official quick start Deep Dive: Copilot SDK Build an Agent into Any App with GitHub Copilot SDK - Official announcement GitHub Copilot SDK Cookbook - Practical examples Copilot CLI Official Documentation - CLI tool documentation Learning Resources Edge AI for Beginners - Edge AI introductory course Azure AI Foundry Documentation - Azure AI documentation GitHub Copilot Extensions Guide - Extension development guideHow to Build Safe Natural Language-Driven APIs
TL;DR Building production natural language APIs requires separating semantic parsing from execution. Use LLMs to translate user text into canonical structured requests (via schemas), then execute those requests deterministically. Key patterns: schema completion for clarification, confidence gates to prevent silent failures, code-based ontologies for normalization, and an orchestration layer. This keeps language as input, not as your API contract. Introduction APIs that accept natural language as input are quickly becoming the norm in the age of agentic AI apps and LLMs. From search and recommendations to workflows and automation, users increasingly expect to "just ask" and get results. But treating natural language as an API contract introduces serious risks in production systems: Nondeterministic behavior Prompt-driven business logic Difficult debugging and replay Silent failures that are hard to detect In this post, I'll describe a production-grade architecture for building safe, natural language-driven APIs: one that embraces LLMs for intent discovery and entity extraction while preserving the determinism, observability, and reliability that backend systems require. This approach is based on building real systems using Azure OpenAI and LangGraph, and on lessons learned the hard way. The Core Problem with Natural Language APIs Natural language is an excellent interface for humans. It is a poor interface for systems. When APIs accept raw text directly and execute logic based on it, several problems emerge: The API contract becomes implicit and unversioned Small prompt changes cause behavioral changes Business logic quietly migrates into prompts In short: language becomes the contract, and that's fragile. The solution is not to avoid natural language, but to contain it. A Key Principle: Natural Language Is Input, Not a Contract So how do we contain it? The answer lies in treating natural language fundamentally differently than we treat traditional API inputs. The most important design decision we made was this: Natural language should be translated into structure, not executed directly. That single principle drives the entire architecture. Instead of building "chatty APIs," we split responsibilities clearly: Natural language is used for intent discovery and entity extraction Structured data is used for execution Two Explicit API Layers This principle translates into a concrete architecture with two distinct API layers, each with a single, clear responsibility. 1. Semantic Parse API (Natural Language → Structure) This API: Accepts user text Extracts intent and entities using LLMs Completes a predefined schema Asks clarifying questions when required Returns a canonical, structured request Does not execute business logic Think of this as a compiler, not an engine. 2. Structured Execution API (Structure → Action) This API: Accepts only structured input Calls downstream systems to process the request and get results Is deterministic and versioned Contains no natural language handling Is fully testable and replayable This is where execution happens. Why This Separation Matters Separating these layers gives you: A stable, versionable API contract Freedom to improve NLP without breaking clients Clear ownership boundaries Deterministic execution paths Most importantly, it prevents LLM behavior from leaking into core business logic. Canonical Schemas Are the Backbone Now that we've established the two-layer architecture, let's dive into what makes it work: canonical schemas. Each supported intent is defined by a canonical schema that lives in code. Example (simplified): This schema is used when a user is looking for similar product recommendations. The entities capture which product to use as reference and how to bias the recommendations toward price or quality. { "intent": "recommend_similar", "entities": { "reference_product_id": "string", "price_bias": "number (-1 to 1)", "quality_bias": "number (-1 to 1)" } } Schemas define: Required vs optional fields Allowed ranges and types Validation rules They are the contract, not the prompt. When a user says "show me products like the blue backpack but cheaper", the LLM extracts: Intent: recommend_similar reference_product_id: "blue_backpack_123" price_bias: -0.8 (strongly prefer cheaper) quality_bias: 0.0 (neutral) The schema ensures that even if the user phrased it as "find alternatives to item 123 with better pricing" or "cheaper versions of that blue bag", the output is always the same structure. The natural language