azure
369 TopicsStreamlining Campus Life: A Multi-Agent System for Campus Event Management
Introduction Managing campus events has long been a complex, manual process fraught with challenges. Traditional event management systems offer limited automation, placing a considerable workload on staff for tasks ranging from resource allocation to participant communication. This procedural friction presents a clear opportunity to build a more intelligent solution, leveraging the emerging paradigm of AI agents. To solve these challenges, I developed and evaluated a multi-agent system designed to automate the campus event workflow and improve productivity. In this blog, I’ll share the journey of building this system, detailing its architecture and how I leveraged the Semantic Kernel and Azure Services to create a team of specialized agents. Background My name is Junjie Wan, and I’m a MSc student in Applied Computational Science and Engineering at Imperial College London. This research project, in collaboration with Microsoft, explores the development of a multi-agent solution for managing a university campus. The system's focus is on automating the event management workflow using Microsoft Azure AI Agent services. I would like to thank my supervisor, Lee Stott, for his guidance and mentorship during this project. Methodology: Building the Agentic System. The Model Context Protocol (MCP) and Backend Integration For agents to perform their duties effectively, they need access to a powerful set of tools. The system's backend is a high-performance API built with FastAPI, with Azure Cosmos DB serving as the scalable data store. To make these API functions usable by the agents, they are wrapped as tools using Semantic Kernel’s kernel_function decorator. These tools contain the necessary functions to utilize both the internal API and various Azure Services. The setup for making these tools accessible is straightforward: we first instantiate a central Kernel object, add the defined tools as plugins, and then convert this populated Kernel into a runnable MCP server. This approach creates an extensible system where new tools can be added as services without requiring changes to the agents themselves. Frontend Implemenation with Streamlit To build a frontend powered by the AI features and based on Python, I choose to use the Streamlit for rapid prototyping. The frontend implements role-based access control, with different interfaces for admin, staff, and students. The system inlcudes a dashbarad, form-based pages, and a conversational chat interface as the primary entry point for the multi-agent system. To enhance user experience, it supports multi-modal input through voice integration, which uses OpenAI whisper for accurate speech-to-text transcription and the OpenAI tts model in Azure AI Foundry for voice playback. Individual Agent Design The system distributes responsibilities across a team of specialized agents, each targeting a specific operational aspect of event management. Each agent is initialized as a ChatCompletionAgent with OpenAI’s Model Router and MCP plugins. Here are some of the agents implemented to improve the event management process. To address the operational challenge of manually reconciling room availability and event requirements, the system utilizes a Planning Agent and a Schedule Agent. The Planning Agent serves as the central coordinator, gathering event specifications from the user. It can even leverage the Azure Maps Weather service to provide organizers with weather forecasts that may influence venue selection. It then delegates to the Schedule Agent, which is responsible for generating conflict-free timetable entries by querying our FastAPI backend for real-time availability data stored in the database. This workflow directly replaces the error-prone manual process and prevents scheduling conflicts. For financial planning, the Budget Agent functions as the system's dedicated financial analyst, designed to solve the problem of inaccurate cost estimation. When tasked with a budget, it first retrieves the event context from Cosmos DB. To ground its responses in verifiable data, the agent utilizes a Retrieval-Augmented Generation (RAG) pipeline built on Azure AI Search. This allows it to search internal documents, such as catering menus, for pricing information. If items are not found internally, the agent uses the Grounding with Bing Search tool to gather real-time market data, ensuring estimations are both accurate and current. To automate the manual, time-consuming process of participant communication, the Communication Agent handles all interactions. It drafts personalized emails populated with event details retrieved from the database. The agent is equipped with a tool that directly interfaces with Azure Communication Service to send emails programmatically. This automates the communication workflow, from sending initial invitations with Microsoft Forms links for registration to distributing post-event feedback surveys, saving significant administrative effort. Multi-Agent Collaboration For collaboration between agents, I chose the AgentGroupChat pattern within Semantic Kernel. While orchestration patterns like sequential or handoff are suitable for linear tasks and dynamic delegation between agents, the multi-domain nature of event management required a more flexible approach. The group chat pattern allows for both structured sequential handoffs and dynamic contributions from other agents as needed. Group Chat Design The orchestration logic is governed by two dynamic, LLM-driven functions: Selection Function: This acts as a dynamic router, analyzing the conversation's context to determine the most appropriate agent to speak in the next round. It performs intent recognition for initial queries and routes subsequent turns based on the ongoing workflow. Termination Function: This function prevents infinite loops and ensures the system