data platform
36 TopicsAzure Resiliency: Proactive Continuity with Agentic Experiences and Frontier Innovation
Introduction In today’s digital-first world, even brief downtime can disrupt revenue, reputation, and operations. Azure’s new resiliency capabilities empower organizations to anticipate and withstand disruptions—embedding continuity into every layer of their business. At Microsoft Ignite, we’re unveiling a new era of resiliency in Azure, powered by agentic experiences. The new Azure Copilot resiliency agent brings AI-driven workflows that proactively detect vulnerabilities, automate backups, and integrate cyber recovery for ransomware protection. IT teams can instantly assess risks and deploy solutions across infrastructure, data, and cyber recovery—making resiliency a living capability, not just a checklist. The Evolution from Azure Business Continuity Center to Resiliency in Azure Microsoft is excited to announce that the Azure Business Continuity Center (ABCC) is evolving into resiliency capabilities in Azure. This evolution expands its scope from traditional backup and disaster recovery to a holistic resiliency framework. This new experience is delivered directly in the Azure Portal, providing integrated dashboards, actionable recommendations, and one-click access to remediation—so teams can manage resiliency where they already operate. Learn more about this: aka.ms/Ignite2025/Resiliencyblog. To see the new experience, visit the Azure Portal. The Three Pillars of Resiliency Azure’s resiliency strategy is anchored in three foundational pillars, each designed to address a distinct dimension of operational continuity: Infrastructure Resiliency: Built-in redundancy and zonal/regional management keep workloads running during disruptions. The resiliency agent in Azure Copilot automates posture checks, risk detection, and remediation. Data Resiliency: Automated backup and disaster recovery meet RPO/RTO and compliance needs across Azure, on-premises, and hybrid. Cyber Recovery: Isolated recovery vaults, immutable backups, and AI-driven insights defend against ransomware and enable rapid restoration. With these foundational pillars in place, organizations can adopt a lifecycle approach to resiliency—ensuring continuity from day one and adapting as their needs evolve. The Lifecycle Approach: Start Resilient, Get Resilient, Stay Resilient While the pillars define what resiliency protects, the lifecycle stages in resiliency journey define how organizations implement and sustain it over time. For the full framework, see the prior blog; below we focus on what’s new and practical. The resiliency agent in Azure Copilot empowers organizations to embed resiliency at every stage of their cloud journey—making proactive continuity achievable from day one and sustainable over time. Start Resilient: With the new resiliency agent, teams can “Start Resilient” by leveraging guided experiences and automated posture assessments that help design resilient workloads before deployment. The agent surfaces architecture gaps, validates readiness, and recommends best practices—ensuring resiliency is built in from the outset, not bolted on later. Get Resilient: As organizations scale, the resiliency agent enables them to “Get Resilient” by providing estate-wide visibility, automated risk assessments, and configuration recommendations. AI-driven insights help identify blind spots, remediate risks, and accelerate the adoption of resilient-by-default architectures—so resiliency is actively achieved across all workloads, not just planned. Stay Resilient: To “Stay Resilient,” the resiliency agent delivers continuous validation, monitoring, and improvement. Automated failure simulations, real-time monitoring, and attestation reporting allow teams to proactively test recovery workflows and ensure readiness for evolving threats. One-click failover and ongoing posture checks help sustain compliance and operational continuity, making resiliency a living capability that adapts as your business and technology landscape changes Best Practices for Proactive Continuity in Resiliency To enable proactive continuity, organizations should: Architect for high availability across multiple availability zones and regions (prioritize Tier-0/1 workloads). Automate recovery with Azure Site Recovery and failover playbooks for orchestrated, rapid restoration. Leverage integrated zonal resiliency experiences to uncover blind spots and receive tailored recommendations. Continuously validate using Chaos Studio to simulate outages and test recovery workflows. Monitor SLAs, RPO/RTO, and posture metrics with Azure Monitor and Policy; iterate for ongoing improvement. Use the Azure Copilot resiliency agent for AI-driven posture assessments, remediation scripts, and cost analysis to streamline operations. Conclusion & Next Steps Resiliency capabilities in Azure unifies infrastructure, data, and cyber recovery while guiding organizations to start, get, and stay resilient. Teams adopting these capabilities see faster posture improvements, less manual effort, and continuous operational continuity. This marks a fundamental shift—from reactive recovery to proactive continuity. By embedding resiliency as a living capability, Azure empowers organizations to anticipate, withstand, and recover from disruptions, adapting to new threats and evolving business needs. Organizations adopting Resiliency in Azure see measurable impact: Accelerated posture improvement with AI-driven insights and actionable recommendations. Less manual effort through automation and integrated recovery workflows. Continuous operational continuity via ongoing validation and monitoring Ready to take the next step? Explore these resources and sessions: Resiliency in Azure (Portal) Resiliency in Azure (Learn Docs) Agents (preview) in Azure Copilot Resiliency Solutions Reliability Guides by Service Azure Essentials Azure Accelerate Ignite Announcement Key Ignite 2025 Sessions to Watch: Resilience by Design: Secure, Scalable, AI-Ready Cloud with Azure (BRK217) Resiliency & Recovery with Azure Backup and Site Recovery (BRK146) Architect Resilient Apps with Azure Backup and Reliability Features (BRK148) Architecting for Resiliency on Azure Infrastructure (BRK178) All sessions are available on demand—perfect for catching up or sharing with your team. Browse the full session catalog and start building resiliency by default today.355Views3likes0CommentsAccelerating HPC and EDA with Powerful Azure NetApp Files Enhancements
