llm
27 TopicsIs it a bug or a feature? Using Prompty to automatically track and tag issues.
Introduction You’ve probably noticed a theme in my recent posts: tackling challenges with AI-powered solutions. In my latest project, I needed a fast way to classify and categorize GitHub issues using a predefined set of tags. The tag data was there, but the connections between issues and tags weren’t. To bridge that gap, I combined Azure OpenAI Service, Prompty, and a GitHub to automatically extract and assign the right labels. By automating issue tagging, I was able to: Streamline contributor workflows with consistent, on-time labels that simplify triage Improve repository hygiene by keeping issues well-organized, searchable, and easy to navigate Eliminate repetitive maintenance so the team can focus on community growth and developer empowerment Scale effortlessly as the project expands, turning manual chores into intelligent automation Challenge: 46 issues, no tags The Prompty repository currently hosts 46 relevant, but untagged, issues. To automate labeling, I first defined a complete tag taxonomy. Then I built a solution using: Prompty for prompt templating and function calling Azure OpenAI (gpt-4o-mini) to classify each issue Azure AI Search for retrieval-augmented context (RAG) Python to orchestrate the workflow and integrate with GitHub By the end, you’ll have an autonomous agent that fetches open issues, matches them against your custom taxonomy, and applies labels back on GitHub. Prerequisites: An Azure account with Azure AI Search and Azure OpenAI enabled Python and Prompty installed Clone the repo and install dependencies: pip install -r requirements.txt Step 1: Define the prompt template We’ll use Prompty to structure our LLM instructions. If you haven’t yet, install the Prompty VS Code extension and refer to the Prompty docs to get started. Prompty combines: Tooling to configure and deploy models Runtime for executing prompts and function calls Specification (YAML) for defining prompts, inputs, and outputs Our Prompty is set to use gpt-4o-mini and below is our sample input: sample: title: Including Image in System Message tags: ${file:tags.json} description: An error arises in the flow, coming up starting from the "complete" block. It seems like it is caused by placing a static image in the system prompt, since removing it causes the issue to go away. Please let me know if I can provide additional context. The inputs will be the tags file implemented using RAG, then we will fetch the issue title and description from GitHub once a new issue is posted. Next, in our Prompty file, we gave instructions of how the LLLM should work as follows: system: You are an intelligent GitHub issue tagging assistant. Available tags: ${inputs} {% if tags.tags %} ## Available Tags {% for tag in tags.tags %} name: {{tag.name}} description: {{tag.description}} {% endfor %} {% endif %} Guidelines: 1. Only select tags that exactly match the provided list above 2. If no tags apply, return an empty array [] 3. Return ONLY a valid JSON array of strings, nothing else 4. Do not explain your choices or add any other text Use your understanding of the issue and refer to documentation at https://prompty.ai to match appropriate tags. Tags may refer to: - Issue type (e.g., bug, enhancement, documentation) - Tool or component (e.g., tool:cli, tracer:json-tracer) - Technology or integration (e.g., integration:azure, runtime:python) - Conceptual elements (e.g., asset:template-loading) Return only a valid JSON array of the issue title, description and tags. If the issue does not fit in any of the categories, return an empty array with: ["No tags apply to this issue. Please review the issue and try again."] Example: Issue Title: "App crashes when running in Azure CLI" Issue Body: "Running the generated code in Azure CLI throws a Python runtime error." Tag List: ["bug", "tool:cli", "runtime:python", "integration:azure"] Output: ["bug", "tool:cli", "runtime:python", "integration:azure"] user: Issue Title: {{title}} Issue Description: {{description}} Once the Prompty file was ready, I right clicked on the file and converted it to Prompty code, which provided a Python base code to get started from, instead of building from scratch. Step 2: enrich with context using Azure AI Search To be able to generate labels for our issues, I created a sample of tags, around 20, each with a title and a description of what it does. As a starting point, I started with Azure AI Foundry, where I uploaded the data and created an index. This typically takes about 1hr to successfully complete. Next, I implemented a retrieval function: def query_azure_search(query_text): """Query Azure AI Search for relevant documents and tags.""" search_client = SearchClient( endpoint=SEARCH_SERVICE_ENDPOINT, index_name=SEARCH_INDEX_NAME, credential=AzureKeyCredential(SEARCH_API_KEY) ) # Perform the search results = search_client.search( search_text=query_text, query_type=QueryType.SIMPLE, top=5 # Retrieve top 5 results ) # Extract content and tags from results documents = [doc["content"] for doc in results] tags = [doc.get("tags", []) for doc in results] # Assuming "tags" is a field in the index # Flatten and deduplicate tags unique_tags = list(set(tag for tag_list in tags for tag in tag_list)) return documents, unique_tags Step 3: Orchestrate the Workflow In addition, to adding RAG, I added functions in the basic.py file to: fetch_github_issues: calls the GitHub REST API to list open issues and filters out any that already have labels. run_with_rag: on the issues selected, calls the query_azure_search to append any retrieved docs, tags the issues and parses the JSON output from the prompt to a list for the labels label_issue: patches the issue to apply a list of labels. process_issues: this fetches all unlabelled issues, extracts the rag pipeline to generate the tags, and calls the labels_issue tag to apply the tags scheduler loop: this runs every so often to check if there's a new issue and apply a label Step 4: Validate and Run Ensure all .env variables are set (API keys, endpoints, token). Install dependencies and execute using: python basic.py Create a new GitHub issue and watch as your agent assigns tags in real time. Below is a short demo video here to illustrate the workflow. Next Steps Migrate from PATs to a GitHub App for tighter security Create multi-agent application and add an evaluator agent to review tags before publishing Integrate with GitHub Actions or Azure Pipelines for CI/CD Conclusion and Resources By combining Prompty, Azure AI Search, and Azure OpenAI, you can fully automate GitHub issue triage—improving consistency, saving time, and scaling effortlessly. Adapt this pattern to any classification task in your own workflows! You can learn more using the following resources: Prompty documentation to learn more on Prompty Agents for Beginners course to learn how you can build your own agentStudy Buddy: Learning Data Science and Machine Learning with an AI Sidekick
If you've ever wished for a friendly companion to guide you through the world of data science and machine learning, you're not alone. As part of the "For Beginners" curriculum, I recently built a Study Buddy Agent, an AI-powered assistant designed to help learners explore data science interactively, intuitively, and joyfully. Why a Study Buddy? Learning something new can be overwhelming, especially when you're navigating complex topics like machine learning, statistics, or Python programming. The Study Buddy Agent is here to change that. It brings the curriculum to life by answering questions, offering explanations, and nudging learners toward deeper understanding, all in a conversational format. Think of it as your AI-powered lab partner: always available, never judgmental, and endlessly curious. Built with chatmodes, Powered by Purpose The agent lives inside a .chatmodes file in the https://github.com/microsoft/Data-Science-For-Beginners/blob/main/.github/chatmodes/study-mode.chatmode.md. This file defines how the agent behaves, what tone it uses, and how it interacts with learners. I designed it to be friendly, encouraging, and beginner-first—just like the curriculum itself. It’s not just about answering questions. The Study Buddy is trained to: Reinforce key concepts from the curriculum Offer hints and nudges when learners get stuck Encourage exploration and experimentation Celebrate progress and milestones What’s Under the Hood? The agent uses GitHub Copilot's chatmode, which allows developers to define custom behaviors for AI agents. By aligning the agent’s responses with the curriculum’s learning objectives, we ensure that learners stay on track while enjoying the flexibility of conversational learning. How You Can Use It YouTube Video here: Study Buddy - Data Science AI Sidekick Clone the repo: Head to the https://github.com/microsoft/Data-Science-For-Beginners and clone it locally or use Codespaces. Open the GitHub Copilot Chat, and select Study Buddy: This will activate the Study Buddy. Start chatting: Ask questions, explore topics, and let the agent guide you. What’s Next? This is just the beginning. I’m exploring ways to: Expand the agent to other beginner curriculums (Web Dev, AI, IoT) Integrate feedback loops so learners can shape the agent’s evolution Final Thoughts In my role, I believe learning should be inclusive, empowering, and fun. The Study Buddy Agent is a small step toward that vision, a way to make data science feel less like a mountain and more like a hike with a good friend. Try it out, share your feedback, and let’s keep building tools that make learning magical. Join us on Discord to share your feedback.From Cloud to Chip: Building Smarter AI at the Edge with Windows AI PCs
