azure
7755 TopicsTableau to Power BI Migration: Semantic Layer-First Approach for Cloud Architects
In this guide, we provide practical guidance for migrating from Tableau to Power BI, with a focus on technical best practices and architecture. Unifying business intelligence on the Microsoft Fabric platform, enterprises gain closer integration with Microsoft 365 (Teams, Copilot, Excel). For cloud solution architects and BI developers, a successful migration is not just about rebuilding dashboards in a new tool. It requires thoughtful architectural planning and a shift to a more model-centric approach to BI. Why Semantic Layer-First Architecture Matters The Traditional Migration Challenge Most Tableau to Power BI migrations follow a dashboard-centric approach: teams attempt to replicate existing Tableau workbooks, calculated fields, and LOD (Level of Detail) expressions directly into Power BI reports. While this may seem efficient initially, it creates significant downstream challenges: Duplicated logic: Each report embeds its own calculations and business rules, leading to conflicting KPIs across the organization Maintenance overhead: Changes to business logic require updating dozens or hundreds of individual reports Governance gaps: Without centralized definitions, semantic drift occurs—different teams calculate "Revenue" or "Active Customer" differently Scalability issues: As data volumes grow, report-level transformations become performance bottlenecks The Semantic Layer-First Alternative Microsoft's recommended approach centers on semantic models (formerly called datasets)—centralized, governed data models that separate business logic from visualization. In this architecture: The payoff is substantial: when data evolves or business rules change, you update the semantic model once, and all dependent reports automatically reflect the changes—no manual redesign required. Understanding Migration Complexity: Simple to Very Complex Dashboards Not all Tableau dashboards are created equal. The migration strategy should align with dashboard complexity, and the semantic layer approach becomes increasingly valuable as complexity grows. Follow a Step-by-Step Migration Strategy Migrating from Tableau to Power BI is not a one-click effort – it requires a mix of automated and manual refactoring, plus a sound change management plan. Below are key strategies and best practices for a successful migration: Audit your Tableau estate: Start by taking inventory of all existing Tableau workbooks, data sources, and dashboards. Determine what needs to be migrated (focus on high-value, widely used reports first) and identify any redundant or obsolete content that can be retired rather than converted. Conduct a proof-of-concept (PoC): Before migrating everything, pick a representative complex dashboard (or a subset of your data) and perform a pilot migration. This will help you validate that Power BI can connect to your data (e.g. setting up the Power BI gateways for on-premises sources), test performance (Import vs DirectQuery modes), and experiment with replicating key visuals or calculations. Use the PoC to uncover any surprises early – for example, test that any Level of Detail expressions or table calculations in Tableau can be re-created in DAX. The lessons learned here should inform your overall project plan. Use a phased migration approach: Plan to run Tableau and Power BI in parallel for some period, rather than switching everything at once. Migrate in waves – for example, by business unit or subject area – and incorporate user feedback as you go. This phased approach reduces risk and allows your team to improve the process with each iteration. It also gives end users time to adjust gradually. Migrate high-impact dashboards first: Prioritize the migration of key reports and dashboards that are critical to the business or have the most usage. Delivering these early wins will not only surface any technical challenges to solve but will also help demonstrate the value of Power BI’s capabilities to stakeholders. Early success builds buy-in and momentum for the rest of the migration. Reimagine (don’t just replicate) the experience: It’s rarely possible – or desirable – to exactly re-create every Tableau visualization pixel-for-pixel in Power BI. Embrace the opportunity to focus on business questions and improve user experience with Power BI’s features. For example, rather than replicating a complex Tableau workaround, you might implement a cleaner solution in Power BI using native features (like bookmarks, drilldowns, or simpler navigation between pages). Engage business users and subject matter experts during this redesign to ensure the new reports meet their needs. Enable dataset reusability: One major benefit of the Power BI approach is the ability to create shared datasets and dataflows. As you migrate, look for opportunities to create central semantic models (datasets) that can serve multiple reports. For instance, if several Tableau workbooks are all using similar data about sales, you can create one central Sales dataset in Power BI. Report creators across the organization can then build different Power