High-Performance Computing (HPC) and Electronic Design Automation (EDA) workloads demand uncompromising performance, scalability, and resilience. Whether you're managing petabyte-scale datasets or running compute intensive simulations, Azure NetApp Files delivers the agility and reliability needed to innovate without limits.368Views0likes0CommentsBuilding AI Agents: Workflow-First vs. Code-First vs. Hybrid
AI Agents are no longer just a developer’s playground. They’re becoming essential for enterprise automation, decision-making, and customer engagement. But how do you build them? Do you go workflow-first with drag-and-drop designers, code-first with SDKs, or adopt a hybrid approach that blends both worlds? In this article, I’ll walk you through the landscape of AI Agent design. We’ll look at workflow-first approaches with drag-and-drop designers, code-first approaches using SDKs, and hybrid models that combine both. The goal is to help you understand the options and choose the right path for your organization. Why AI Agents Need Orchestration Before diving into tools and approaches, let’s talk about why orchestration matters. AI Agents are not just single-purpose bots anymore. They often need to perform multi-step reasoning, interact with multiple systems, and adapt to dynamic workflows. Without orchestration, these agents can become siloed and fail to deliver real business value. Here’s what I’ve observed as the key drivers for orchestration: Complexity of Enterprise Workflows Modern business processes involve multiple applications, data sources, and decision points. AI Agents need a way to coordinate these steps seamlessly. Governance and Compliance Enterprises require control over how AI interacts with sensitive data and systems. Orchestration frameworks provide guardrails for security and compliance. Scalability and Maintainability A single agent might work fine for a proof of concept, but scaling to hundreds of workflows requires structured orchestration to avoid chaos. Integration with Existing Systems AI Agents rarely operate in isolation. They need to plug into ERP systems, CRMs, and custom apps. Orchestration ensures these integrations are reliable and repeatable. In short, orchestration is the backbone that turns AI Agents from clever prototypes into enterprise-ready solutions. Behind the Scenes I’ve always been a pro-code guy. I started my career on open-source coding in Unix and hardly touched the mouse. Then I discovered Visual Studio, and it completely changed my perspective. It showed me the power of a hybrid approach, the best of both worlds. That said, I won’t let my experience bias your ideas of what you’d like to build. This blog is about giving you the full picture so you can make the choice that works best for you. Workflow-First Approach Workflow-first platforms are more than visual designers and not just about drag-and-drop simplicity. They represent a design paradigm where orchestration logic is abstracted into declarative models rather than imperative code. These tools allow you to define agent behaviors, event triggers, and integration points visually, while the underlying engine handles state management, retries, and scaling. For architects, this means faster prototyping and governance baked into the platform. For developers, it offers extensibility through connectors and custom actions without sacrificing enterprise-grade reliability. Copilot Studio Building conversational agents becomes intuitive with a visual designer that maps prompts, actions, and connectors into structured flows. Copilot Studio makes this possible by integrating enterprise data and enabling agents to automate tasks and respond intelligently without deep coding. Building AI Agents using Copilot Studio Design conversation flows with adaptive prompts Integrate Microsoft Graph for contextual responses Add AI-driven actions using Copilot extensions Support multi-turn reasoning for complex queries Enable secure access to enterprise data sources Extend functionality through custom connectors Logic Apps Adaptive workflows and complex integrations are handled through a robust orchestration engine. Logic Apps introduces Agent Loop, allowing agents to reason iteratively, adapt workflows, and interact with multiple systems in real time. Building AI Agents using Logic Apps Implement Agent Loop for iterative reasoning Integrate Azure OpenAI for goal-driven decisions Access 1,400+ connectors for enterprise actions Support human-in-the-loop for critical approvals Enable multi-agent orchestration for complex tasks Provide observability and security for agent workflows Power Automate Multi-step workflows can be orchestrated across business applications using AI Builder models or external AI APIs. Power Automate enables agents to make decisions, process data, and trigger actions dynamically, all within a low-code environment. Building AI Agents using Power Automate Automate repetitive tasks with minimal effort Apply AI Builder for predictions and classification Call Azure OpenAI for natural language processing Integrate with hundreds of enterprise connectors Trigger workflows based on real-time events Combine flows with human approvals for compliance Azure AI Foundry Visual orchestration meets pro-code flexibility through Prompt Flow and Connected Agents, enabling multi-step reasoning flows while allowing developers to extend capabilities through SDKs. Azure AI Foundry is ideal for scenarios requiring both agility and deep customization. Building AI Agents using Azure AI Foundry Design reasoning flows visually with Prompt Flow Orchestrate multi-agent systems using Connected Agents Integrate with VS Code for advanced development Apply governance and deployment pipelines for production Use Azure OpenAI models for adaptive decision-making Monitor workflows with built-in observability tools Microsoft Agent Framework (Preview) I’ve been exploring Microsoft Agent Framework (MAF), an open-source foundation for building AI agents that can run anywhere. It integrates with Azure AI Foundry and Azure services, enabling multi-agent workflows, advanced memory services, and visual orchestration. With public preview live and GA coming soon, MAF is shaping how we deliver scalable, flexible agentic solutions. Enterprise-scale orchestration is achieved