variation is absorbed at the semantic layer. The execution layer receives a consistent, validated request every time. This decoupling is what makes the system maintainable. Schema Completion, Not Free-Form Chat But what happens when the user's input doesn't contain all the information needed to complete the schema? This is where structured clarification comes in. A common misconception is that clarification means "chatting until it feels right." In production systems, clarification is schema completion. If required fields are missing or ambiguous, the semantic API responds with: What information is missing A targeted clarification question The current schema state Example response: { "status": "needs_clarification", "missing_fields": ["reference_product_id"], "question": "Which product should I compare against?", "state": { "intent": "recommend_similar", "entities": { "reference_product_id": null, "price_bias": -0.3, "quality_bias": 0.4 } } } The state object is the memory. The API itself remains stateless. A Complete Conversation Flow To illustrate how schema completion works in practice, here's a full conversation flow where the user's initial request is missing required information: Initial Request: User: "Show me cheaper alternatives with good quality" API Response (needs clarification): { "status": "needs_clarification", "missing_fields": ["reference_product_id"], "question": "Which product should I compare against?", "state": { "intent": "recommend_similar", "entities": { "reference_product_id": null, "price_bias": -0.3, "quality_bias": 0.4 } } } Follow-up Request: User: "The blue backpack" Client sends: { "user_input": "The blue backpack", "state": { "intent": "recommend_similar", "entities": { "reference_product_id": null, "price_bias": -0.3, "quality_bias": 0.4 } } } API Response (complete): { "status": "complete", "canonical_request": { "intent": "recommend_similar", "entities": { "reference_product_id": "blue_backpack_123", "price_bias": -0.3, "quality_bias": 0.4 } } } The client passes the state back with each clarification. The API remains stateless, while the client manages the conversation context. Once complete, the canonical_request can be sent directly to the execution API. Why LangGraph Fits This Problem Perfectly With schemas and clarification flows defined, we need a way to orchestrate the semantic parsing workflow reliably. This is where LangGraph becomes valuable. LangGraph allows semantic parsing to be modeled as a structured, deterministic workflow with explicit decision points: Classify intent: Determine what the user wants to do from a predefined set of supported actions Extract candidate entities: Pull out relevant parameters from the natural language input using the LLM Merge into schema state: Map the extracted values into the canonical schema structure Validate required fields: Check if all mandatory fields are present and values are within acceptable ranges Either complete or request clarification: Return the canonical request if complete, or ask a targeted question if information is missing Each node has a single responsibility. Validation and routing are done in code, not by the LLM. LangGraph provides: Explicit state transitions Deterministic routing Observable execution Safe retries Used this way, it becomes a powerful orchestration tool, not a conversational agent. Confidence Gates Prevent Silent Failures Structured workflows handle the process, but there's another critical safety mechanism we need: knowing when the LLM isn't confident about its extraction. Even when outputs are structurally valid, they may not be reliable. We require the semantic layer to emit a confidence score. If confidence falls below a threshold, execution is blocked and clarification is requested. This simple rule eliminates an entire class of silent misinterpretations that are otherwise very hard to detect. Example: When a user says "Show me items similar to the bag", the LLM might extract: { "intent": "recommend_similar", "confidence": 0.55, "entities": { "reference_product_id": "generic_bag_001", "confidence_scores": { "reference_product_id": 0.4 } } } The overall confidence is low (0.55), and the entity confidence for reference_product_id is very low (0.4) because "the bag" is ambiguous. There might be hundreds of bags in the catalog. Instead of proceeding with a potentially wrong guess, the API responds: { "status": "needs_clarification", "reason": "low_confidence", "question": "I found multiple bags. Did you mean the blue backpack, the leather tote, or the travel duffel?", "confidence": 0.55 } This prevents the system from silently executing the wrong recommendation and provides a better user experience. Lightweight Ontologies (Keep Them in Code) Beyond confidence scoring, we need a way to normalize the variety of terms users might use into consistent canonical values. We also introduced lightweight, code-level ontologies: Allowed intents Required entities per intent Synonym-to-canonical