BI reports on that single dataset without duplicating data or logic. This reduces maintenance and promotes a “build once, reuse often” strategy. Provide training and support: Expect a learning curve for teams moving to Power BI – especially those who are very fluent in Tableau. Plan for user upskilling and training programs. Establish a support community or office hours where new users can ask questions and get help. If possible, identify Power BI champions or recruit a Power BI Center of Excellence (COE) team who can guide others. During the transition, ensure there are subject matter experts (SMEs) available to address questions and validate that the new reports are correct. Manage change and expectations: It’s important to communicate why the organization is moving to Power BI (e.g. benefits like deeper integration, lower TCO, better governance) to get buy-in from end users. Some users may be resistant to change, especially if they’ve invested a lot of time in mastering Tableau. Prepare to handle varying responses – emphasize the personal benefits (like improved performance, new capabilities, or career growth with popular skills) to encourage adoption. Also, involve influential business users early and gather their feedback, so they feel ownership in the new solution. Establish governance from Day 1: Don’t wait until after migration to think about governance. Use this chance to set up Power BI governance aligned to best practices. Decide on important aspects such as workspace naming conventions, who can create or publish content, how you’ll monitor usage and costs, and how to manage data access and security (for example, designing a strategy for RLS, and deciding when to use per-user datasets vs. organizational semantic models). Good governance will ensure your shiny new Power BI environment doesn’t sprawl into chaos over time. Allow time for adjustment and iteration: Finally, be patient and iterative. Depending on the scale of your organization and the number of Tableau assets, a full migration can take months or even a year or more. Plan realistic transition periods where both systems might coexist. Continuously refine your approach with each wave of migration. Power BI’s frequent update cadence (monthly releases) means new features may emerge even during your project – stay updated, as new capabilities could simplify your migration (for example, the introduction of field parameters or Copilot might let you modernize certain Tableau features more easily). Reimagine (don’t just replicate) the experience (Step 5): Phase 1: Assessment and Planning 1. Audit Your Tableau Estate Inventory all workbooks, data sources, and calculated fields Identify high-traffic dashboards (prioritize for early migration) Categorize by complexity (Simple/Medium/Complex/Very Complex) 2. Design Your Semantic Architecture Map Tableau data sources to Power BI data sources (DirectQuery, Import, or Direct Lake) Plan star schema for fact/dimension tables Identify shared calculations that should live in semantic models vs. report-specific logic 3. Choose Storage Modes Source Type Recommended Mode Rationale Databricks Delta Lake Direct Lake Real-time analytics, no refresh lag Azure SQL Database DirectQuery or Import Based on data volume and refresh SLAs On-Premises SQL Server Import (via Gateway) Network latency considerations Excel/CSV files Import Small reference data Phase 2: Build the Semantic Layer 1. Create Star Schema Data Models1 Tableau often relies on flat, denormalized datasets. Power BI performs best with star schemas: Fact tables: Transactional data (sales, orders, events) with foreign keys to dimensions Dimension tables: Descriptive attributes (customers, products, dates) with primary keys Relationships: One-to-many from dimension to fact, leveraging bidirectional filtering sparingly 2. Migrate Calculations to DAX Measures Convert Tableau calculated fields to DAX measures in the semantic model: --Example of DAX: -- Define as measure: Total Revenue = SUMX( 'Sales', 'Sales'[Quantity] * 'Sales'[Unit Price] ) 2.1 Use Copilot to Accelerate DAX Development Leverage Copilot in Power BI Desktop to generate and validate DAX: Describe the calculation in natural language Copilot suggests DAX syntax Review, test, and refine Phase 3: Understanding Migration Complexity: Simple to Very Complex Dashboards Not all Tableau dashboards are created equal. The migration strategy should align with dashboard complexity, and the semantic layer approach becomes increasingly valuable as complexity grows. 