As AI engineers, we’ve spent years optimizing models for the cloud, scaling inference, wrangling latency, and chasing compute across clusters. But the frontier is shifting. With the rise of Windows AI PCs and powerful local accelerators, the edge is no longer a constraint it’s now a canvas. Whether you're deploying vision models to industrial cameras, optimizing speech interfaces for offline assistants, or building privacy-preserving apps for healthcare, Edge AI is where real-world intelligence meets real-time performance. Why Edge AI, Why Now? Edge AI isn’t just about running models locally, it’s about rethinking the entire lifecycle: - Latency: Decisions in milliseconds, not round-trips to the cloud. - Privacy: Sensitive data stays on-device, enabling HIPAA/GDPR compliance. - Resilience: Offline-first apps that don’t break when the network does. - Cost: Reduced cloud compute and bandwidth overhead. With Windows AI PCs powered by Intel and Qualcomm NPUs and tools like ONNX Runtime, DirectML, and Olive, developers can now optimize and deploy models with unprecedented efficiency. What You’ll Learn in Edge AI for Beginners The Edge AI for Beginners curriculum is a hands-on, open-source guide designed for engineers ready to move from theory to deployment. Multi-Language Support This content is available in over 48 languages, so you can read and study in your native language. What You'll Master This course takes you from fundamental concepts to production-ready implementations, covering: Small Language Models (SLMs) optimized for edge deployment Hardware-aware optimization across diverse platforms Real-time inference with privacy-preserving capabilities Production deployment strategies for enterprise applications Why EdgeAI Matters Edge AI represents a paradigm shift that addresses critical modern challenges: Privacy & Security: Process sensitive data locally without cloud exposure Real-time Performance: Eliminate network latency for time-critical applications Cost Efficiency: Reduce bandwidth and cloud computing expenses Resilient Operations: Maintain functionality during network outages Regulatory Compliance: Meet data sovereignty requirements Edge AI Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making. Core Principles: On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs) Offline capability: Functions without persistent internet connectivity Low latency: Immediate responses suited for real-time systems Data sovereignty: Keeps sensitive data local, improving security and compliance Small Language Models (SLMs) SLMs like Phi-4, Mistral-7B, Qwen and Gemma are optimized versions of larger LLMs, trained or distilled for: Reduced memory footprint: Efficient use of limited edge device memory Lower compute demand: Optimized for CPU and edge GPU performance Faster startup times: Quick initialization for responsive applications They unlock powerful NLP capabilities while meeting the constraints of: Embedded systems: IoT devices and industrial controllers Mobile devices: Smartphones and tablets with offline capabilities IoT Devices: Sensors and smart devices with limited resources Edge servers: Local processing units with limited GPU resources Personal Computers: Desktop and laptop deployment scenarios Course Modules & Navigation Course duration. 10 hours of content Module Topic Focus Area Key Content Level Duration 📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs 📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs 🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs 🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs ⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs 🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs 🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs 💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs 🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs Each module includes Jupyter notebooks, code samples, and deployment walkthroughs, perfect for engineers who learn by doing. Developer Highlights - 🔧 Olive: Microsoft's optimization toolchain for quantization, pruning, and acceleration. - 🧩 ONNX Runtime: Cross-platform inference engine with support for CPU, GPU, and NPU. - 🎮 DirectML: GPU-accelerated ML API for Windows, ideal for gaming and real-time apps. - 🖥️ Windows AI PCs: Devices with built-in NPUs for low-power, high-performance inference. Local AI: Beyond the Edge Local AI isn’t just about inference, it’s about autonomy. Imagine agents that: - Learn from local context - Adapt to user behavior - Respect privacy by design With tools like Agent Framework, Azure AI Foundry and Windows Copilot Studio, and Foundry Local developers can orchestrate local agents that blend LLMs, sensors, and user preferences, all without cloud dependency. Try It Yourself Ready to get started? Clone the Edge AI for Beginners GitHub repo, run the notebooks, and deploy your first model to a Windows AI PC or IoT devices Whether you're building smart kiosks, offline assistants, or industrial monitors, this curriculum gives you the scaffolding to go from prototype to production.¡Curso oficial y gratuito de GenAI y Python! 🚀