through graph-based workflows, human-in-the-loop approvals, and observability features. The Microsoft Agent Framework lays the foundation for multi-agent systems that are durable and compliant. Building AI Agents using Microsoft Agent Framework Coordinate multiple specialized agents in a graph Implement durable workflows with pause and resume Support human-in-the-loop for controlled autonomy Integrate with Azure AI Foundry for hosting and governance Enable observability through OpenTelemetry integration Provide SDK flexibility for custom orchestration patterns Visual-first platforms make building AI Agents feel less like coding marathons and more like creative design sessions. They’re perfect for those scenarios when you’d rather design than debug and still want the option to dive deeper when complexity calls. Pro-Code Approach Remember I told you how I started as a pro-code developer early in my career and later embraced a hybrid approach? I’ll try to stay neutral here as we explore the pro-code world. Pro-code frameworks offer integration with diverse ecosystems, multi-agent coordination, and fine-grained control over logic. While workflow-first and pro-code approaches both provide these capabilities, the difference lies in how they balance factors such as ease of development, ease of maintenance, time to deliver, monitoring capabilities, and other non-functional requirements. Choosing the right path often depends on which of these trade-offs matter most for your scenario. LangChain When I first explored LangChain, it felt like stepping into a developer’s playground for AI orchestration. I could stitch together prompts, tools, and APIs like building blocks, and I enjoyed the flexibility. It reminded me why pro-code approaches appeal to those who want full control over logic and integration with diverse ecosystems. Building AI Agents using LangChain Define custom chains for multi-step reasoning [it is called Lang“Chain”] Integrate external APIs and tools for dynamic actions Implement memory for context-aware conversations Support multi-agent collaboration through orchestration patterns Extend functionality with custom Python modules Deploy agents across cloud environments for scalability Semantic Kernel I’ve worked with Semantic Kernel when I needed more control over orchestration logic, and what stood out was its flexibility. It provides both .NET and Python SDKs, which makes it easy to combine natural language prompts with traditional programming logic. I found the planners and skills especially useful for breaking down goals into smaller steps, and connectors helped integrate external systems without reinventing the wheel. Building AI Agents using Semantic Kernel Create semantic functions for prompt-driven tasks Use planners for dynamic goal decomposition Integrate plugins for external system access Implement memory for persistent context across sessions Combine AI reasoning with deterministic code logic Enable observability and telemetry for enterprise monitoring Microsoft Agent Framework (Preview) Although I introduced MAF in the earlier section, its SDK-first design makes it relevant here as well for advanced orchestration and the pro-code nature… and so I’ll probably write this again in the Hybrid section. The Agent Framework is designed for developers who need full control over multi-agent orchestration. It provides a pro-code approach for defining agent behaviors, implementing advanced coordination patterns, and integrating enterprise-grade observability. Building AI Agents using Microsoft Agent Framework Define custom orchestration logic using SDK APIs Implement graph-based workflows for multi-agent coordination Extend agent capabilities with custom code modules Apply durable execution patterns with pause and resume Integrate OpenTelemetry for detailed monitoring and debugging Securely host and manage agents through Azure AI Foundry integration Hybrid Approach and decision framework I’ve always been a fan of both worlds, the flexibility of pro-code and the simplicity of workflow drag-and-drop style IDEs and GUIs. A hybrid approach is not about picking one over the other; it’s about balancing them. In practice, this to me means combining the speed and governance of workflow-first platforms with the extensibility and control of pro-code frameworks. Hybrid design shines when you need agility without sacrificing depth. For example, I can start with Copilot Studio to build a conversational agent using its visual designer. But if the scenario demands advanced logic or integration, I can call an Azure Function for custom processing, trigger a Logic Apps workflow for complex orchestration, or even invoke the Microsoft Agent Framework for multi-agent coordination. This flexibility delivers the best of both worlds, low-code for rapid development (remember RAD?) and pro-code for enterprise-grade customization with complex logic or integrations. Why go Hybrid Ø Balance speed and control: Rapid prototyping with workflow-first tools, deep customization with code. Ø Extend functionality: Call APIs, Azure Functions, or SDK-based frameworks from visual workflows. Ø Optimize for non-functional requirements: Address maintainability, monitoring, and scalability without compromising ease of development. Ø Enable interoperability: Combine connectors, plugins, and open standards for diverse ecosystems. Ø Support multi-agent orchestration: Integrate workflow-driven agents with pro-code agents for complex scenarios. The hybrid approach for building AI Agents is not just a technical choice but a design philosophy. When I need rapid prototyping or business automation, workflow-first is my choice. For multi-agent orchestration and deep customization, I go with code-first. Hybrid makes sense for regulated industries and large-scale deployments where flexibility and compliance are critical. The choice isn’t binary, it’s strategic. I’ve worked with both workflow-first tools like Copilot Studio, Power Automate, and Logic Apps, and pro-code frameworks such as LangChain, Semantic Kernel, and the Microsoft Agent Framework. Each approach has its strengths, and the decision often comes down to what matters most for your scenario. If rapid prototyping and business automation are priorities, workflow-first platforms make sense. When multi-agent orchestration, deep customization, and integration with diverse ecosystems are critical, pro-code