1. Dashboard Conversion Best Practices Think in "pages" not "sheets": Power BI reports combine multiple visuals per page; group related visuals logically Use slicers for interactivity: Replace Tableau filters with Power BI slicers and filter pane Leverage bookmarks for navigation: Create dynamic report experiences with show/hide containers Simple Complexity Level Category Tableau Feature Power BI Equivalent Microsoft Fabric Enhancements Best Practice Notes Data Model Single custom SQL Power Query for data shaping and ETL. OneLake Shortcuts for unified data access. Use star schema for optimized performance; push logic into the semantic layer rather than visuals. Calculations Basic IF/ELSE, SUM Data Analysis Expressions (DAX) for measures and calculated columns. Copilot for Power BI to assist with DAX creation. Fabric IQ for natural language queries. Centralize calculations in semantic models for consistency and governance. Medium Complexity Level Category Tableau Feature Power BI Equivalent Fabric Enhancements Best Practice Notes Data Model Multiple custom SQL (up to 3) Connect live to databases (Azure Databricks): DirectQuery in Power BI Connect with cloud data sources: Power BI data sources OneLake Shortcuts for unified access without databricks compute cost. Semantic Models can combine multiple sources. Optimize with star schema; Prefer OneLake Shortcuts for performance; avoid heavy transformations in visuals. Calculations Nested IFs, CASE Data Analysis Expressions (DAX) for measures and calculated columns. Copilot for Power BI to assist with DAX creation. Fabric Data Agent for conversational BI. Fabric IQ for natural language queries: Fabric IQ Centralize logic in semantic models; use Copilot for automation and validation; keep calculations reusable. Complex Complexity Level Category Tableau Feature Power BI Equivalent Fabric Enhancements Best Practice Notes Data Model Multiple sources Composite Models in Power BI (DirectQuery + Import) for combining multiple sources, also connect to various cloud services. Dataflows for pre-processing. OneLake Shortcuts for unified access without Azure Databricks compute cost; Microsoft Fabric Dataflows Gen2 offers multiple ways to ingest, transform, and load data efficiently. Consolidate sources into semantic models; use Direct Lake for performance; Calculations LOD, window functions Data Analysis Expressions (DAX) for measures and calculated columns. Copilot to assist with complex DAX. Fabric IQ Ontology for semantic alignment. Q&A visual for natural language. Change how visuals interact in a Power BI report. Centralize calculations in semantic layer; use variables in DAX for readability and performance. Fabric Data Agent for a conversational BI. Very Complex Complexity Level Category Tableau Feature Power BI Equivalent Fabric Enhancements Best Practice Notes Data Model Multi-source, Excel, SQL Composite Models in Power BI (DirectQuery + Import) for combining multiple sources, also connect to various cloud services. Dataflows for pre-processing. OneLake Shortcuts for unified access; Connector overview build-in support. Mirroring for real-time sync. Combine multiple sources into well-structured semantic models for consistency and optimized performance. Calculations Predictive logic Data Analysis Expressions (DAX) for measures and calculated columns. Fabric AutoML, ML models, AI Insights, Python/R, Notebook‑based ML (Spark/Scikit‑Learn), Fabric AI Functions, Fabric IQ Ontology Fabric Data Agent for a conversational BI. Centralize logic in semantic models; leverage Copilot for automation and parameter-driven workflows. Prepare for Copilot and Q&A integration. 2. Tableau Feature Equivalents Tableau Feature Power BI Equivalent Microsoft Learn Link Calculated Fields DAX Measures DAX Documentation Parameters Field Parameters / Bookmarks Use report readers to change visuals Actions Drillthrough / Bookmarks Drillthrough Tableau Prep Power Query / Dataflows Differences between Dataflow Gen1 and Dataflow Gen2 Tableau Server Power BI Service What is Power BI? Overview of Components and Benefits Phase 4: Governance and Deployment Workspace Planning (Dev / Test / Prod Separation) A proper workspace strategy is essential for governed deployments in Fabric and Power BI. Fabric supports separate Development, Test, and Production stages using Deployment Pipelines, enabling controlled promotions of semantic models, reports, dataflows, notebooks, lakehouses, and other items. You can assign each workspace to a pipeline stage (Dev → Test → Prod) to ensure safe lifecycle management. Sensitivity Labeling (Microsoft Purview Information Protection) Sensitivity labels allow governed classification and protection of data across Fabric items. Sensitivity labels can be applied directly to Fabric items (semantic models, reports, dataflows, etc.) through the item's header flyout or the item settings. Labels from Microsoft Purview Information Protection enforce data access rules and help organizations meet compliance requirements. Endorsement & Certification (Promoted, Certified, Master Data) Endorsement improves discoverability and trust in shared organizational content. Promoted: Item creators mark content as recommended for broader use. Certified: Administrators or authorized reviewers validate content meets organizational quality standards. Master Data: Indicates authoritative single‑source‑of‑truth items such as semantic models or lakehouses. All Fabric items except dashboards can be promoted or certified; data‑containing items can be designated as Master Data. Monitoring & Capacity Planning Ensuring performance and cost efficiency requires ongoing monitoring of your Fabric capacity. Microsoft recommends evaluating workloads using Fabric Capacity Metrics and planning SKU sizes based on real