mappings Cross-field validation rules These live in code and configuration, not in prompts. LLMs propose values. Code enforces meaning. Example: Consider these user inputs that all mean the same thing: "Show me cheaper options" "Find budget-friendly alternatives" "I want something more affordable" "Give me lower-priced items" The LLM might extract different values: "cheaper", "budget-friendly", "affordable", "lower-priced". The ontology maps all of these to a canonical value: PRICE_BIAS_SYNONYMS = { "cheaper": -0.7, "budget-friendly": -0.7, "affordable": -0.7, "lower-priced": -0.7, "expensive": 0.7, "premium": 0.7, "high-end": 0.7 } When the LLM extracts "budget-friendly", the code normalizes it to -0.7 for the price_bias field. Similarly, cross-field validation catches logical inconsistencies: if entities["price_bias"] < -0.5 and entities["quality_bias"] > 0.5: return clarification("You want cheaper items with higher quality. This might be difficult. Should I prioritize price or quality?") The LLM proposes. The ontology normalizes. The validation enforces business rules. What About Latency? A common concern with multi-step semantic parsing is performance. In practice, we observed: Intent classification: ~40 ms Entity extraction: ~200 ms Validation and routing: ~1 ms Total overhead: ~250–300 ms. For chat-driven user experiences, this is well within acceptable bounds and far cheaper than incorrect or inconsistent execution. Key Takeaways Let's bring it all together. If you're building APIs that accept natural language in production: Do not make language your API contract Translate language into canonical structure Own schema completion server-side Use LLMs for discovery and extraction, not execution Treat safety and determinism as first-class requirements Natural language is an input format. Structure is the contract. Closing Thoughts LLMs make it easy to build impressive demos. Building safe, reliable systems with them requires discipline. By separating semantic interpretation from execution, and by using tools like Azure OpenAI and LangGraph thoughtfully, you can build natural language-driven APIs that scale, evolve, and behave predictably in production. Hopefully, this architecture saves you a few painful iterations.The Perfect Fusion of GitHub Copilot SDK and Cloud Native
In today's rapidly evolving AI landscape, we've witnessed the transformation from simple chatbots to sophisticated agent systems. As a developer and technology evangelist, I've observed an emerging trend—it's not about making AI omnipotent, but about enabling each AI Agent to achieve excellence in specific domains. Today, I want to share an exciting technology stack: GitHub Copilot SDK (a development toolkit that embeds production-grade agent engines into any application) + Agent-to-Agent (A2A) Protocol (a communication standard enabling standardized agent collaboration) + Cloud Native Deployment (the infrastructure foundation for production systems). Together, these three components enable us to build truly collaborative multi-agent systems. 1. From AI Assistants to Agent Engines: Redefining Capability Boundaries Traditional AI assistants often pursue "omnipotence"—attempting to answer any question you throw at them. However, in real production environments, this approach faces serious challenges: Inconsistent Quality: A single model trying to write code, perform data analysis, and generate creative content struggles to achieve professional standards in each domain Context Pollution: Mixing prompts from different tasks leads to unstable model outputs Difficult Optimization: Adjusting prompts for one task type may negatively impact performance on others High Development Barrier: Building agents from scratch requires handling planning, tool orchestration, context management, and other complex logic GitHub proposed a revolutionary approach—instead of forcing developers to build agent frameworks from scratch, provide a production-tested, programmable agent engine. This is the core value of the GitHub Copilot SDK. Evolution from Copilot CLI to SDK GitHub Copilot CLI is a powerful command-line tool that can: Plan projects and features Modify files and execute commands Use custom agents Delegate tasks to cloud execution Integrate with MCP servers The GitHub Copilot SDK extracts the agentic core behind Copilot CLI and offers it as a programmable layer for any application. This means: You're no longer confined to terminal environments You can embed this agent engine into GUI applications, web services, and automation scripts You gain access to the same execution engine validated by millions of users Just like in the real world, we don't expect one person to be a doctor, lawyer, and engineer simultaneously. Instead, we provide professional tools and platforms that enable professionals to excel in their respective domains. 