remains responsive. It evaluates each agent's turn to decide whether the conversation should conclude or if a clear handoff warrants its continuation, maintaining coherent system behavior. Evaluation Framework and Performance To evaluate whether the system could reliably execute domain-specific workflows, I used the LLM-as-a-Judge framework through the Azure AI Evaluation SDK, which provides a scalable and consistent assessment of agent performance. Group Chat Performance Radar Chart The evaluation focused on three main categories of metrics to get a holistic view of the system: Functional Correctness: I used metrics such as IntentResolution, TaskAdherence, and ToolCallAccuracy to assess whether the agents correctly understood user requests, followed instructions, and called the appropriate tools with the correct parameters. Response Quality: Metrics like Fluency, Coherence, Relevance, and Response Completeness were used to evaluate the linguistic quality of the agents' responses. Operational Metrics: To assess the practical viability of the system, I also measured key operational metrics, including latency and token usage for each task. The results confirmed the system's strong performance, consistently exceeding the pass threshold of 3.0. This demonstrates that the agentic architecture can successfully decompose and execute event management tasks with high precision. In contrast, linguistic metrics were lower, highlighting a potential trade-off where our multi-agent system focuses on functionality prioritized over conversational flow. The operational metrics also provided valuable insights into system behavior: Response Time by Tag Token vs Tool Call Latency: The data showed that simpler queries, such as reading information, were consistently fast. However, complex, multi-step tasks exhibited significantly longer and more variable response times. This pattern reflected the expected accumulation of latency across multiple agent handoffs and tool calls within the agentic workflow. Token: Analysis revealed a strong positive correlation between the number of tool calls and total token consumption, indicating that workflow complexity directly impacted computational cost. The baseline token usage for simple queries is high largely due to the context of tool definitions injected by the MCP server. Agents relying on RAG pipelines, like the Budget Agent, notably consumed more tokens due to the inclusion of retrieved context chunks in their prompts. Limitation and Future Work Despite the good performance, the system has several limitations: The system relies on carefully engineered prompts, making it less flexible when facing unexpected queries. Multi-turn coordination between agents and the use of MCP servers results in high token consumption, raising concerns about efficiency and scalability in production deployments. The system was tested with synthetic data and a relatively small set of test queries, which may not reflect the complexity of real-world scenarios. Future work will focus on: Enhancing error handling and recovery mechanisms within the group chat orchestration Improving conversational quality while reducing token consumption Deploying the agent system on a server for broader access and collecting user feedback Testing the system with real-world data and conducting formal user studies Conclusion This project demonstrates that a multi-agent system, built on the integrated power of Microsoft Azure services, can offer an efficient solution for campus event management. By dividing the labor among specialized agents and enabling them with a powerful toolkit, we can automate complex workflows and reduce administrative burden. This work serves as a proof-of-concept that shows how agentic approaches can deliver more intelligent and streamlined solutions that improve the quality of events and the student experience. Thank you for reading! If you have any questions or would like to discuss this work further, please feel free to contact me via email or on LinkedIn.82Views0likes0CommentsModel Mondays S2E13: Open Source Models (Hugging Face)
1. Weekly Highlights 1. Weekly Highlights Here are the key updates we covered in the Season 2 finale: O1 Mini Reinforcement Fine-Tuning (GA): Fine-tune models with as few as ~100 samples using built-in Python code graders. Azure Live Interpreter API (Preview): Real-time speech-to-speech translation supporting 76 input languages and 143 locales with near human-level latency. Agent Factory – Part 5: Connecting agents using open standards like MCP (Model Context Protocol) and A2A (Agent-to-Agent protocol). Ask Ralph by Ralph Lauren: A retail example of agentic AI for conversational styling assistance, built on Azure OpenAI and Foundry’s agentic toolset. VS Code August Release: Brings auto-model selection, stronger safety guards for sensitive edits, and improved agent workflows through new agents.md support. 2. Spotlight – Open Source Models in Azure AI Foundry Guest: Jeff Boudier, VP of Product at Hugging Face Jeff showcased the deep integration between the Hugging Face community and Azure AI Foundry, where developers can access over 10 000 open-source models across multiple modalities—LLMs, speech recognition, computer vision, and even specialized domains like protein modeling and robotics. Demo Highlights Discover models through Azure AI Foundry’s task-based catalog filters. Deploy directly from Hugging Face Hub to Azure with one-click deployment. Explore Use Cases such as multilingual speech recognition and vision-language-action models for robotics. Jeff also highlighted notable models, including: SmoLM3 – a 3 B-parameter model with hybrid reasoning capabilities Qwen 3 Coder – a mixture-of-experts model optimized for coding tasks Parakeet ASR – multilingual speech recognition Microsoft Research protein-modeling collection MAGMA – a vision-language-action model for robotics Integration extends beyond deployment to programmatic access through the Azure CLI and Python SDKs, plus local development via new VS Code extensions. 