usage. Fabric uses bursting and smoothing to handle spikes while enforcing capacity limits. Monitoring helps identify high compute usage, background refreshes, and interactive workloads to optimize performance. Fabric Data Source Connections (OneLake+ Manage Connections) Microsoft Fabric is designed as an end‑to‑end analytics platform that integrates data from many different source systems into a unified environment powered by OneLake, Data Factory, Real‑Time Analytics, Dataflows , Lakehouses, Warehouses, and Mirrored Databases. The Strategic Advantage: Semantic Layer + Fabric IQ The semantic layer-first approach sets the foundation for the next evolution in enterprise analytics. Fabric IQ (announced at Ignite 2025) is Microsoft's semantic intelligence platform that auto-elevates semantic models into ontologies—structured knowledge graphs that power AI agents, Copilot experiences, and cross-domain data reasoning. What this means for your migration: Semantic models you build today become the foundation for AI-driven analytics tomorrow Data Agents can reason across multiple semantic models, answering questions that span domains Business users transition from "report consumers" to "data explorers" via natural language interfaces Conclusion: Build for the Future, Not Just for Today Migrating from Tableau to Power BI is more than a technology swap—it's an opportunity to re-architect your analytics strategy for the cloud-native, AI-powered era. The semantic layer-first approach requires upfront investment in data modeling, DAX expertise, and Fabric platform adoption. But the payoff is transformative: Consistency: Single source of truth for all business metrics Scalability: Semantic models that serve hundreds of reports and thousands of users Agility: Changes to business logic propagate instantly across the enterprise Future-readiness: Foundation for Fabric IQ, Data Agents, and AI-driven insights Start your migration with the end in mind: not just convert dashboards, but a modern, governed, AI-ready analytics platform that scales with your business. Addressing Key Migration Concerns (1) Why a semantic‑layered model approach is better than recreating Tableau dashboards A semantic‑layered modeling approach is the optimal strategy for Sentara’s migration and is significantly more effective than attempting to recreate Tableau dashboards exactly as they exist. By contrast, Power BI and Fabric encourage a semantic model–first architecture, where all business rules, relationships, calculations, and transformations are centralized in a governed model that serves many dashboards. The approach not only provides consistency and reuse across the enterprise but also ensures that report authors build on a single certified version of the truth. (2) How semantic-layered model approach reduces the constant redesign caused by changing data needs. A semantic‑layered modeling approach directly addresses Sentara’s concern about constant changes and frequent redesigns of dashboards when data evolves. With a semantic layer, changes are absorbed in the model layer—so the logic is updated once and flows automatically into all dependent reports. Combined with Fabric features like OneLake shortcuts, Direct Lake mode, and centralized governance, the semantic layer drastically reduces breakage, minimizes rework, and ensures scalability as Sentara’s data continues to grow and shift. Additional Resources Direct Lake in Microsoft Fabric Create Fabric Data Agents OneLake Shortcuts Write DAX queries with Copilot - DAX348Views2likes1CommentAzure Databricks & Fabric Disaster Recovery: The Better Together Story
Disaster recovery (DR) is a critical component of any cloud-native data analytics platform, ensuring business continuity even during rare regional outages caused by natural disasters, infrastructure failures, or other disruptions. Identify Business Critical Workloads Before designing any disaster recovery strategy, organizations must first identify which workloads are truly business‑critical and require regional redundancy. Not all Databricks or Fabric processes need full DR protection; instead, customers should evaluate the operational impact of downtime, data freshness requirements, regulatory obligations, SLAs, and dependencies across upstream and downstream systems. By classifying workloads into tiers and aligning DR investments accordingly, customers ensure they protect what matters most without over‑engineering the platform. Azure Databricks Azure Databricks requires a customer‑driven approach to disaster recovery, where organizations are responsible for replicating workspaces, data, infrastructure components, and security configurations across regions. Full System Failover (Active-Passive) Strategy A comprehensive approach that replicates all dependent services to the secondary region. Implementation requirements include: Infrastructure Components: Replicate Azure services (ADLS, Key Vault, SQL databases) using Terraform Deploy network infrastructure (subnets) in the secondary region Establish data synchronization mechanisms Data Replication Strategy: Use Deep Clone for Delta tables rather than geo-redundant storage Implement