frameworks give you the flexibility and control you need. Hybrid approaches bring both worlds together for regulated industries and large-scale deployments where governance, observability, and interoperability cannot be compromised. Understanding these trade-offs will help you create AI Agents that work so well, you’ll wonder if they’re secretly applying for your job! About the author Pradyumna (Prad) Harish is a Technology leader in the WW GSI Partner Organization at Microsoft. He has 26 years of experience in Product Engineering, Partner Development, Presales, and Delivery. Responsible for revenue growth through Cloud, AI, Cognitive Services, ML, Data & Analytics, Integration, DevOps, Open-Source Software, Enterprise Architecture, IoT, Digital strategies and other innovative areas for business generation and transformation; achieving revenue targets via extensive experience in managing global functions, global accounts, products, and solution architects across over 26 countries.7.9KViews3likes0CommentsHow Great Engineers Make Architectural Decisions — ADRs, Trade-offs, and an ATAM-Lite Checklist
Why Decision-Making Matters Without a shared framework, context fades and teams' re-debate old choices. ADRs solve that by recording the why behind design decisions — what problem we solved, what options we considered, and what trade-offs we accepted. A good ADR: Lives next to the code in your repo. Explains reasoning in plain language. Survives personnel changes and version history. Think of it as your team’s engineering memory. The Five Pillars of Trade-offs At Microsoft, we frame every major design discussion using the Azure Well-Architected pillars: Reliability – Will the system recover gracefully from failures? Performance Efficiency – Can it meet latency and throughput targets? Cost Optimization – Are we using resources efficiently? Security – Are we minimizing blast radius and exposure? Operational Excellence – Can we deploy, monitor, and fix quickly? No decision optimizes all five. Great engineers make conscious trade-offs — and document them. A Practical Decision Flow Step What to Do Output 1. Frame It Clarify the problem, constraints, and quality goals (SLOs, cost caps). Problem statement 2. List Options Identify 2-4 realistic approaches. Options list 3. Score Trade-offs Use a Decision Matrix to rate options (1–5) against pillars. Table of scores 4. ATAM-Lite Review List scenarios, identify sensitivity points (small changes with big impact) and risks. Risk notes 5. Record It as an ADR Capture everything in one markdown doc beside the code. ADR file Example: Adding a Read-Through Cache Decision: Add a Redis cache in front of Cosmos DB to reduce read latency. Context: Average P95 latency from DB is 80 ms; target is < 15 ms. Options: A) Query DB directly B) Add read-through cache using Redis Trade-offs Performance: + Massive improvement in read speed. Cost: + Fewer RU/s on Cosmos DB. Reliability: − Risk of stale data if cache invalidation fails. Operational: + Added complexity for monitoring and TTLs. Templates You Can Re-use ADR Template # ADR-001: Add Read-through Cache in Front of Cosmos DB Status: Accepted Date: 2025-10-21 Context: High read latency; P95 = 80ms, target <15ms Options: A) Direct DB reads B) Redis cache for hot keys ✅ Decision: Adopt Redis cache for performance and cost optimization. Consequences: - Improved read latency and reduced RU/s cost - Risk of data staleness during cache invalidation - Added operational complexity Links: PR#3421, Design Doc #204, Azure Monitor dashboard Decision Matrix Example Pillar Weight Option A Option B Notes Reliability 5 3 4 Redis clustering handles failover Performance 4 2 5 In-memory reads Cost 3 4 5 Reduced RU/s Security 4 4 4 Same auth posture Operational Excellence 3 4 3 More moving parts Weighted total = Σ(weight × score) → best overall score wins. Team Guidelines Create a /docs/adr folder in each repo. One ADR per significant change; supersede old ones instead of editing history. Link ADRs in design reviews and PRs. Revisit when constraints change (incidents, new SLOs, cost shifts). Publish insights as follow-up blogs to grow shared knowledge. Why It Works This practice connects the theory of trade-offs with Microsoft’s engineering culture of reliability and transparency. It improves onboarding, enables faster design reviews, and builds a traceable record of engineering evolution. Join the Conversation Have you tried ADRs or other decision frameworks in your projects? Share your experience in the comments or link to your own public templates — let’s make architectural reasoning part of our shared language.561Views1like0CommentsHow Azure NetApp Files Object REST API powers Azure and ISV Data and AI services – on YOUR data
This article introduces the Azure NetApp Files Object REST API, a transformative solution for enterprises seeking seamless, real-time integration between their data and Azure's advanced analytics and AI services. By enabling direct, secure access to enterprise data—without costly transfers or duplication—the Object REST API accelerates innovation, streamlines workflows, and enhances operational efficiency. With S3-compatible object storage support, it empowers organizations to make faster, data-driven decisions while maintaining compliance and data security. Discover how this new capability unlocks business potential and drives a new era of productivity in the cloud.602Views0likes0CommentsValidating Scalable EDA Storage Performance: Azure NetApp Files and SPECstorage Solution 2020
Electronic Design Automation (EDA) workloads drive innovation across the semiconductor industry, demanding robust, scalable, and high-performance cloud solutions to accelerate time-to-market and maximize business outcomes. Azure NetApp Files empowers engineering teams to run complex simulations, manage vast datasets, and optimize workflows by delivering industry-leading performance, flexibility, and simplified deployment—eliminating the need for costly infrastructure overprovisioning or disruptive workflow changes. This leads to faster product development cycles, reduced risk of project delays, and the ability to capitalize on new opportunities in a highly competitive market. In a historic milestone, Microsoft has been independently validated Azure NetApp Files for EDA workloads through the publication of the SPECstorage® Solution 2020 EDA_BLENDED benchmark, providing objective proof of its readiness to meet the most demanding enterprise requirements, now and in the future.382Views0likes0CommentsNeed inspirations? Real AI Apps stories by Azure customers to help you get started