¿Quieres aprender a usar modelos de IA generativa en tus aplicaciones de Python?Estamos organizando una serie de nueve transmisiones en vivo, en inglés y español, totalmente dedicadas a la IA generativa. Vamos a cubrir modelos de lenguaje (LLMs), modelos de embeddings, modelos de visión, y también técnicas como RAG, function calling y structured outputs. Además, te mostraremos cómo construir Agentes y servidores MCP, y hablaremos sobre seguridad en IA y evaluaciones, para asegurarnos de que tus modelos y aplicaciones generen resultados seguros. 🔗 Regístrate para toda la serie. Además de las transmisiones en vivo, puedes unirte a nuestras office hours semanales en el AI Foundry Discord de para hacer preguntas que no se respondan durante el chat. ¡Nos vemos en los streams! 👋🏻 Here’s your HTML converted into clean, readable text format (perfect for a newsletter, blog post, or social media caption): Modelos de Lenguaje 📅 7 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor ¡Únete a la primera sesión de nuestra serie de Python + IA! En esta sesión, hablaremos sobre los Modelos de Lenguaje (LLMs), los modelos que impulsan ChatGPT y GitHub Copilot. Usaremos Python para interactuar con LLMs utilizando paquetes como el SDK de OpenAI y Langchain. Experimentaremos con prompt engineering y ejemplos few-shot para mejorar los resultados. También construiremos una aplicación full stack impulsada por LLMs y explicaremos la importancia de la concurrencia y el streaming en apps de IA orientadas al usuario. 👉 Si querés seguir los ejemplos en vivo, asegurate de tener una cuenta de GitHub. Embeddings Vectoriales 📅 8 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor En la segunda sesión de Python + IA, exploraremos los embeddings vectoriales, una forma de codificar texto o imágenes como arrays de números decimales. Estos modelos permiten realizar búsquedas por similitud en distintos tipos de contenido. Usaremos modelos como la serie text-embedding-3 de OpenAI, visualizaremos resultados en Python y compararemos métricas de distancia. También veremos cómo aplicar cuantización y cómo usar modelos multimodales de embedding. 👉 Si querés seguir los ejemplos en vivo, asegurate de tener una cuenta de GitHub. Recuperación-Aumentada Generación (RAG) 📅 9 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor En la tercera sesión, exploraremos RAG, una técnica que envía contexto al LLM para obtener respuestas más precisas dentro de un dominio específico. Usaremos distintas fuentes de datos —CSVs, páginas web, documentos, bases de datos— y construiremos una app RAG full-stack con Azure AI Search. Modelos de Visión 📅 14 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor ¡La cuarta sesión trata sobre modelos de visión como GPT-4o y 4o-mini! Estos modelos pueden procesar texto e imágenes, generando descripciones, extrayendo datos, respondiendo preguntas o clasificando contenido. Usaremos Python para enviar imágenes a los modelos, crear una app de chat con imágenes e integrarlos en flujos RAG. 👉 Si querés seguir los ejemplos en vivo, asegurate de tener una cuenta de GitHub. Salidas Estructuradas 📅 15 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor En la quinta sesión aprenderemos a hacer que los LLMs generen respuestas estructuradas según un esquema. Exploraremos el modo structured outputs de OpenAI y cómo aplicarlo para extracción de entidades, clasificación y flujos con agentes. 👉 Si querés seguir los ejemplos en vivo, asegurate de tener una cuenta de GitHub. Calidad y Seguridad 📅 16 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor En la sexta sesión hablaremos sobre cómo usar IA de manera segura y evaluar la calidad de las salidas. Mostraremos cómo configurar Azure AI Content Safety, manejar errores en código Python y evaluar resultados con el SDK de Evaluación de Azure AI. Tool Calling 📅 21 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor En la última semana de la serie, nos enfocamos en tool calling (function calling), la base para construir agentes de IA. Aprenderemos a definir herramientas en Python o JSON, manejar respuestas de los modelos y habilitar llamadas paralelas y múltiples iteraciones. 