periodic synchronization jobs using Delta's incremental replication Measure data transfer results using time travel syntax Workspace Asset Synchronization: Co-deploy cluster configurations, notebooks, jobs, and permissions using CI/CD Utilize Terraform and SCIM for identity and access management Keep job concurrencies at zero in the secondary region to prevent execution Fully Redundant (Active-Active) Strategy The most sophisticated approach where all transactions are processed in multiple regions simultaneously. While providing maximum resilience, this strategy: Requires complex data synchronization between regions Incurs highest operational costs due to duplicate processing Typically needed only for mission-critical workloads with zero-tolerance for downtime Can be implemented as partial active-active, processing most workload in primary with subset in secondary Enabling Disaster Recovery Create a secondary workspace in a paired region. Use CI/CD to keep Workspace Assets Synchronized continuously. Requirement Approach Tools Cluster Configurations Co-deploy to both regions as code Terraform Code (Notebooks, Libraries, SQL) Co-deploy with CI/CD pipelines Git, Azure DevOps, GitHub Actions Jobs Co-deploy with CI/CD, set concurrency to zero in secondary Databricks Asset Bundles, Terraform Permissions (Users, Groups, ACLs) Use IdP/SCIM and infrastructure as code Terraform, SCIM Secrets Co-deploy using secret management Terraform, Azure Key Vault Table Metadata Co-deploy with CI/CD workflows Git, Terraform Cloud Services (ADLS, Network) Co-deploy infrastructure Terraform Update your orchestrator (ADF, Fabric pipelines, etc.) to include a simple region toggle to reroute job execution. Replicate all dependent services (Key Vault, Storage accounts, SQL DB). Implement Delta “Deep Clone” synchronization jobs to keep datasets continuously aligned between regions. Introduce an application‑level “Sync Tool” that redirects: data ingestion compute execution Enable parallel processing in both regions for selected or all workloads. Use bi‑directional synchronization for Delta data to maintain consistency across regions. For performance and cost control, run most workloads in primary and only subset workloads in secondary to keep it warm. Microsoft Fabric Microsoft Fabric provides built‑in disaster recovery capabilities designed to keep analytics and Power BI experiences available during regional outages. Fabric simplifies continuity for reporting workloads, while still requiring customer planning for deeper data and workload replication. Power BI Business Continuity Power BI, now integrated into Fabric, provides automatic disaster recovery as a default offering: No opt-in required: DR capabilities are automatically included. Azure storage geo-redundant replication: Ensures backup instances exist in other regions. Read-only access during disasters: Semantic models, reports, and dashboards remain accessible. Always supported: BCDR for Power BI remains active regardless of OneLake DR setting. Microsoft Fabric Fabric's cross-region DR uses a shared responsibility model between Microsoft and customers: Microsoft's Responsibilities: Ensure baseline infrastructure and platform services availability Maintain Azure regional pairings for geo-redundancy. Provide DR capabilities for Power BI as default. Customer Responsibilities: Enable disaster recovery settings for capacities Set up secondary capacity and workspaces in paired regions Replicate data and configurations Enabling Disaster Recovery Organizations can enable BCDR through the Admin portal under Capacity settings: Navigate to Admin portal → Capacity settings Select the appropriate Fabric Capacity Access Disaster Recovery configuration Enable the disaster recovery toggle Critical Timing Considerations: 30-day minimum activation period: Once enabled, the setting remains active for at least 30 days and cannot be reverted. 72-hour activation window: Initial enablement can take up to 72 hours to become fully effective. Azure Databricks & Microsoft Fabric DR Considerations Building a resilient analytics platform requires understanding how disaster recovery responsibilities differ between Azure Databricks and Microsoft Fabric. While both platforms operate within Azure’s regional architecture, their DR models, failover behaviors, and customer responsibilities are fundamentally different. Recovery Procedures Procedure Databricks Fabric Failover Stop workloads, update routing, resume in secondary region. Microsoft initiates failover; customers restore services in DR capacity. Restore to Primary Stop secondary workloads, replicate data/code back, test, resume production. Recreate workspaces and items in new capacity; restore Lakehouse and Warehouse data. Asset Syncing Use CI/CD and Terraform to sync clusters, jobs, notebooks, permissions. Use Git integration and pipelines to sync notebooks and pipelines; manually restore Lakehouses. Business Considerations Consideration Databricks Fabric Control Customers manage DR strategy, failover timing, and asset replication. Microsoft manages failover; customers restore services post-failover. Regional Dependencies Must ensure secondary region has sufficient capacity and services. DR only available in Azure regions with Fabric support and paired regions. Power BI Continuity Not applicable. Power BI offers built-in BCDR with read-only access to semantic models and reports. Activation Timeline Immediate upon configuration. DR setting takes up to 72 hours to activate; 30-day wait before changes allowed.187Views0likes0CommentsAnonimização de Dados Sensíveis com a plataforma de IA do Azure