3. Customer Story – DraftWise (BUILD 2025 Segment) The finale featured a customer spotlight on DraftWise, where CEO James Ding shared how the company accelerates contract drafting with Azure AI Foundry. Problem Legal contract drafting is time-consuming and error-prone. Solution DraftWise uses Azure AI Foundry to fine-tune Hugging Face language models on legal data, generating contract drafts and redline suggestions. Impact Faster drafting cycles and higher consistency Easy model management and deployment with Foundry’s secure workflows Transparent evaluation for legal compliance 4. Community Story – Hugging Face & Microsoft The episode also celebrated the ongoing collaboration between Hugging Face and Microsoft and the impact of open-source AI on the global developer ecosystem. Community Benefits Access to State-of-the-Art Models without licensing barriers Transparent Performance through public leaderboards and benchmarks Rapid Innovation as improvements and bug fixes spread quickly Education & Empowerment via tutorials, docs, and active forums Responsible AI Practices encouraged through community oversight 5. Key Takeaways Open Source AI Is Here to Stay Azure AI Foundry and Hugging Face make deploying, fine-tuning, and benchmarking open models easier than ever. Community Drives Innovation: Collaboration accelerates progress, improves transparency, and makes AI accessible to everyone. Responsible AI and Transparency: Open-source models come with clear documentation, licensing, and community-driven best practices. Easy Deployment & Customization: Azure AI Foundry lets you deploy, automate, and customize open models from a single, unified platform. Learn, Build, Share: The open-model ecosystem is a great place for students, developers, and researchers to learn, build, and share their work. Sharda's Tips: How I Wrote This Blog For this final recap, I focused on capturing the energy of the open source AI movement and the practical impact of Hugging Face and Azure AI Foundry collaboration. I watched the livestream, took notes on the demos and interviews, and linked directly to official resources for models, docs, and community sites. Here’s my Copilot prompt for this episode: "Generate a technical blog post for Model Mondays S2E13 based on the transcript and episode details. Focus on open source models, Hugging Face, Azure AI Foundry, and community workflows. Include practical links and actionable insights for developers and students! Learn & Connect Explore Open Models in Azure AI Foundry Hugging Face Leaderboard Responsible AI in Azure Machine Learning Llama-3 by Meta Hugging Face Community Azure AI Documentation About Model Mondays Model Mondays is your weekly Azure AI learning series: 5-Minute Highlights: Latest AI news and product updates 15-Minute Spotlight: Demos and deep dives with product teams 30-Minute AMA Fridays: Ask anything in Discord or the forum Start building: Watch Past Replays Register For AMA Recap Past AMAs Join The Community Don’t build alone! The Azure AI Developer Community is here for real-time chats, events, and support: Join the Discord Explore the Forum About Me I'm Sharda, a Gold Microsoft Learn Student Ambassador focused on cloud and AI. Find me on GitHub, Dev.to, Tech Community, and LinkedIn. In this blog series, I share takeaways from each week’s Model Mondays livestream.151Views0likes0CommentsModel Mondays S2:E7 · AI-Assisted Azure Development
Welcome to Episode 7! This week, we explore how AI is transforming Azure development. We’ll break down two key tools—Azure MCP Server and GitHub Copilot for Azure—and see how they make working with Azure resources easier for everyone. We’ll also look at a real customer story from SightMachine, showing how AI streamlines manufacturing operations.229Views0likes0CommentsModel Mondays S2E12: Models & Observability
1. Weekly Highlights This week’s top news in the Azure AI ecosystem included: GPT Real Time (GA): Azure AI Foundry now offers GPT Real Time (GA)—lifelike voices, improved instruction following, audio fidelity, and function calling, with support for image context and lower pricing. Read the announcement and check out the model card for more details. Azure AI Translator API (Public Preview): Choose between fast Neural Machine Translation (NMT) or nuanced LLM-powered translations, with real-time flexibility for multilingual workflows. Read the announcement then check out the Azure AI Translator documentation for more details. Azure AI Foundry Agents Learning Plan: Build agents with autonomous goal pursuit, memory, collaboration, and deep fine-tuning (SFT, RFT, DPO) - on Azure AI Foundry. Read the announcement what Agentic AI involves - then follow this comprehensive learning plan with step-by-step guidance. CalcLM Agent Grid (Azure AI Foundry Labs): Project CalcLM: Agent Grid is a prototype and open-source experiment that illustrates how agents might live in a grid-like surface (like Excel). It's formula-first and lightweight - defining agentic workflows like calculations. Try the prototype and visit Foundry Labs to learn more. Agent Factory Blog: Observability in Agentic AI: Agentic AI tools and workflows are gaining rapid adoption in the enterprise. But delivering safe, reliable and performant agents requires foundation support for Observability. Read the 6-part Agent Factory series and check out the Top 5 agent observability best practices for reliable AI blog post for more details. 