2. GitHub Copilot SDK: Embedding Copilot CLI's Agentic Core into Any App Before diving into multi-agent systems, we need to understand a key technology: GitHub Copilot SDK. What is GitHub Copilot SDK? GitHub Copilot SDK (now in technical preview) is a programmable agent execution platform. It allows developers to embed the production-tested agentic core from GitHub Copilot CLI directly into any application. Simply put, the SDK provides: Out-of-the-box Agent Loop: No need to build planners, tool orchestration, or context management from scratch Multi-model Support: Choose different AI models (like GPT-4, Claude Sonnet) for different task phases Tool and Command Integration: Built-in file editing, command execution, and MCP server integration capabilities Streaming Real-time Responses: Support for progress updates on long-running tasks Multi-language Support: SDKs available for Node.js, Python, Go, and .NET Why is the SDK Critical for Building Agents? Building an agentic workflow from scratch is extremely difficult. You need to handle: Context management across multiple conversation turns Orchestration of tools and commands Routing between different models MCP server integration Permission control, safety boundaries, and error handling GitHub Copilot SDK abstracts away all this underlying complexity. You only need to focus on: Defining agent professional capabilities (through Skill files) Providing domain-specific tools and constraints Implementing business logic SDK Usage Examples Python Example (from actual project implementation): from copilot import CopilotClient # Initialize client copilot_client = CopilotClient() await copilot_client.start() # Create session and load Skill session = await copilot_client.create_session({ "model": "claude-sonnet-4.5", "streaming": True, "skill_directories": ["/path/to/skills/blog/SKILL.md"] }) # Send task await session.send_and_wait({ "prompt": "Write a technical blog about multi-agent systems" }, timeout=600) Skill System: Professionalizing Agents While the SDK provides a powerful execution engine, how do we make agents perform professionally in specific domains? The answer is Skill files. A Skill file is a standardized capability definition containing: Capability Declaration: Explicitly tells the system "what I can do" (e.g., blog generation, PPT creation) Domain Knowledge: Preset best practices, standards, and terminology guidelines Workflow: Defines the complete execution path from input to output Output Standards: Ensures generated content meets format and quality requirements Through the combination of Skill files + SDK, we can build truly professional agents rather than generic "jack-of-all-trades assistants." 3. A2A Protocol: Enabling Seamless Agent Collaboration Once we have professional agents, the next challenge is: how do we make them work together? This is the core problem the Agent-to-Agent (A2A) Protocol aims to solve. Three Core Mechanisms of A2A Protocol 1. Agent Discovery (Service Discovery) Each agent exposes its capability card through the standardized /.well-known/agent-card.json endpoint, acting like a business card that tells other agents "what I can do": { "name": "blog_agent", "description": "Blog generation with DeepSearch", "primaryKeywords": ["blog", "article", "write"], "skills": [{ "id": "blog_generation", "tags": ["blog", "writing"], "examples": ["Write a blog about..."] }], "capabilities": { "streaming": true } } 2. Intelligent Routing The Orchestrator matches tasks with agent capabilities through scoring. The project's routing algorithm implements keyword matching and exclusion detection: Positive Matching: If a task contains an agent's primaryKeywords, score +0.5 Negative Exclusion: If a task contains other agents' keywords, score -0.3 This way, when users say "write a blog about cloud native," the system automatically selects the Blog Agent; when they say "create a tech presentation PPT," it routes to the PPT Agent. 3. SSE Streaming (Real-time Streaming) For time-consuming tasks (like generating a 5000-word blog), A2A uses Server-Sent Events to push real-time progress, allowing users to see the agent working instead of just waiting. This is crucial for user experience. 4. Cloud Native Deployment: Making Agent Systems Production-Ready Even the most powerful technology is just a toy if it can't be deployed to production environments. This project demonstrates a complete deployment of a multi-agent system to a cloud-native platform (Azure Container Apps). Why Choose Cloud Native? Elastic Scaling: When blog generation requests surge, the Blog Agent can auto-scale; it scales down to zero during idle times to save costs Independent Evolution: Each agent has its own Docker image and deployment pipeline; updating the Blog Agent doesn't affect the PPT Agent Fault Isolation: If one agent crashes, it won't bring down the entire system; the Orchestrator automatically degrades Global Distribution: Through Azure Container Apps, agents can be deployed across multiple global regions to reduce latency Container Deployment Essentials Each agent in the project has a standardized