A proteção de dados pessoais e sensíveis prevista pela LGPD tornou essencial que organizações adotem mecanismos eficazes para tratar e anonimizar informações presentes em documentos, especialmente em setores como o público e o de saúde, onde o risco de exposição é elevado. Este artigo apresenta uma arquitetura moderna baseada em serviços de IA do Azure — incluindo Document Intelligence, Language Service, modelos personalizados de NER e Computer Vision — para identificar, classificar e mascarar automaticamente conteúdos sensíveis.109Views5likes0CommentsMicrosoft BizTalk Server Product Lifecycle Update
For more than 25 years, Microsoft BizTalk Server has supported mission-critical integration workloads for organizations around the world. From business process automation and B2B messaging to connectivity across industries such as financial services, healthcare, manufacturing, and government, BizTalk Server has played a foundational role in enterprise integration strategies. To help customers plan confidently for the future, Microsoft is sharing an update to the BizTalk Server product lifecycle and long-term support timelines. BizTalk Server 2020 will be the final version of BizTalk Server. Guidance to support long-term planning for mission-critical workloads This announcement does not change existing support commitments. Customers can continue to rely on BizTalk Server for many years ahead, with a clear and predictable runway to plan modernization at a pace that aligns with their business and regulatory needs. Lifecycle Phase End Date What’s Included Mainstream Support April 11, 2028 Security + non-security updates and Customer Service & Support (CSS) support Extended Support April 9, 2030 CSS support, Security updates, and paid support for fixes (*) End of Support April 10, 2030 No further updates or support (*) Paid Extended Support will be available for BizTalk Server 2020 between April 2028 and April 2030 for customers requiring hotfixes for non-security updates. CSS will continue providing their typical support. BizTalk Server 2016 is already out of mainstream support, and we recommend those customers evaluate a direct modernization path to Azure Logic Apps. Continued Commitment to Enterprise Integration Microsoft remains fully committed to supporting mission-critical integration, including hybrid connectivity, future-ready orchestration, and B2B/EDI modernization. Azure Logic Apps, part of Azure Integration Services — which includes API Management, Service Bus, and Event Grid — delivers the comprehensive integration platform for the next decade of enterprise connectivity. Host Integration Server: Continued Support for Mainframe Workloads Host Integration Server (HIS) has long provided essential connectivity for organizations with mainframe and midrange systems. To ensure continued support for those workloads, Host Integration Server 2028 will ship as a standalone product with its own lifecycle, decoupled from BizTalk Server. This provides customers with more flexibility and a longer planning horizon. Recognizing Mainframe modernization customers might be looking to integrate with their mainframes from Azure, Microsoft provides Logic Apps connectors for mainframe and midrange systems, and we are keen on adding more connectors in this space. Let us know about your HIS plans, and if you require specific features for Mainframe and midranges integration from Logic Apps at: https://aka.ms/lamainframe Azure Logic Apps: The Successor to BizTalk Server Azure Logic Apps, part of Azure Integration Services, is the modern integration platform that carries forward what customers value in BizTalk while unlocking new innovation, scale, and intelligence. With 1,400+ out-of-box connectors supporting enterprise, SaaS, legacy, and mainframe systems, organizations can reuse existing BizTalk maps, schemas, rules, and custom code to accelerate modernization while preserving prior investments including B2B/EDI and healthcare transactions. Logic Apps delivers elastic scalability, enterprise-grade security and compliance, and built-in cost efficiency without the overhead of managing infrastructure. Modern DevOps tooling, Visual Studio Code support, and infrastructure-as-code (ARM/Bicep) ensure consistent, governed deployments with end-to-end observability using Azure Monitor and OpenTelemetry. Modernizing Logic Apps also unlocks agentic business processes, enabling AI-driven routing, predictive insights, and context-aware automation without redesigning existing integrations. Logic Apps adapts to business and regulatory needs, running fully managed in Azure, hybrid via Arc-enabled Kubernetes, or evaluated for air-gapped environments. Throughout this