2. Spotlight On: Observability in Azure AI Foundry This week’s spotlight featured a deep dive and demo by Han Che (Senior PM, Core AI/ Microsoft ), showing observability end-to-end for agent workflows. Why Observability? Ensures AI quality, performance, and safety throughout the development lifecycle. Enables monitoring, root cause analysis, optimization, and governance for agents and models. Key Features & Demos: Development Lifecycle: Leaderboard: Pick the best model for your agent with real-time evaluation. Playground: Chat and prototype agents, view instant quality and safety metrics. Evaluators: Assess quality, risk, safety, intent resolution, tool accuracy, code vulnerability, and custom metrics. Governance: Integrate with partners like Cradle AI and SideDot for policy mapping and evidence archiving. Red Teaming Agent: Automatically test for vulnerabilities and unsafe behavior. CI/CD Integration: Automate evaluation in GitHub Actions and Azure DevOps pipelines. Azure DevOps GitHub Actions Monitoring Dashboard: Resource usage, application analytics, input/output tokens, request latency, cost breakdown, and evaluation scores. Azure Cost Management SDKs & Local Evaluation: Run evaluations locally or in the cloud with the Azure AI Evaluation SDK. Demo Highlights: Chat with a travel planning agent, view run metrics and tool usage. Drill into run details, debugging, and real-time safety/quality scores. Configure and run large-scale agent evaluations in CI/CD pipelines. Compare agents, review statistical analysis, and monitor in production dashboards 3. Customer Story: Saifr Saifr is a RegTech company that uses artificial intelligence to streamline compliance for marketing, communications, and creative teams in regulated industries. Incubated at Fidelity Labs (Fidelity Investments’ innovation arm), Saifr helps enterprises create, review, and approve content that meets regulatory standards—faster and with less manual effort. What Saifr Offers AI-Powered Compliance: Saifr’s platform leverages proprietary AI models trained on decades of regulatory expertise to automatically detect potential compliance risks in text, images, audio, and video. Automated Guardrails: The solution flags risky or non-compliant language, suggests compliant alternatives, and provides explanations—all in real time. Workflow Integration: Saifr seamlessly integrates with enterprise content creation and approval workflows, including cloud platforms and agentic AI systems like Azure AI Foundry. Multimodal Support: Goes beyond text to check images, videos, and audio for compliance risks, supporting modern marketing and communications teams. 4. Key Takeaways Observability is Essential: Azure AI Foundry offers complete monitoring, evaluation, tracing, and governance for agentic AI—making production safe, reliable, and compliant. Built-In Evaluation and Red Teaming: Use leaderboards, evaluators, and red teaming agents to assess and continuously improve model safety and quality. CI/CD and Dashboard Integration: Automate evaluations in GitHub Actions or Azure DevOps, then monitor and optimize agents in production with detailed dashboards. Compliance Made Easy: Safer’s agents and models help financial services and regulated industries proactively meet compliance standards for content and communications. Sharda's Tips: How I Wrote This Blog I focus on organizing highlights, summarizing customer stories, and linking to official Microsoft docs and real working resources. For this recap, I explored the Azure AI Foundry Observability docs, tested CI/CD pipeline integration, and watched the customer demo to share best practices for regulated industries. Here’s my Copilot prompt for this episode: "Generate a technical blog post for Model Mondays S2E12 based on the transcript and episode details. Focus on observability, agent dashboards, CI/CD, compliance, and customer stories. Add correct, working Microsoft links!" Coming Up Next Week Next week: Open Source Models! Join us for the final episode with Hugging Face VP of Product, live demos, and open model workflows. Register For The Livestream – Sep 15, 2025 About Model Mondays Model Mondays is your weekly Azure AI learning series: 5-Minute Highlights: Latest AI news and product updates 15-Minute Spotlight: Demos and deep dives with product teams 30-Minute AMA Fridays: Ask anything in Discord or the forum Start building: Watch Past Replays Register For AMA Recap Past AMAs Join The Community Don’t build alone! The Azure AI Developer Community is here for real-time chats, events, and support: Join the Discord Explore the Forum About Me I'm Sharda, a Gold Microsoft Learn Student Ambassador focused on cloud and AI. Find me on GitHub, Dev.to, Tech Community, and LinkedIn. In this blog series, I share takeaways from each week’s Model Mondays livestream.151Views0likes0CommentsPower Up Your Open WebUI with Azure AI Speech: Quick STT & TTS Integration
Introduction Ever found yourself wishing your web interface could really talk and listen back to you? With a few clicks (and a bit of code), you can turn your plain Open WebUI into a full-on voice assistant. In this post, you’ll see how to spin up an Azure Speech resource, hook it into your frontend, and watch as user speech transforms into text and your app’s responses leap off the screen in a human-like voice. By the end of this guide, you’ll have a voice-enabled web UI that actually converses with users, opening the door to hands-free controls, better accessibility, and a genuinely richer user experience. Ready to make your web app speak? Let’s dive in. Why Azure AI Speech? We use Azure AI Speech service in Open Web UI to enable voice interactions directly within web applications. This allows users to: Speak commands or input instead of typing, making the interface more accessible and user-friendly. Hear responses or information read aloud, which improves usability for people with visual impairments or those who prefer audio. Provide a more natural and hands-free experience especially on devices like smartphones or tablets. In short, integrating Azure AI Speech service into Open Web UI helps make web apps smarter, more interactive, and easier to use by adding speech recognition and voice output features. If you haven’t hosted Open WebUI already, follow my other step-by-step