Dockerfile: FROM python:3.12-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 8001 CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8001"] Combined with the deploy-to-aca.sh script, one-click deployment to Azure: # Build and push image az acr build --registry myregistry --image blog-agent:latest . # Deploy to Container Apps az containerapp create \ --name blog-agent \ --resource-group my-rg \ --environment my-env \ --image myregistry.azurecr.io/blog-agent:latest \ --secrets github-token=$COPILOT_TOKEN \ --env-vars COPILOT_GITHUB_TOKEN=secretref:github-token 5. Real-World Results: From "Works" to "Works Well" Let's see how this system performs in real scenarios. Suppose a user initiates a request: "Write a technical blog about Kubernetes multi-tenancy security, including code examples and best practices" System Execution Flow: Orchestrator receives the request and scans all agents' capability cards Keyword matching: "write" + "blog" → Blog Agent scores 1.0, PPT Agent scores 0.0 Routes to Blog Agent, loads technical writing Skill Blog Agent initiates DeepSearch to collect latest K8s security materials SSE real-time push: "Collecting materials..." → "Generating outline..." → "Writing content..." Returns complete blog after 5 minutes, including code highlighting, citation sources, and best practices summary Compared to traditional "omnipotent" AI assistants, this system's advantages: ✅ Professionalism: Blog Agent trained with technical writing Skills produces content with clear structure, accurate terminology, and executable code ✅ Visibility: Users see progress throughout, knowing what the AI is doing ✅ Extensibility: Adding new agents (video script, data analysis) in the future requires no changes to existing architecture 6. Key Technical Challenges and Solutions Challenge 1: Inaccurate Agent Capability Descriptions Leading to Routing Errors Solution: Define clear primaryKeywords and examples in Agent Cards Implement exclusion detection mechanism to prevent tasks from being routed to unsuitable agents Challenge 2: Poor User Experience for Long-Running Tasks Solution: Fully adopt SSE streaming, pushing working/completed/error status in real-time Display progress hints in status messages so users know what the system is doing Challenge 3: Sensitive Information Leakage Risk Solution: Use Azure Key Vault or Container Apps Secrets to manage GitHub Tokens Inject via environment variables, never hardcode in code or images Check required environment variables in deployment scripts to prevent configuration errors 7. Future Outlook: SDK-Driven Multi-Agent Ecosystem This project is just the beginning. As GitHub Copilot SDK and A2A Protocol mature, we can build richer agent ecosystems: Actual SDK Application Scenarios According to GitHub's official blog, development teams have already used the Copilot SDK to build: YouTube Chapter Generator: Automatically generates timestamped chapter markers for videos Custom Agent GUIs: Visual agent interfaces for specific business scenarios Speech-to-Command Workflows: Control desktop applications through voice AI Battle Games: Interactive competitive experiences with AI Intelligent Summary Tools: Automatic extraction and summarization of key information Multi-Agent System Evolution Directions 🏪 Agent Marketplace: Developers can publish specialized agents (legal documents, medical reports, etc.) that plug-and-play via A2A protocol 🔗 Cascade Orchestration: Orchestrator automatically breaks down complex tasks, calling multiple agents collaboratively (e.g., "write blog + generate images + create PPT") 🌐 Cross-Platform Interoperability: Based on A2A standards, agents developed by different companies can call each other, breaking down data silos ⚙️ Automated Workflows: Delegate routine repetitive work to agent chains, letting humans focus on creative work 🎯 Vertical Domain Specialization: Combined with Skill files, build high-precision agents in professional fields like finance, healthcare, and legal Core Value of the SDK The significance of GitHub Copilot SDK lies in: it empowers every developer to become a builder of agent systems. You don't need deep learning experts, you don't need to implement agent frameworks yourself, and you don't even need to manage GPU clusters. You only need to: Install the SDK (npm install github/copilot-sdk) Define your business logic and tools Write Skill files describing professional capabilities Call the SDK's execution engine And you can build production-grade intelligent agent applications. Summary: From Demo to Production GitHub Copilot SDK + A2A + Cloud Native isn't three independent technology stacks, but a complete methodology: GitHub Copilot SDK provides an out-of-the-box agent execution engine—handling planning, tool orchestration, context management, and other underlying complexity Skill files enable agents with domain-specific professional capabilities—defining best practices, workflows, and output standards A2A Protocol enables standardized communication and collaboration between agents—implementing service discovery, intelligent routing, and streaming Cloud Native makes the entire system production-ready—containerization, elastic scaling, fault isolation For developers, this means we no longer need to build agent frameworks from scratch or struggle with the black magic of prompt engineering. We only need to: Use GitHub Copilot SDK to obtain a production-grade agent execution engine Write domain-specific Skill files to define professional capabilities Follow A2A protocol to implement standard interfaces between agents Deploy to cloud platforms through containerization And we can build AI Agent systems that are truly usable, well-designed, and production-ready. 