👉 Si querés seguir los ejemplos en vivo, asegurate de tener una cuenta de GitHub. Agentes de IA 📅 22 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor ¡En la penúltima sesión construiremos agentes de IA! Usaremos frameworks como Langgraph, Semantic Kernel, Autogen, y Pydantic AI. Empezaremos con ejemplos simples y avanzaremos a arquitecturas más complejas como round-robin, supervisor, graphs y ReAct. Model Context Protocol (MCP) 📅 23 de octubre, 2025 | 10:00 PM - 11:00 PM (UTC) 🔗 Regístrate para la transmisión en Reactor Cerramos la serie con Model Context Protocol (MCP), la tecnología abierta más candente de 2025. Aprenderás a usar FastMCP para crear un servidor MCP local y conectarlo a chatbots como GitHub Copilot. También veremos cómo integrar MCP con frameworks de agentes como Langgraph, Semantic Kernel y Pydantic AI. Y, por supuesto, hablaremos sobre los riesgos de seguridad y las mejores prácticas para desarrolladores. ¿Querés que lo reformatee para publicación en Markdown (para blogs o repos) o en texto plano con emojis y separadores estilo redes sociales?Swagger Auto-Generation on MCP Server
Would you like to generate a swagger.json directly on an MCP server on-the-fly? In many use cases, using remote MCP servers is not uncommon. In particular, if you're using Azure API Management (APIM), Azure API Center (APIC) or Copilot Studio in Power Platform, integrating with remote MCP servers is inevitable.Use Prompty with Foundry Local
Prompty is a powerful tool for managing prompts in AI applications. Not only does it allow you to easily test your prompts during development, but it also provides observability, understandability and portability. Here's how to use Prompty with Foundry Local to support your AI applications with on-device inference. Foundry Local At the Build '25 conference, Microsoft announced Foundry Local, a new tool that allows developers to run AI models locally on their devices. Foundry Local offers developers several benefits, including performance, privacy, and cost savings. Why Prompty? When you build AI applications with Foundry Local, but also other language model hosts, consider using Prompty to manage your prompts. With Prompty, you store your prompts in separate files, making it easy to test and adjust them without changing your code. Prompty also supports templating, allowing you to create dynamic prompts that adapt to different contexts or user inputs. Using Prompty with Foundry Local The most convenient way to use Prompty with Foundry Local is to create a new configuration for Foundry Local. Using a separate configuration allows you to seamlessly test your prompts without having to repeat the configuration for every prompt. It also allows you to easily switch between different configurations, such as Foundry Local and other language model hosts. Install Prompty and Foundry Local To get started, install the Prompty Visual Studio Code extension and Foundry Local. Start Foundry Local from the command line by running foundry service start and note the URL on which it listens for requests, such as http://localhost:5272 or http://localhost:5273. Create a new Prompty configuration for Foundry Local If you don't have a Prompty file yet, create one to easily access Prompty settings. In Visual Studio Code, open Explorer, click right to open the context menu, and select New Prompty. This creates a basic.prompty file in your workspace. Create the Foundry Local configuration From the status bar, select default to open the Prompty configuration picker. When prompted to select the configuration, choose Add or Edit.... In the settings pane, choose Edit in settings.json. In the settings.json file, to the prompty.modelConfigurations collection, add a new configuration for Foundry Local, for example (ignore comments): { // Foundry Local model ID that you want to use "name": "Phi-4-mini-instruct-generic-gpu", // API type; Foundry Local exposes OpenAI-compatible APIs "type": "openai", // API key required for the OpenAI SDK, but not used by Foundry Local "api_key": "local", // The URL where Foundry Local exposes its API "base_url": "http://localhost:5272/v1" } Important: Be sure to check that you use the correct URL for Foundry Local. If you started Foundry Local with a different port, adjust the URL accordingly. Save your changes, and go back to the .prompty file. Once again, select the default configuration from the status bar, and choose Phi-4-mini-instruct-generic-gpu from the list. Since the model and API are configured, you can remove them from the .prompty file. Test your prompts With the newly created Foundry Local configuration selected, in the .prompty file, press F5 to test the prompt. The first time you run the prompt, it may take a few seconds because Foundry Local needs to load the model. Eventually, you should see the response from Foundry Local in the output pane. Summary Using Prompty with Foundry Local allows you to easily manage and test your prompts while running AI models locally. By creating a dedicated Prompty configuration for Foundry Local, you can conveniently test your prompts with Foundry Local models and switch between different model hosts and models if needed.European AI and Cloud Summit 2025