guide to host Ollama WebUI on Azure. Proceed to the next step if you have Open WebUI deployed already. Learn More about OpenWeb UI here. Deploy Azure AI Speech service in Azure. Navigate to the Azure Portal and search for Azure AI Speech on the Azure portal search bar. Create a new Speech Service by filling up the fields in the resource creation page. Click on “Create” to finalize the setup. After the resource has been deployed, click on “View resource” button and you should be redirected to the Azure AI Speech service page. The page should display the API Keys and Endpoints for Azure AI Speech services, which you can use in Open Web UI. Settings things up in Open Web UI Speech to Text settings (STT) Head to the Open Web UI Admin page > Settings > Audio. Paste the API Key obtained from the Azure AI Speech service page into the API key field below. Unless you use different Azure Region, or want to change the default configurations for the STT settings, leave all settings to blank. Text to Speech settings (TTS) Now, let's proceed with configuring the TTS Settings on OpenWeb UI by toggling the TTS Engine to Azure AI Speech option. Again, paste the API Key obtained from Azure AI Speech service page and leave all settings to blank. You can change the TTS Voice from the dropdown selection in the TTS settings as depicted in the image below: Click Save to reflect the change. Expected Result Now, let’s test if everything works well. Open a new chat / temporary chat on Open Web UI and click on the Call / Record button. The STT Engine (Azure AI Speech) should identify your voice and provide a response based on the voice input. To test the TTS feature, click on the Read Aloud (Speaker Icon) under any response from Open Web UI. The TTS Engine should reflect Azure AI Speech service! Conclusion And that’s a wrap! You’ve just given your Open WebUI the gift of capturing user speech, turning it into text, and then talking right back with Azure’s neural voices. Along the way you saw how easy it is to spin up a Speech resource in the Azure portal, wire up real-time transcription in the browser, and pipe responses through the TTS engine. From here, it’s all about experimentation. Try swapping in different neural voices or dialing in new languages. Tweak how you start and stop listening, play with silence detection, or add custom pronunciation tweaks for those tricky product names. Before you know it, your interface will feel less like a web page and more like a conversation partner.885Views2likes1CommentModel Mondays S2E11: Exploring Speech AI in Azure AI Foundry
1. Weekly Highlights This week’s top news in the Azure AI ecosystem included: Lakuna — Copilot Studio Agent for Product Teams: A hackathon project built with Copilot Studio and Azure AI Foundry, Lakuna analyzes your requirements and docs to surface hidden assumptions, helping teams reflect, test, and reduce bias in product planning. Azure ND H200 v5 VMs for AI: Azure Machine Learning introduced ND H200 v5 VMs, featuring NVIDIA H200 GPUs (over 1TB GPU memory per VM!) for massive models, bigger context windows, and ultra-fast throughput. Agent Factory Blog Series: The next wave of agentic AI is about extensibility: plug your agents into hundreds of APIs and services using Model Connector Protocol (MCP) for portable, reusable tool integrations. GPT-5 Tool Calling on Azure AI Foundry: GPT-5 models now support free-form tool calling—no more rigid JSON! Output SQL, Python, configs, and more in your preferred format for natural, flexible workflows. Microsoft a Leader in 2025 Gartner Magic Quadrant: Azure was again named a leader for Cloud Native Application Platforms—validating its end-to-end runway for AI, microservices, DevOps, and more. 2. Spotlight On: Azure AI Foundry Speech Playground The main segment featured a live demo of the new Azure AI Speech Playground (now part of Foundry), showing how developers can experiment with and deploy cutting-edge voice, transcription, and avatar capabilities. Key Features & Demos: Speech Recognition (Speech-to-Text): Try real-time transcription directly in the playground—recognizing natural speech, pauses, accents, and domain terms. Batch and Fast transcription options for large files and blob storage. Custom Speech: Fine-tune models for your industry, vocabulary, and noise conditions. Text to Speech (TTS): Instantly convert text into natural, expressive audio in 150+ languages with 600+ neural voices. Demo: Listen to pre-built voices, explore whispering, cheerful, angry, and more styles. Custom Neural Voice: Clone and train your own professional or personal voice (with strict Responsible AI controls). Avatars & Video Translation: Bring your apps to life with prebuilt avatars and video translation, which syncs voice-overs to speakers in multilingual videos. Voice Live API: Voice Live API (Preview) integrates all premium speech capabilities with large language models, enabling real-time, proactive voice agents and chatbots. Demo: Language learning agent with voice, avatars, and proactive engagement. One-click code export for deployment in your IDE. 3. Customer Story: Hilo Health This week’s customer spotlight featured Helo Health—a healthcare technology company using Azure AI to boost efficiency for doctors, staff, and patients. How Hilo Uses Azure AI: Document Management: Automates fax/document filing, splits multi-page faxes by patient, reduces staff effort and errors using Azure Computer Vision and Document Intelligence. Ambient Listening: Ambient clinical note transcription captures doctor-patient conversations and summarizes them for easy EHR documentation. Genie AI Contact Center: Agentic voice assistants handle patient calls, book appointments, answer billing/refill questions, escalate to humans, and assist human agents—using Azure Communication Services, Azure Functions, FastAPI (community), and Azure OpenAI. Conversational Campaigns: Outbound reminders, procedure