🚀 Start Building Complete project code is open source: https://github.com/kinfey/Multi-AI-Agents-Cloud-Native/tree/main/code/GitHubCopilotAgents_A2A Follow the README guide and deploy your first Multi-Agent system in 30 minutes! References GitHub Copilot SDK Official Announcement - Build an agent into any app with the GitHub Copilot SDK GitHub Copilot SDK Repository - github.com/github/copilot-sdk A2A Protocol Official Specification - a2a-protocol.org/latest/ Project Source Code - Multi-AI-Agents-Cloud-Native Azure Container Apps Documentation - learn.microsoft.com/azure/container-apps607Views0likes0CommentsFrom Cloud to Chip: Building Smarter AI at the Edge with Windows AI PCs
As AI engineers, we’ve spent years optimizing models for the cloud, scaling inference, wrangling latency, and chasing compute across clusters. But the frontier is shifting. With the rise of Windows AI PCs and powerful local accelerators, the edge is no longer a constraint it’s now a canvas. Whether you're deploying vision models to industrial cameras, optimizing speech interfaces for offline assistants, or building privacy-preserving apps for healthcare, Edge AI is where real-world intelligence meets real-time performance. Why Edge AI, Why Now? Edge AI isn’t just about running models locally, it’s about rethinking the entire lifecycle: - Latency: Decisions in milliseconds, not round-trips to the cloud. - Privacy: Sensitive data stays on-device, enabling HIPAA/GDPR compliance. - Resilience: Offline-first apps that don’t break when the network does. - Cost: Reduced cloud compute and bandwidth overhead. With Windows AI PCs powered by Intel and Qualcomm NPUs and tools like ONNX Runtime, DirectML, and Olive, developers can now optimize and deploy models with unprecedented efficiency. What You’ll Learn in Edge AI for Beginners The Edge AI for Beginners curriculum is a hands-on, open-source guide designed for engineers ready to move from theory to deployment. Multi-Language Support This content is available in over 48 languages, so you can read and study in your native language. What You'll Master This course takes you from fundamental concepts to production-ready implementations, covering: Small Language Models (SLMs) optimized for edge deployment Hardware-aware optimization across diverse platforms Real-time inference with privacy-preserving capabilities Production deployment strategies for enterprise applications Why EdgeAI Matters Edge AI represents a paradigm shift that addresses critical modern challenges: Privacy & Security: Process sensitive data locally without cloud exposure Real-time Performance: Eliminate network latency for time-critical applications Cost Efficiency: Reduce bandwidth and cloud computing expenses Resilient Operations: Maintain functionality during network outages Regulatory Compliance: Meet data sovereignty requirements Edge AI Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making. Core Principles: On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs) Offline capability: Functions without persistent internet connectivity Low latency: Immediate responses suited for real-time systems Data sovereignty: Keeps sensitive data local, improving security and compliance Small Language Models (SLMs) SLMs like Phi-4, Mistral-7B, Qwen and Gemma are optimized versions of larger LLMs, trained or distilled for: Reduced memory footprint: Efficient use of limited edge device memory Lower compute demand: Optimized for CPU and edge GPU performance Faster startup times: Quick initialization for responsive applications They unlock powerful NLP capabilities while meeting the constraints of: Embedded systems: IoT devices and industrial controllers Mobile devices: Smartphones and tablets with offline capabilities IoT Devices: Sensors and smart devices with limited resources Edge servers: Local processing units with limited GPU resources Personal Computers: Desktop and laptop deployment scenarios Course Modules & Navigation Course duration. 