Dusseldorf , Germany added 3,000+ tech enthusiast and hosted the Microsoft for Startups Cloud AI Pitch Competition between May 26-28, 2025. We were pleased to attend the European AI Cloud and Collaboration Summits and Biz Apps Summit– to participate and to gain so much back from everyone. It was a packed week filled with insights, feedback, and fun. Below is a recap of various aspects of the event - across keynotes, general sessions, breakout sessions, and the Expo Hall. The event in a nutshell: 3,000+ attendees 237 speakers overall – 98 Microsoft Valued Professionals, 16 Microsoft Valued Professional Regional Directorss, 51 from Microsoft Product Groups and Engineering 306 sessions | 13 tutorials (workshops) 70 sponsors | One giant Expo Hall PreDay Workshop AI Beginner Development Powerclass This workshop is designed to give you a hands-on introduction to the core concepts and best practices for interacting with OpenAI models in Azure AI Foundry portal. Innovate with Azure OpenAI's GPT-4o multimodal model in this hands-on experience in Azure AI Foundry. Learn the core concepts and best practices to effectively generate with text, sound, and images using GPT-4o-mini, DALL-E and GPT-4o-realtime. Create AI assistants that enhance user experiences and drive innovation. Workshop for you azure-ai-foundry/ai-tutorials: This repo includes a collection of tutorials to help you get started with building Generative AI applications using Azure AI Foundry. Each tutorial is designed to be self-contained and provides step-by-step instructions to guide you in the development process. Keynotes & general sessions Day 1 Keynote The Future of AI Is Already Here, Marco Casalaina, VP Products of Azure AI and AI Futurist at Microsoft This session discussed the new and revolutionary changes that you're about to see in AI - and how many of them are available for you to try now. Marco shared how AI is becoming ubiquitous, multimodal, multilingual, and autonomous, and how it will change our lives and our businesses. This session covered: • Incredible advances in multilingual AI • How Copilot (and every AI) are grounded to data, and how we do it in Azure OpenAI • Responsible AI, including evaluation for correctness, and real time content safety • The rise of AI Agents • And how AI is going to move from question-answering to taking action Day 2 Keynote Leveraging Microsoft AI: Navigating the EU AI Act and Unlocking Future Opportunities, Azar Koulibaly, General Manager and Associate General Counsel This session was for developers and business decision makers, Azar set the stage for Microsoft’s advancements in AI and how they align with the latest regulatory framework. Exploring the EU AI Act, its key components, and its implications for AI development and deployment within the European Union. The audience gained a comprehensive understanding of the EU AI Act's objectives, including the promotion of trustworthy AI, the mitigation of risks, and the enhancement of transparency and accountability. Learning aboutMicrosoft's Cloud and AI Services provide robust support for compliance with these new regulations, ensuring that your AI projects are both innovative and legally sound and Microsoft trust center resources. He delved into the opportunities that come with using Microsoft’s state-of-the-art tools, services, and technologies. Discover how partnering with Microsoft can accelerate your AI initiatives, drive business growth, and create competitive advantages in an evolving regulatory landscape. Join us to unlock the full potential of AI while navigating the complexities of the EU AI Act with confidence. General Sessions It is crucial to ensure your organization is technically ready for the full potential of AI. The sessions focused on technical readiness and ensuring you have the latest guidance. Our experts will shared the best practices and provide guidance on how to leverage AI and Azure AI Foundry to maximize the benefits of Agents, LLM and Generative within your organization. Expo Hall + Cloud AI Statup Stage + tutorials The Expo Hall was Buzzing with demos, discussions, interviews, podcasts, lightning talks, popcorn, catering trucks, cotton candy, SWAG, prizes, and community. There was a busy Cloud AI StartupStage, a Business Stage, and shorter talks delivered in front of a shiny airstream trailer. Cloud AI Startup Stage This was a highly informative and engaging event focused on Artificial Intelligence (AI) and its potential for startups. The Microsoft for