In this blog, we present a tapestry of authentic stories from real Azure customers. You will read about how AI-empowered applications are revolutionizing enterprises and the myriad ways organizations choose to modernize their software, craft innovative experiences, and unveil new revenue streams. We hope that these stories inspire you to embark upon your own Azure AI journey. Before we begin, be sure to bookmark the newly unveiled Plan on Microsoft Learn—meticulously designed for developers and technical managers—to enhance your expertise on this subject. Inspiration 1: Transform customer service Intelligent apps today can offer a self-service natural language chat interface for customers to resolve service issues faster. They can route and divert calls, allowing agents to focus on the most complex cases. These solutions also enable customer service agents to quickly access contextual summaries of prior interactions offer real-time recommendations and generally enhance customer service productivity by automating repetitive tasks, such as logging interaction summaries. Prominent use cases across industries are self-service chatbots, the provision of real-time counsel to agents during customer engagements, the meticulous analysis and coaching of agents following each interaction, and the automation of summarizing customer dialogues. Below is a sample architecture for airline customer service and support. Azure Database for PostgresSQL. Azure Kubernetes Services hosts web UI and integrates with other components. In addition, this app uses RAG, with Azure AI Search as the retrieval system, and Azure OpenAI Service provides LLM capabilities, allowing customer service agents and customers to ask questions using natural language. Air India, the nation’s flagship carrier, updated its existing virtual assistant’s core natural language processing engine to the latest GPT models, using Azure OpenAI services. The new AI-based virtual assistant handles 97% of queries with full automation and saves millions of dollars on customer support costs. "We are on this mission of building a world-class airline with an Indian heart. To accomplish that goal, we are becoming an AI-infused company, and our collaboration with Microsoft is making that happen.” — Dr. Satya Ramaswamy, Chief Digital and Technology Officer, Air India In this customer case, the Azure-powered AI platform also supports Air India customers in other innovative ways. Travelers can save time by scanning visas and passports during web check-in, and then scan baggage tags to track their bags throughout their journeys. The platform’s voice recognition also enables analysis of live contact center conversations for quality assurance, training, and improvement. Inspiration #2: Personalize customer experience Organizations now can use AI models to present personalized content, products, or services to users based on multimodal user inputs from text, images, and speech, grounded on a deep understanding of their customer profiles. Common solutions we have seen include conversational shopping interfaces, image searches for products, product recommenders, and customized content delivery for each customer. In these cases, product discovery is improved through searching for data semantically, and as a result, personalized search and discovery improve engagement, customer satisfaction, and retention. Three areas are critical to consider when implementing such solutions. First, your development team should examine the ability to integrate multiple data types (e.g., user profiles, real-time inventory data, store sales data, and social data.) Second, during testing, ensure that pre-trained AI models can handle multi-modal inputs and can learn from user data to deliver personalized results. Lastly, your cloud administrator should implement scalability measures to meet variable user demands. ASOS, a global online fashion retailer, leveraged Azure AI Foundry to revolutionize its customer experience by creating an AI-powered virtual stylist that could engage with customers and help them discover new trends. "Having a conversational interface option gets us closer to our goals of fully engaging the customer and personalizing their experience by showing them the most relevant products at the most relevant time.” — Cliff Cohen, Chief Technology Officer, ASOS In this customer case, Azure AI Foundry enabled ASOS to rapidly develop and deploy their intelligent apps, integrating natural language processing and computer vision capabilities. Enabled ASOS to rapidly develop and deploy their intelligent app, integrating natural language processing and computer vision capabilities. This solution takes advantage of Azure’s ability to support cutting-edge AI applications in the retail sector, driving business growth and customer satisfaction. Inspiration #3: Accelerate product innovation Building customer-facing custom copilots has the promise to provide enhanced services to your customers. This is typically achieved through using AI to provide data-driven insights that facilitate personalized or unique customer interactions, to enable customer access to a wider range of information, while improving search queries and making data more accessible. You can check out a sample architecture for building your copilot below. d in near real-time by the AI agent. DocuSign, a leader in e-signature solutions with 1.6 million global customers, pioneered an entirely new category of agreement management designed to streamline workflows and created Docusign Intelligent Agreement Management (IAM). The IAM platform uses sophisticated multi-database architecture to efficiently manage various aspects of agreement processing and management. At the heart of the IAM platform is Azure AI, which automates manual tasks and processes agreements using machine learning models. "We needed to transform how businesses worked with a new platform. With Docusign Intelligent Agreement Management, built with Microsoft Azure, we help our customers create, commit to, manage, and act on agreements in real-time.” — Kunal Mukerjee, VP, Technology Strategy and Architecture, Docusign The workflow begins with agreement data stored in