preps, and follow-ups all handled by voice AI—freeing up human staff. Impact: Hilo reaches 16,000+ physician practices and 180,000 providers, automates millions of communications, and processes $2B+ in payments annually—demonstrating how multimodal AI transforms patient journeys from first call to post-visit care. 4. Key Takeaways Here’s what you need to know from S2E11: Speech AI is Accessible: The Azure AI Foundry Speech Playground makes experimenting with voice recognition, TTS, and avatars easy for everyone. From Playground to Production: Fine-tune, export code, and deploy speech models in your own apps with Azure Speech Service. Responsible AI Built-In: Custom Neural Voice and avatars require application and approval, ensuring ethical, secure use. Agentic AI Everywhere: Voice Live API brings real-time, multimodal voice agents to any workflow. Healthcare Example: Hilo’s use of Azure AI shows the real-world impact of speech and agentic AI, from patient intake to after-visit care. Join the Community: Keep learning and building—join the Discord and Forum. Sharda's Tips: How I Wrote This Blog I organize key moments from each episode, highlight product demos and customer stories, and use GitHub Copilot for structure. For this recap, I tested the Speech Playground myself, explored the docs, and summarized answers to common developer questions on security, dialects, and deployment. Here’s my favorite Copilot prompt this week: "Generate a technical blog post for Model Mondays S2E11 based on the transcript and episode details. Focus on Azure Speech Playground, TTS, avatars, Voice Live API, and healthcare use cases. Add practical links for developers and students!" Coming Up Next Week Next week: Observability! Learn how to monitor, evaluate, and debug your AI models and workflows using Azure and OpenAI tools. Register For The Livestream – Sep 1, 2025 Register For The AMA – Sep 5, 2025 Ask Questions & View Recaps – Discussion Forum About Model Mondays Model Mondays is your weekly Azure AI learning series: 5-Minute Highlights: Latest AI news and product updates 15-Minute Spotlight: Demos and deep dives with product teams 30-Minute AMA Fridays: Ask anything in Discord or the forum Start building: Register For Livestreams Watch Past Replays Register For AMA Recap Past AMAs Join The Community Don’t build alone! The Azure AI Developer Community is here for real-time chats, events, and support: Join the Discord Explore the Forum About Me I'm Sharda, a Gold Microsoft Learn Student Ambassador focused on cloud and AI. Find me on GitHub, Dev.to, Tech Community, and LinkedIn. In this blog series, I share takeaways from each week’s Model Mondays livestream.159Views0likes0CommentsPantry Log–Microsoft Cognitive, IOT and Mobile App for Managing your Fridge Food Stock
First published on MSDN on Mar 06, 2018 We are Ami Zou (CS & Math), Silvia Sapora(CS), and Elena Liu (Engineering), three undergraduate students from UCL, Imperial College London, and Cambridge University respectively.758Views0likes1CommentAZ-500: Microsoft Azure Security Technologies Study Guide
The AZ-500 certification provides professionals with the skills and knowledge needed to secure Azure infrastructure, services, and data. The exam covers identity and access management, data protection, platform security, and governance in Azure. Learners can prepare for the exam with Microsoft's self-paced curriculum, instructor-led course, and documentation. The certification measures the learner’s knowledge of managing, monitoring, and implementing security for resources in Azure, multi-cloud, and hybrid environments. Azure Firewall, Key Vault, and Azure Active Directory are some of the topics covered in the exam.22KViews4likes3CommentsCampusSphere: Building the Future of Campus AI with Microsoft's Agentic Framework
Project Overview We are a team of Imperial College Students committed to improving campus life through innovative multi-agent solutions. CampusSphere leverages Microsoft Azure AI capabilities to automate core university campus services. We created an end-to-end solution that allows both students and staff to access a multi-agent framework for room/gym booking, attendance tracking, calendar management, IoT monitoring and more. 🔭 Our Initial Vision: Reimagining Campus Technology When our team at Imperial College London embarked on the CampusSphere project as part of Microsoft's Agentic Campus initiative, we had one clear ambition: to create an intelligent campus ecosystem that would fundamentally change how students, faculty, and staff interact with university services. The inspiration came from a simple observation—despite living in an age of advanced AI, campus technology remained frustratingly fragmented. Students juggled multiple portals for course registration, room booking, dining services, and academic support. Faculty members navigated separate systems for teaching, research, and administrative tasks. The result? Countless hours wasted on mundane navigation tasks that could be better spent on learning, teaching, and innovation. Our vision was ambitious: create a single, intelligent interface that could understand natural language, anticipate user needs, and seamlessly integrate with existing campus infrastructure. We didn't just want to build another campus app—we wanted to demonstrate how Microsoft's agentic AI technologies could create a truly intelligent campus companion. 🧠 Enter CampusSphere CampusSphere is an intelligent campus assistant made up of multiple AI agents, each with a specific domain of expertise — all communicating seamlessly through a centralized architecture. Think of it as a digital concierge for campus life, where your calendar, attendance, IoT data, and facility bookings are coordinated by specialized GPT-powered agents. Here’s what we built: TriageAgent – the brain of the system, using Retrieval-Augmented Generation (RAG) to understand user intent CalendarAgent – handles scheduling, bookings, and reminders AttendanceAgent – tracks check-ins automatically IoTAgent – monitors real-time sensor data from classrooms and labs GymAgent – manages access and reservations for sports facilities 30+ MCP Tools – perform SQL queries, scrape web data, and connect with external APIs All of this is built on Microsoft Azure AI, Semantic Kernel, and Model Context Protocol (MCP) — making it scalable, secure, and lightning fast. 