Startups is a platform to provide startups with the resources, tools, and support they need to succeed. This portion of the event offered value to budding entrepreneurs and established startups looking to scale. For example, on day 2, we focused on accelerating innovation with Microsoft Founders Hub and Azure AI. Startups could kickstart their journey with Azure credits and gain access to 30+ tools and services, benefiting from additional credits and offerings as they evolve. It’s a great way for Startups to navigate technical and business challenges. Cloud AI Startup Pitch The Microsoft for Startups AI Pitch Competition and Startup Stage at European Cloud Summit 2025 This was a highly informative and engaging event focused on Artificial Intelligence (AI) and its potential for startups. The Microsoft Startup Programme was introduced as a platform that provides startups with the resources, tools, and support they need to succeed. The AI Empowerment session provided an in-depth overview of the various AI services available through Microsoft Azure AI Foundry and how these cutting-edge technologies can be integrated into business operations. This was perfect for startups looking to get started with AI or those interested in joining the Microsoft Startup Programme. The Spotlight on Innovation session showcased innovative startups from the European Cloud Summit, giving attendees a unique insight into the cutting-edge ideas that are shaping our future. The Empowering Innovation session featured a panel of experts and successful startup founders sharing insights on leveraging Microsoft technologies, navigating the startup ecosystem, and securing funding. This was valuable for budding entrepreneurs or established startups looking to scale. Startup Showcases Holistic AI - End to End AI Governance Platform, Raj Bharat Patel, Securing Advantage in the Era of Agentic AI With this autonomy comes high variability: the difference between a minor efficiency and a major one could mean millions in savings. Conversely, a seemingly small misstep could cascade into catastrophic reputational or compliance risk. The stakes are high—but so is the potential. The next frontier introduces a new paradigm: AI managing AI. As organizations deploy swarms of autonomous agents across business functions, the challenge expands beyond governing human-AI interactions. Now, it's about ensuring that AI agents can monitor, evaluate, and optimize each other—in real time, at scale. This demands a shift in both architecture and mindset: toward native-AI platforms and a new human role, moving from human-in-the-loop to human-on-the-loop—strategically overseeing autonomous systems, not micromanaging them. In this session, Raj Bharat Patel will explore how forward-thinking enterprises can prepare for this emerging reality—building governance and orchestration infrastructures that enable scale, speed, and safety in the age of agentic AI. D-ID | The #1 Choice for AI Generated Video Creation Platform, Yaniv Levi In a world increasingly powered by AI, how do we make digital experiences feel more human? At D-ID we enable businesses to create lifelike, interactive avatars that are transforming the way users communicate with AI, making it more intuitive, personal, and memorable. In this session, we’ll share how our collaboration with Microsoft for Startups helped us scale and innovate, enabling seamless integration with Microsoft’s tools to enhance customer-facing AI agents, and LLM-powered solutions while adding a powerful and personalized new layer of humanlike expression. Startup Pitch Competition Day 2 of the event focused on accelerating innovation with Microsoft Starups and Azure AI Foundry. Startups can kickstart their journey with Azure credits and gain access to 30+ tools and services, benefiting from additional credits and offerings as they evolve. The Azure AI Foundry provides access to an extensive range of AI models, including OpenAI, Meta, Nvidia, Hugging Face. Moreover, startups can navigate through technical and business challenges with the help of free 1:1 sessions with Microsoft experts. The Cloud Startup Stage Competition showcased the most innovative startups in the Microsoft Azure and Azure OpenAI ecosystem, highlighting their groundbreaking solutions and business models. This was a celebration of innovation and success and provided insights into the experiences, challenges, and future plans of these startups The Judges The Pitches . The Winners 1 st Place Graia 2 nd Place iThink365 3 rd Place ShArc Overall, this event was highly informative, engaging, and valuable for anyone interested in AI and its potential for startups. The Microsoft Startup Programme and Azure AI Foundry are powerful tools that can help startups achieve success and transform their ideas into successful businesses. In the end... We are grateful for this year's active and engaging #CollabSummit & #CloudSummit #BizAppSummit— so much goodness, caring, learning, and fun! Great questions, stories, understanding of your concerns, and the sharing in fun. Thank you and see you next year! We look forward to seeing in Cololgne - May 5-7, 2025 – Collaboration Summit (@CollabSummit), Cloud Summit (@EUCloudSummit), and BizApps Summit (@BizAppsSummit) and continue the discussion around AI in our Azure AI Discord CommunityFeedback Loops in GenAI with Azure Functions, Azure OpenAI and Neon serverless Postgres