an Azure SQL Database and is then transferred through an ingestion pipeline to Navigator, an intelligent agreements repository. In addition, the Azure SQL Database Hyperscale service tier serves as the primary transactional engine, providing virtually unlimited storage capacity and the ability to scale compute and storage resources independently. Inspiration #4: Optimize employee workflows With AI-powered apps, businesses can organize unstructured data to streamline document management and information, leverage natural language processing to create a conversational search experience for employees, provide more contextual information to increase workplace productivity and summarize data for further analysis. Increasingly we have seen solutions such as employee chatbots for HR, professional services assistants (legal/tax/audit), analytics and reporting agents, contact center agent assistants, and employee self-service and knowledge management (IT) centers. It’s essential to note that adequate prompt engineering training can improve employee queries, and your team should examine the capability of integrating copilot with other internal workloads; lastly, make sure your organization implements continuous innovation and delivery mechanisms to support new internal resources and optimize chatbot dialogs. Improving the lives of clinicians and patients Medigold Health, one of the United Kingdom’s leading occupational health service providers, migrated applications to Azure OpenAI Service, with Azure Cosmos DB for logging and Azure SQL Database for data storage, achieving the automation of clinician processes, including report generation, leading to a 58% rise in clinician retention and greater job satisfaction. With Azure App Service, Medigold Health was also able to quickly and efficiently deploy and manage web applications, enhancing the company’s ability to respond to client and clinician needs. "We knew with Microsoft and moving our AI workloads to Azure, we’d get the expert support, plus scalability, security, performance, and resource optimization we needed.” — Alex Goldsmith, CEO, Medigold Health Inspiration #5: Prevent fraud and detect anomalies Increasingly, organizations leverage AI to identify suspicious financial transactions, false account chargebacks, fraudulent insurance claims, digital theft, unauthorized account access or account takeover, network intrusions or malware attacks, and false product or content reviews. If your company can use similar designs, take a glance at a sample architecture for building an interactive fraud analysis app below. Azure Cosmos DB. Transactional data is available for analytics in real-time (HTAP) using Synapse Link. All the other financial transactions such as stock trading data, claims, and other documents are integrated with Microsoft Fabric using Azure Data Factory. This setup allows analysts to see real-time fraud alerts on a custom dashboard. Generative AI denoted here uses RAG, with Azure OpenAI Service of the LLM, and Azure AI Search as the retrieval system. Fighting financial crimes in the gaming world Kinectify, an anti-money laundering (AML) risk management technology company, built its scalable, robust, Microsoft Azure-powered AML platform with a seamless combination of Azure Cosmos DB, Azure AI Services, Azure Kubernetes Service, and the broader capabilities of Azure cloud services. "We needed to choose a platform that provided best-in-class security and compliance due to the sensitive data we require and one that also offered best-in-class services as we didn’t want to be an infrastructure hosting company. We chose Azure because of its scalability, security, and the immense support it offers in terms of infrastructure management.” — Michael Calvin, CTO, Kinectify With the new solutions in place, Kinectify detects 43% more suspicious activities achieves 96% faster decisions, and continues to champion handling a high volume of transactions reliably and identifying patterns, anomalies, and suspicious activity. Inspiration #6: Unlock organizational knowledge We have seen companies building intelligent apps to surface insights from vast amounts of data and make it accessible through natural language interactions. Teams will be able to analyze conversations for keywords to spot trends and better understand your customers. Common use cases can include knowledge extraction and organization, trend and sentiment analysis, curation of content summarization, automated reports, and research generation. Below is a sample architecture for enterprise search and knowledge mining. H&R Block, the trusted tax preparation company, envisioned using generative AI to create an easy, seamless process that answers filers’ tax questions, maintains safeguards to ensure accuracy, and minimizes the time to file. Valuing Microsoft’s leadership in security and AI and the longstanding collaboration between the two companies, H&R Block selected Azure AI Foundry and Azure OpenAI Service to build a new solution on the H&R Block platform to provide real-time, reliable tax filing assistance. By building an intelligent app that automates the extraction of key data from tax documents, H&R Block reduced the time and manual effort involved in document handling. The AI-driven solution significantly increased accuracy while speeding up the overall tax preparation process. "We conduct about 25 percent of our annual business in a matter of days.” — Aditya Thadani, Vice President, H&R Block Through Azure’s intelligent services, H&R Block modernized its operations, improving both productivity and client service and classifying more than 30 million tax documents a year. The solution has allowed the company to handle more clients with greater efficiency, providing a faster, more accurate tax filing experience. Inspiration #7: Automate document processing Document intelligence through AI applications helps human counterparts classify, extract, summarize, and gain deeper insights with natural language prompts. When adopting this approach, organizations are recommended to also consider prioritizing the identification of tasks to be automated, and streamline employee access to historical data, as well as refine downstream workload to leverage summarized data. Here is a sample architecture for large document summarization. ents. Volve Group, one of the world’s leading manufacturers of trucks, buses, construction