lifecycle transition, customers can continue to rely on the BizTalk investments they have made while moving toward a platform ready for the next decade of integration and AI-driven business. Charting Your Modernization Path Microsoft remains fully committed to supporting customers through this transition. We recognize that BizTalk systems support highly customized and mission-critical business operations. Modernization requires time, planning, and precision. We hope to provide: Proven guidance and recommended design patterns A growing ecosystem of tooling supporting artifact reuse Unified Support engagements for deep migration assistance A strong partner ecosystem specializing in BizTalk modernization Potential incentive programs to help facilitate migration for eligible customers (details forthcoming) Customers can take a phased approach — starting with new workloads while incrementally modernizing existing BizTalk deployments. We’re Here to Help Migration resources are available today: Overview: https://aka.ms/btmig Best practices: https://aka.ms/BizTalkServerMigrationResources Video series: https://aka.ms/btmigvideo Feature request survey: https://aka.ms/logicappsneeds We encourage customers to engage their Microsoft accounts team early to assess readiness, identify modernization opportunities, and explore assistance programs. Your Modernization Journey Starts Now BizTalk Server has played a foundational role in enterprise integration success for more than two decades. As you plan ahead, Microsoft is here to partner with you every step of the way, ensuring operational continuity today while unlocking innovation tomorrow. To begin your transition, please contact your Microsoft account team or visit our migration hub. Thank you for your continued trust in Microsoft and BizTalk Server. We look forward to partnering closely with you as you plan the future of your integration platforms. Frequently Asked Questions Do I need to migrate now? No. BizTalk Server 2020 is fully supported through April 11, 2028, with paid Extended Support available through April 9, 2030, for non-security hotfixes. CSS will continue providing their typical support. You have a long and predictable runway to plan your transition. Will there be a new BizTalk Server version? No. BizTalk Server 2020 is the final version of the product. What happens after April 9, 2030? BizTalk Server will reach End of Support, and security updates or technical assistance will no longer be provided. Workloads will continue running but without Microsoft servicing. Is paid support available past 2028? Yes. Paid extended support will be available through April 2030 for BizTalk Server 2020 customers looking for non-security hotfixes. CSS will continue to provide the typical support. What about BizTalk Server 2016 or earlier versions? Those versions are already out of mainstream support. We strongly encourage moving directly to Logic Apps rather than upgrading to BizTalk Server 2020. Will Host Integration Server continue? Yes. Host Integration Server (HIS) 2028 will be released as a standalone product with its own lifecycle and support commitments. Can I reuse BizTalk Server artifacts in Logic Apps? Yes. Most of BizTalk maps, schemas, rules, assemblies, and custom code can be reused with minimal effort using Microsoft and partner migration tooling. We welcome feature requests here: https://aka.ms/logicappsneeds Does modernization require moving fully to the cloud? No. Logic Apps supports hybrid deployments for scenarios requiring local processing or regulatory compliance, and fully disconnected environments are under evaluation. More information of the Hybrid deployment model here: https://aka.ms/lahybrid. Does modernization unlock AI capabilities? Yes. Logic Apps enables AI-driven automations through Agent Loop, improving routing, decisioning, and operational intelligence. Where do I get planning support? Your Microsoft account team can assist with assessment and planning. Migration resources are also linked in this announcement to help you get started. Microsoft Corporation1.2KViews2likes1CommentGuide for Architecting Azure-Databricks: Design to Deployment
Author's: Chris Walk cwalk, Dan Johnson danjohn1234, Eduardo dos Santos eduardomdossantos, Ted Kim tekim, Eric Kwashie ekwashie, Chris Haynes Chris_Haynes, Tayo Akigbogun takigbogun and Rafia Aqil Rafia_Aqil Peer Reviewed: Mohamed Sharaf mohamedsharaf Note: This article does not cover the Serverless Workspace option, which is currently in Public Preview. We plan to update this article once Serverless Workspaces are Generally Available. Also, while Terraform is the recommended method for production deployments due to its automation and repeatability, for simplicity in this article we will demonstrate deployment through the Azure portal. DESIGN: Architecting a Secure Azure Databricks Environment Step 1: Plan Workspace, Subscription Organization, Analytics Architecture and Compute Planning your Azure Databricks environment can follow various arrangements depending on your organization’s structure, governance model, and workload requirements. The following guidance outlines key considerations to help you design a well-architected foundation. 