Generative Feedback Loops (GFL) are focused on optimizing and improving the AI’s outputs over time through a cycle of feedback and learning based on the production data. Learn how to build GenAI solution with feedback loops using Azure OpenAI, Azure Functions and Neon Serverless PostgresExploring Azure AI Model Inference: A Comprehensive Guide
Azure AI model inference provides access to a wide range of flagship models from leading providers such as AI21 Labs, Azure OpenAI, Cohere, Core42, DeepSeek, Meta, Microsoft, Mistral AI, and NTT Data https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models . These models can be consumed as APIs, allowing you to integrate advanced AI capabilities into your applications seamlessly. Model Families and Their Capabilities Azure AI Foundry categorises its models into several families, each offering unique capabilities: AI21 Labs: Known for the Jamba family models, which are production-grade large language models (LLMs) using AI21's hybrid Mamba-Transformer architecture. These models support chat completions, tool calling, and multiple languages including English, French, Spanish, Portuguese, German, Arabic, and Hebrew. https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models Azure OpenAI: Offers diverse models designed for tasks such as reasoning, problem-solving, natural language understanding, and code generation. These models support text and image inputs, multiple languages, and tool calling https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models Cohere: Provides models for embedding and command tasks, supporting multilingual capabilities and various response formats https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models Core42: Features the Jais-30B-chat model, designed for chat completions https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models DeepSeek: Includes models like DeepSeek-V3 and DeepSeek-R1, focusing on advanced AI tasks https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models Meta: Offers the Llama series models, which are instruction-tuned for various AI tasks https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models Microsoft: Provides the Phi series models, supporting multimodal instructions and vision tasks https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models Mistral AI: Features models like Ministral-3B and Mistral-large, designed for high-performance AI tasks https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models NTT Data: Offers the Tsuzumi-7b model, focusing on specific AI capabilities https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models Deployment and Integration Azure AI model inference supports global standard deployment, ensuring consistent throughput and performance. Models can be deployed in various configurations, including regional deployments and sovereign clouds such as Azure Government, Azure Germany, and Azure China https://learn.microsoft.com/azure/ai-foundry/model-inference/concepts/models To integrate these models into your applications, you can use the Azure AI model inference API, which supports multiple programming languages including Python, C#, JavaScript, and Java. This flexibility allows you to deploy models multiple times under different configurations, providing a robust and scalable solution for your AI needs https://learn.microsoft.com/en-us/azure/ai-foundry/model-inference/overview Conclusion Azure AI model inference in Azure AI Foundry offers a comprehensive solution for integrating advanced AI models into your applications. With a wide range of models from leading providers, flexible deployment options, and robust API support, Azure AI Foundry empowers you to leverage cutting-edge AI capabilities without the complexity of hosting and managing the infrastructure. Explore the Azure AI model catalog today and unlock the potential of AI for your business. Join the Conversation on Azure AI Foundry Discussions! Have ideas, questions, or insights about AI? Don't keep them to yourself! Share your thoughts, engage with experts, and connect with a community that’s shaping the future of artificial intelligence. 👉 Click here to join the discussion!