🖥️ The Tech Stack Our Azure-powered architecture showcases a modular and scalable approach to real-time data processing and intelligent agent coordination. The frontend is built using React with a Vite development server, providing a fast and responsive user interface. When users submit a prompt, it travels to a Flask backend server acting as the Triage agent, which intelligently delegates tasks to a FastAPI agent service. This FastAPI service asynchronously communicates with individual agents and handles responses efficiently. Complex queries are routed to MCP Tools, which interact with the CosmosDB-powered Campus Database. Simultaneously, real-time synthetic IoT data is pushed into the database via Azure Function Apps and Azure IoT Hub. Authentication is securely managed: users log in through the frontend, receive a token from the database API server, and use it for authorized access to MCP services, with permissions enforced based on user roles using our custom MCP server implementation. This robust architecture enables seamless integration, real-time data flow, and secure multi-agent collaboration across Azure services. Our system leverages a multi-agent architecture designed to intelligently coordinate task execution across specialized services. At the core is the TriageAgent, which uses Retrieval-Augmented Generation (RAG) to interpret user prompts, enrich them with relevant context, and determine the optimal response path. Based on the nature of the request, it may handle the response directly, seek clarification, or delegate tasks to specific agents via FastAPI. Each specialized agent has a clearly defined role: AttendanceAgent: Interfaces with CosmosDB-backed FastAPI endpoints to check student attendance, using filters like event name, student ID, or date. IoTAgent: Monitors room conditions (e.g., temperature, CO₂ levels) and flags anomalies using real-time data from Azure IoT Hub, processed via FastAPI. CalendarAgent: Handles scheduling, availability checks, and event creation by querying or updating CosmosDB through FastAPI. Future integration with Microsoft Graph API is planned for direct calendar syncing. Gym Slot Agent: Checks available times for gym sessions using dedicated MCP tools. The triage agent serves as the orchestrator, breaking down complex requests (like "Book a gym session") into subtasks. It consults relevant agents (e.g., calendar and gym slot agents), merges results, and then confirms the final action with the user. This distributed and asynchronous workflow reduces backend load and enhances both responsiveness and reliability of the system. 🔮 What’s Next? Integrating CampusSphere with live systems via Microsoft OAuth is crucial for enhancing its capabilities. This integration will grant the agent authenticated access to a wider range of student data, moving beyond synthetic datasets. This expanded access to real-world information will enable deeply personalized advice, such as tailored course selection, scholarship recommendations, event suggestions, and deadline reminders, transforming CampusSphere into a sophisticated, proactive personal assistant. 🤝Meet the Team Behind CampusSphere Our success stemmed from a diverse team of innovators who brought together expertise from multiple domains: Benny Liu - https://www.linkedin.com/in/zong-benny-liu-393a4621b/ Lucas Ng - https://www.linkedin.com/in/lucas-ng-11b317203/ Lu Ju - https://www.linkedin.com/in/lu-ju/ Bruno Duaso - https://www.linkedin.com/in/bruno-duaso-jimeno-744464262/ Martim Coutinho - https://www.linkedin.com/in/martim-pereira-coutinho-116308233/ Krischad Pourpongpan - https://www.linkedin.com/in/krischadpua/ Yixu Pan - https://www.linkedin.com/in/yixu-pan/ Our collaborative approach enabled us to create a sophisticated agentic AI system that demonstrates the powerful potential of Microsoft's AI technologies in educational environments. 🧑💻 Project Repository: GitHub - Imperial-Microsoft-Agentic-Campus/CampusSphere Contribute to Imperial-Microsoft-Agentic-Campus/CampusSphere development by creating an account on GitHub. github.com Have questions about implementing similar solutions at your institution? Connect with our team members on LinkedIn—we're always excited to share knowledge and collaborate on innovative campus technology projects. 📚Get Started with Microsoft's AI Tools Ready to explore the technologies that made CampusSphere possible? Here are essential resources: Microsoft Semantic Kernel: The core framework for building AI agent orchestration systems. Learn how to create, coordinate, and manage multiple AI agents working together seamlessly. AI Agents for Beginners: A comprehensive guide to understanding and building AI agents from the ground up. Perfect for getting started with agentic AI development. Model Context Protocol (MCP): Learn about the protocol that enables secure connections between AI models and external tools and services—essential for building integrated AI systems. Windows AI Toolkit: Microsoft's toolkit for developing AI applications on Windows, providing local AI model development capabilities and deployment tools. Azure Container Apps: Understand how to deploy and scale containerized AI applications in the cloud, perfect for hosting multi-agent systems. Azure Cosmos DB Security: Essential security practices for managing data in AI applications, covering encryption, access control, and compliance.379Views2likes0CommentsCreate Stunning AI Videos with Sora on Azure AI Foundry!