10 hours of content Module Topic Focus Area Key Content Level Duration 📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs 📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs 🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs 🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs ⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs 🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs 🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs 💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs 🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs Each module includes Jupyter notebooks, code samples, and deployment walkthroughs, perfect for engineers who learn by doing. Developer Highlights - 🔧 Olive: Microsoft's optimization toolchain for quantization, pruning, and acceleration. - 🧩 ONNX Runtime: Cross-platform inference engine with support for CPU, GPU, and NPU. - 🎮 DirectML: GPU-accelerated ML API for Windows, ideal for gaming and real-time apps. - 🖥️ Windows AI PCs: Devices with built-in NPUs for low-power, high-performance inference. Local AI: Beyond the Edge Local AI isn’t just about inference, it’s about autonomy. Imagine agents that: - Learn from local context - Adapt to user behavior - Respect privacy by design With tools like Agent Framework, Azure AI Foundry and Windows Copilot Studio, and Foundry Local developers can orchestrate local agents that blend LLMs, sensors, and user preferences, all without cloud dependency. Try It Yourself Ready to get started? Clone the Edge AI for Beginners GitHub repo, run the notebooks, and deploy your first model to a Windows AI PC or IoT devices Whether you're building smart kiosks, offline assistants, or industrial monitors, this curriculum gives you the scaffolding to go from prototype to production.AI Toolkit Extension Pack for Visual Studio Code: Ignite 2025 Update
Unlock the Latest Agentic App Capabilities The Ignite 2025 update delivers a major leap forward for the AI Toolkit extension pack in VS Code, introducing a unified, end-to-end environment for building, visualizing, and deploying agentic applications to Microsoft Foundry, and the addition of Anthropic’s frontier Claude models in the Model Catalog! This release enables developers to build and debug locally in VS Code, then deploy to the cloud with a single click. Seamlessly switch between VS Code and the Foundry portal for visualization, orchestration, and evaluation, creating a smooth roundtrip workflow that accelerates innovation and delivers a truly unified AI development experience. Download the http://aka.ms/aitoolkit today and start building next-generation agentic apps in VS Code! What Can You Do with the AI Toolkit Extension Pack? Access Anthropic models in the Model Catalog Following the Microsoft, NVIDIA and Anthropic strategic partnerships announcement today, we are excited to share that Anthropic’s frontier Claude models including Claude Sonnet 4.5, Claude Opus 4.1, and Claude Haiku 4.5, are now integrated into the AI Toolkit, providing even more choices and flexibility when building intelligent applications and AI agents. Build AI Agents Using GitHub Copilot Scaffold agent applications using best-practice patterns, tool-calling examples, tracing hooks, and test scaffolds, all powered by Copilot and aligned with the Microsoft Agent Framework. Generate agent code in Python or .NET, giving you flexibility to target your preferred runtime. Build and Customize YAML Workflows Design YAML-based workflows in the Foundry portal, then continue editing and testing directly in VS Code. To customize your YAML-based workflows, instantly convert it to Agent Framework code using GitHub Copilot. Upgrade from declarative design to code-first customization without starting from scratch. Visualize Multi-Agent Workflows Envision your code-based agent workflows with an interactive graph visualizer that reveals each component and how they connect Watch in real-time how each node lights up as you run your agent. Use the visualizer to understand and debug complex agent graphs, making iteration fast and intuitive. Experiment, Debug, and Evaluate Locally Use the Hosted Agents Playground to quickly interact with your agents on your development machine. Leverage local tracing support to debug reasoning steps, tool calls, and latency hotspots—so you can quickly diagnose and fix issues. Define metrics, tasks, and datasets for agent evaluation, then implement metrics using the Foundry Evaluation SDK and orchestrate evaluations runs with the help of Copilot. Seamless Integration Across Environments Jump from Foundry Portal to VS Code Web for a development environment in your preferred code editor setting. Open YAML workflows, playgrounds, and agent templates directly in VS Code for editing and deployment. How to Get Started Install the AI Toolkit extension pack from the VS Code marketplace. Check out documentation. Get started with building workflows with Microsoft Foundry in VS Code 1. Work with Hosted (Pro-code) Agent workflows in VS Code 2. Work with Declarative (Low-code) Agent workflows in VS Code Feedback & Support Try out the extensions and let us know what you think! File issues or feedback on our GitHub repo for Foundry extension and AI Toolkit extension. Your input helps us make continuous improvements.2.7KViews4likes0CommentsPython + IA: Resumen y Recursos