equipment, and marine and industrial engines, streamlined invoice and claims processing, saving over 10,000 manual hours with the help of Microsoft Azure AI services and Azure AI Document Intelligence. "We chose Microsoft Azure AI primarily because of the advanced capabilities offered, especially with AI Document Intelligence.” — Malladi Kumara Datta, RPA Product Owner, Volvo Group Since launch, the company has saved 10,000 manual hours—about 850-plus manual hours per month. Inspiration #8: Accelerate content delivery Using generative AI, your new applications can automate the creation of web or mobile content, such as product descriptions for online catalogs or visual campaign assets based on marketing narratives, accelerating time to market. It also helps you enable faster iteration and A/B testing to identify the best descriptions that resonate with customers. This pattern generates text or image content based on conversational user input. It combines the capabilities of Image Generation and Text Generation, and the content generated may be personalized to the user, data may be read from a variety of data sources, including Storage Account, Azure Cosmos DB, Azure Database for PostgreSQL, orAzure SQL. JATO Dynamics, a global supplier of automotive business intelligence operating in more than 50 countries, developed Sales Link with Azure OpenAI Service, which now helps dealerships quickly produce tailored content by combining market data and vehicle information, saving customers 32 hours per month. "Data processed through Azure OpenAI Service remains within Azure. This is critical for maintaining the privacy and security of dealer data and the trust of their customers.” — Derek Varner, Head of Software Engineering, JATO Dynamics In addition to Azure OpenAI, JATO Dynamics used Azure Cosmos DB to manage data from millions of transactions across 55 car brands. The database service also empowers scalability and quick access to vehicle and dealer transaction data, providing a reliable foundation for Sales Link. Closing thoughts From innovative solutions to heartwarming successes, it’s clear that a community of AI pioneers is transforming business and customer experiences. Let’s continue to push boundaries, embrace creativity, and celebrate every achievement along the way. Here’s to many more stories of success and innovation! Want to be certified as an Azure AI Engineer? Start preparing with this Microsoft Curated Learning Plan.2.9KViews3likes3CommentsAzure AI Foundry, GitHub Copilot, Fabric and more to Analyze usage stats from Utility Invoices
Overview With the introduction of Azure AI Foundry, integrating various AI services to streamline AI solution development and deployment of Agentic AI Workflow solutions like multi-modal, multi-model, dynamic & interactive Agents etc. has become more efficient. The platform offers a range of AI services, including Document Intelligence for extracting data from documents, natural language processing and robust machine learning capabilities, and more. Microsoft Fabric further enhances this ecosystem by providing robust data storage, analytics, and data science tools, enabling seamless data management and analysis. Additionally, Copilot and GitHub Copilot assist developers by offering AI-powered code suggestions and automating repetitive coding tasks, significantly boosting productivity and efficiency. Objectives In this use case, we will use monthly electricity bills from the utilities' website for a year and analyze them using Azure AI services within Azure AI Foundry. The electricity bills is simply an easy start but we could apply it to any other format really. Like say, W-2, I-9, 1099, ISO, EHR etc. By leveraging the Foundry's workflow capabilities, we will streamline the development stages step by step. Initially, we will use Document Intelligence to extract key data such as usage in kilowatts (KW), billed consumption, and other necessary information from each PDF file. This data will then be stored in Microsoft Fabric, where we will utilize its analytics and data science capabilities to process and analyze the information. We will also include a bit of processing steps to include Azure Functions to utilize GitHub Copilot in VS Code. Finally, we will create a Power BI dashboard in Fabric to visually display the analysis, providing insights into electricity usage trends and billing patterns over the year. Utility Invoice sample Building the solution Depicted in the picture are the key Azure and Copilot Services we will use to build the solution. Set up Azure AI Foundry Create a new project in Azure AI Foundry. Add Document Intelligence to your project. You can do this directly within the Foundry portal. Extract documents through Doc Intel Download the PDF files of the power bills and upload them to Azure Blob storage. I used Document Intelligence Studio to create a new project and Train custom models using the files from the Blob storage. Next, in your Azure AI Foundry project, add the Document Intelligence resource by providing the Endpoint URL and Keys. Data Extraction Use Azure Document Intelligence to extract required information from the PDF files. From the resource page in the Doc Intel service in the portal, copy the Endpoint URL and Keys. We will need these to connect the application to the Document Intelligence API. Next, let’s integrate doc intel with the project. In the Azure AI Foundry project, add the Document Intelligence resource by providing the Endpoint URL and Keys. Configure the settings as needed to start using doc intel for extracting data from the PDF documents. We can stay within the Azure AI Foundry portal for most of these steps, but for more advanced configurations, we might need to use the Document Intelligence Studio. GitHub Copilot in VS Code for Azure Functions For processing portions of the output from Doc Intel, what better way to create the Azure Function than in VS Code, especially with the help of GitHub Copilot. Let’s start by installing the Azure Functions extension in VS Code, then create a new function project. GitHub Copilot can assist in writing the code to process the JSON received. Additionally, we can get Copilot to help generate unit tests to ensure the function works correctly. We could use Copilot to explain the code and the tests it generates. Finally, we seamlessly integrate the generated code and unit tests into the Functions app