Special credit to Rory Preddy for creating the GitHub resource that enable us to learn more about Azure Sora. Reach him out on LinkedIn to say thanks. Introduction Artificial Intelligence (AI) is revolutionizing content creation, and video generation is at the forefront of this transformation. OpenAI's Sora, a groundbreaking text-to-video model, allows creators to generate high-quality videos from simple text prompts. When paired with the powerful infrastructure of Azure AI Foundry, you can harness Sora's capabilities with scalability and efficiency, whether on a local machine or a remote setup. In this blog post, I’ll walk you through the process of generating AI videos using Sora on Azure AI Foundry. We’ll cover the setup for both local and remote environments. Requirements: Azure AI Foundry with sora model access A Linux Machine/VM. Make sure that the machine already has the package below: Java JRE 17 (Recommended) OR later Maven Step Zero – Deploying the Azure Sora model on AI Foundry Navigate to the Azure AI Foundry portal and head to the “Models + Endpoints” section (found on the left side of the Azure AI Foundry portal) > Click on the “Deploy Model” button > “Deploy base model” > Search for Sora > Click on “Confirm”. Give a deployment name and specify the Deployment type > Click “Deploy” to finalize the configuration. You should receive an API endpoint and Key after successful deploying Sora on Azure AI Foundry. Store these in a safe place because we will be using them in the next steps. Step one – Setting up the Sora Video Generator in the local/remote machine. Clone the roryp/sora repository on your machine by running the command below: git clone https://github.com/roryp/sora.git cd sora Then, edit the application.properties file in the src/main/resources/ folder to include your Azure OpenAI Credentials. Change the configuration below: azure.openai.endpoint=https://your-openai-resource.cognitiveservices.azure.com azure.openai.api-key=your_api_key_here If port 8080 is used for another application, and you want to change the port for which the web app will run, change the “server.port” configuration to include the desired port. Allow appropriate permissions to run the “mvnw” script file. chmod +x mvnw Run the application ./mvnw spring-boot:run Open your browser and type in your localhost/remote host IP (format: [host-ip:port]) in the browser search bar. If you are running a remote host, please do not forget to update your firewall/NSG to allow inbound connection to the configured port. You should see the web app to generate video with Sora AI using the API provided on Azure AI Foundry. Now, let’s generate a video with Sora Video Generator. Enter a prompt in the first text field, choose the video pixel resolution, and set the video duration. (Due to technical limitation, Sora can only generate video of a maximum of 20 seconds). Click on the “Generate video” button to proceed. The cost to generate the video should be displayed below the “Generate Video” button, for transparency purposes. You can click on the “View Breakdown” button to learn more about the cost breakdown. The video should be ready to download after a maximum of 5 minutes. You can check the status of the video by clicking on the “Check Status” button on the web app. The web app will inform you once the download is ready and the page should refresh every 10 seconds to fetch real-time update from Sora. Once it is ready, click on the “Download Video” button to download the video. Conclusion Generating AI videos with Sora on Azure AI Foundry is a game-changer for content creators, marketers, and developers. By following the steps outlined in this guide, you can set up your environment, integrate Sora, and start creating stunning AI-generated videos. Experiment with different prompts, optimize your workflow, and let your imagination run wild! Have you tried generating AI videos with Sora or Azure AI Foundry? Share your experiences or questions in the comments below. Don’t forget to subscribe for more AI and cloud computing tutorials!896Views0likes3Comments