Acabamos de concluir nuestra serie sobre Python + IA, un recorrido completo de nueve sesiones donde exploramos a fondo cómo usar modelos de inteligencia artificial generativa desde Python. Durante la serie presentamos varios tipos de modelos, incluyendo LLMs, modelos de embeddings y modelos de visión. Profundizamos en técnicas populares como RAG, tool calling y salidas estructuradas. Evaluamos la calidad y seguridad de la IA mediante evaluaciones automatizadas y red-teaming. Finalmente, desarrollamos agentes de IA con frameworks populares de Python y exploramos el nuevo Model Context Protocol (MCP). Para que puedas aplicar lo aprendido, todos nuestros ejemplos funcionan con GitHub Models, un servicio que ofrece modelos gratuitos a todos los usuarios de GitHub para experimentación y aprendizaje. Aunque no hayas asistido a las sesiones en vivo, ¡todavía puedes acceder a todos los materiales usando los enlaces de abajo! Si eres instructor, puedes usar las diapositivas y el código en tus propias clases. Python + IA: Modelos de Lenguaje Grandes (LLMs) 📺 Ver grabación En esta sesión exploramos los LLMs, los modelos que impulsan ChatGPT y GitHub Copilot. Usamos Python con paquetes como OpenAI SDK y LangChain, experimentamos con prompt engineering y ejemplos few-shot, y construimos una aplicación completa basada en LLMs. También explicamos la importancia de la concurrencia y el streaming en apps de IA. Diapositivas: aka.ms/pythonia/diapositivas/llms Código: python-openai-demos Guía de repositorio: video Python + IA: Embeddings Vectoriales 📺 Ver grabación En nuestra segunda sesión, aprendemos sobre los modelos de embeddings vectoriales, que convierten texto o imágenes en arreglos numéricos. Comparamos métricas de distancia, aplicamos cuantización y experimentamos con modelos multimodales. Diapositivas: aka.ms/pythonia/diapositivas/embeddings Código: vector-embedding-demos Guía de repositorio: video Python + IA: Retrieval Augmented Generation (RAG) 📺 Ver grabación Descubrimos cómo usar RAG para mejorar las respuestas de los LLMs añadiendo contexto relevante. Construimos flujos RAG en Python con distintas fuentes (CSVs, sitios web, documentos y bases de datos) y terminamos con una aplicación completa basada en Azure AI Search. Diapositivas: aka.ms/pythonia/diapositivas/rag Código: python-openai-demos Guía de repositorio: video Python + IA: Modelos de Visión 📺 Ver grabación Los modelos de visión aceptan texto e imágenes, como GPT-4o y GPT-4o mini. Creamos una app de chat con imágenes, realizamos extracción de datos y construimos un motor de búsqueda multimodal. Diapositivas: aka.ms/pythonia/diapositivas/vision Código: vector-embeddings Guía de repositorio: video Python + IA: Salidas Estructuradas 📺 Ver grabación Aprendemos a generar respuestas estructuradas con LLMs usando Pydantic BaseModel. Este enfoque permite validación automática de los resultados, útil para extracción de entidades, clasificación y flujos de agentes. Diapositivas: aka.ms/pythonia/diapositivas/salidas Código: python-openai-demos y entity-extraction-demos Guía de repositorio: video Python + IA: Calidad y Seguridad 📺 Ver grabación Analizamos cómo usar la IA de forma segura y cómo evaluar la calidad de las respuestas. Mostramos cómo configurar Azure AI Content Safety y usar el Azure AI Evaluation SDK para medir resultados de los modelos. Diapositivas: aka.ms/pythonia/diapositivas/calidad Código: ai-quality-safety-demos Guía de repositorio: video Python + IA: Tool Calling 📺 Ver grabación Exploramos el tool calling, base para crear agentes de IA. Definimos herramientas con esquemas JSON y funciones Python, manejamos llamadas paralelas y flujos iterativos. Diapositivas: aka.ms/pythonia/diapositivas/herramientas Código: python-openai-demos Guía de repositorio: video Python + IA: Agentes de IA 📺 Ver grabación Creamos agentes de IA con frameworks como el agent-framework de Microsoft y LangGraph, mostrando arquitecturas con múltiples herramientas, supervisores y flujos con intervención humana. Diapositivas: aka.ms/pythonia/diapositivas/agentes Código: python-ai-agents-demos Guía de repositorio: video Python + IA: Model Context Protocol (MCP) 📺 Ver grabación Cerramos la serie con MCP (Model Context Protocol), la tecnología más innovadora de 2025. Mostramos cómo usar el SDK de FastMCP en Python para crear un servidor MCP local, conectarlo a GitHub Copilot, construir un cliente MCP y conectar frameworks como LangGraph y agent-framework. También discutimos los riesgos de seguridad asociados. Diapositivas: aka.ms/pythonia/diapositivas/mcp Código: python-ai-mcp-demos Guía de repositorio: video Además Si tienen preguntas, por favor, en el canal #Espanol en nuestro Discord: https://aka.ms/pythonia/discord Todos los jueves tengo office hours: https://aka.ms/pythonia/horas Encuentra más tutoriales 100% en español sobre Python + AI en https://youtube.com/@lagps