code file, all within VS Code. Notice how we can prompt GitHub Copilot from step 1 of Creating the Workspace to inserting the generated code into the Python file for the Azure Function to testing it and all the way to deploying the Function. Store and Analyze information in Fabric There are many options for storing and analyzing JSON data in Fabric. Lakehouse, Data Warehouse, SQL Database, Power BI Datamart. As our dataset is small, let’s choose either SQL DB or PBI Datamart. PBI Datamart is great for smaller datasets and direct integration with PBI for dashboarding while SQL DB is good for moderate data volumes and supports transactional & analytical workloads. To insert the JSON values derived in the Azure Functions App either called from Logic Apps or directly from the AI Foundry through the API calls into Fabric, let’s explore two approaches. Using REST API and the other Using Functions with Azure SQL DB. Using REST API – Fabric provides APIs that we can call directly from our Function to insert records using HTTP client in the Function’s Python code to send POST requests to the Fabric API endpoints with our JSON data. Using Functions with Azure SQL DB – we can connect it directly from our Function using the SQL client in the Function to execute SQL INSERT statements to add records to the database. While we are at it, we could even get GitHub Copilot to write up the Unit Tests. Here’s a sample: Visualization in Fabric Power BI Let's start with creating visualizations in Fabric using the web version of Power BI for our report, UtilitiesBillAnalysisDashboard. You could use the PBI Desktop version too. Open the PBI Service and navigate to the workspace where you want to create your report. Click on "New" and select "Dataset" to add a new data source. Choose "SQL Server" from the list of data sources and enter "UtilityBillsServer" as the server name and "UtilityBillsDB" as the DB name to establish the connection. Once connected, navigate to the Navigator pane where we can select the table "tblElectricity" and the columns. I’ve shown these in the pictures below. For a clustered column (or bar) chart, let us choose the columns that contain our categorical data (e.g., month, year) and numerical data (e.g., kWh usage, billed amounts). After loading the data into PBI, drag the desired fields into the Values and Axis areas of the clustered column chart visualization. Customize the chart by adjusting the formatting options to enhance readability and insights. We now visualize our data in PBI within Fabric. We may need to do custom sort of the Month column. Let’s do this in the Data view. Select the table and create a new column with the following formula. This will create a custom sort column that we will use as ‘Sum of MonthNumber’ in ascending order. Other visualizations possibilities: Other Possibilities Agents with Custom Copilot Studio Next, you could leverage a custom Copilot to provide personalized energy usage recommendations based on historical data. Start by integrating the Copilot with your existing data pipeline in Azure AI Foundry. The Copilot can analyze electricity consumption patterns stored in your Fabric SQL DB and use ML models to identify optimization opportunities. For instance, it could suggest energy-efficient appliances, optimal usage times, or tips to reduce consumption. These recommendations can be visualized in PBI where users can track progress over time. To implement this, you would need to set up an API endpoint for the Copilot to access the data, train the ML models using Python in VS Code (let GitHub Copilot help you here… you will love it), and deploy the models to Azure using CLI / PowerShell / Bicep / Terraform / ARM or the Azure portal. Finally, connect the Copilot to PBI to visualize the personalized recommendations. Additionally, you could explore using Azure AI Agents for automated anomaly detection and alerts. This agent could monitor electricity bill data for unusual patterns and send notifications when anomalies are detected. Yet another idea would be to implement predictive maintenance for electrical systems, where an AI agent uses predictive analytics to forecast maintenance needs based on the data collected, helping to reduce downtime and improve system reliability. Summary We have built a solution that leveraged the seamless integration of pioneering AI technologies with Microsoft’s end-to-end platform. By leveraging Azure AI Foundry, we have developed a solution that uses Document Intelligence to scan electricity bills, stores the data in Fabric SQL DB, and processes it with Python in Azure Functions in VS Code, assisted by GitHub Copilot. The resulting insights are visualized in Power BI within Fabric. Additionally, we explored potential enhancements using Azure AI Agents and Custom Copilots, showcasing the ease of implementation and the transformative possibilities. Finally, speaking of possibilities – With Gen AI, the only limit is our imagination! Additional resources Explore Azure AI Foundry Start using the Azure AI Foundry SDK Review the Azure AI Foundry documentation and Call Azure Logic Apps as functions using Azure OpenAI Assistants Take the Azure AI Learn courses Learn more about Azure AI Services Document Intelligence: Azure AI Doc Intel GitHub Copilot examples: What can GitHub Copilot do – Examples Explore Microsoft Fabric: Microsoft Fabric Documentation See what you can connect with Azure Logic Apps: Azure Logic Apps Connectors About the Author Pradyumna (Prad) Harish is a Technology leader in the GSI Partner Organization at Microsoft. He has 26 years of experience in Product Engineering, Partner Development, Presales, and Delivery. Responsible for revenue growth through Cloud, AI, Cognitive Services, ML, Data & Analytics, Integration, DevOps, Open Source Software, Enterprise Architecture, IoT, Digital strategies and other innovative areas for business generation and transformation; achieving revenue targets via extensive experience in managing global functions, global accounts, products, and solution architects across over 26 countries.4.6KViews4likes1CommentExploring AI Agent-Driven Auto Insurance Claims RAG Pipeline.
In this post, I explore a recent experiment aimed at creating a RAG pipeline tailored for the insurance industry, specifically for handling automobile insurance claims, with the goal of potentially reducing processing times.4.3KViews5likes0Comments