1.1 Align Workspaces with Business Units A recommended best practice is to align each Azure Databricks workspace with a specific business unit. This approach—often referred to as the “Business Unit Subscription” design pattern—offers several operational and governance advantages. Streamlined Access Control: Each unit manages its own workspace, simplifying permissions and reducing cross-team access risks. For example, Sales can securely access only their data and notebooks. Cost Transparency: Mapping workspaces to business units enables accurate cost attribution and supports internal chargeback models. Each workspace can be tagged to a cost center for visibility and accountability. Even within the same workspace, costs can be controlled using system tables that provide detailed usage metrics and resource consumption insights. Challenges to keep-in-mind: While per-BU workspaces have high impact, be mindful of workspace sprawl. If every small team spins up its own workspace, you might end up with dozens or hundreds of workspaces, which introduces management overhead. Databricks recommends a reasonable upper limit (on Azure, roughly 20–50 workspaces per account/subscription) because managing “collaboration, access, and security across hundreds of workspaces can become extremely difficult, even with good automation” [1]. Each workspace will need governance (user provisioning, monitoring, compliance checks), so there is a balance to strike. 1.2 Workspace Alignment and Shared Metastore Strategy As you align workspaces with business units, it's essential to understand how Unity Catalog and the metastore fit into your architecture. Unity Catalog is Databricks’ unified governance layer that centralizes access control, auditing, and data lineage across workspaces. Each Unity Catalog is backed by a metastore, which acts as the central metadata repository for tables, views, volumes, and other data assets. In Azure Databricks, you can have one metastore per region, and all workspaces within that region share it. This enables consistent governance and simplifies data sharing across teams. If your organization spans multiple regions, you’ll need to plan for cross-region sharing, which Unity Catalog supports through Delta Sharing. By aligning workspaces with business units and connecting them to a shared metastore, you ensure that governance policies are enforced uniformly, while still allowing each team to manage its own data assets securely and independently. 1.3 Distribute Workspaces Across Subscriptions When scaling Azure Databricks, consider not just the number of workspaces, but also how to distribute them across Azure subscriptions. Using multiple Azure subscriptions can serve both organizational needs and technical requirements: Environment Segmentation (Dev/Test/Prod): A common pattern is to put production workspaces in a separate Azure subscription from development or test workspaces. This provides an extra layer of isolation. Microsoft highly recommends separating workspaces into prod and dev, in separate subscriptions. This way, you can apply stricter Azure policies or network rules to the prod subscription and keep the dev subscription a bit more open for experimentation without risking prod resources. Honor Azure Resource Limits: Azure subscriptions come with certain capacity limits and Azure Databricks workspaces have their own limits (since it’s a multi-tenant PaaS). If you put all workspaces in one subscription, or all teams in one workspace, you might hit those limits. Most enterprises naturally end up with multiple subscriptions as they grow – planning this early avoids later migration headaches. If you currently have everything in one subscription, evaluate usage and consider splitting off heavy workloads or prod workloads into a new one to adhere to best practices. 1.4 Consider Completing Azure Landing Zone Assessment When evaluating and planning your next deployment, it’s essential to ensure that your current landing zone aligns with Microsoft best practices. This helps establish a robust Databricks architecture and minimizes the risk of avoidable issues. Additionally, customers who are early in their cloud journey can benefit from Cloud Assessments—such as an Azure Landing Zone Review and a review of the “Prepare for Cloud Adoption” documentation—to build a strong foundation. 1.5 Planning Your Azure Databricks Workspace Architecture Your workspace architecture should reflect the operational model of your organization and support the workloads you intend to run, from exploratory notebooks to production-grade ETL pipelines. To support your planning, Microsoft provides several reference architectures that illustrate well-architected patterns for Databricks deployments. These solution ideas can serve as starting points for designing maintainable environments: Simplified Architecture: Modern Data Platform Architecture, ETL-Intensive Workload Reference Architecture: Building ETL Intensive Architecture, End-to-End Analytics Architecture: Create a Modern Analytics Architecture. 1.6 Planning for that “Right” Compute Choosing the right compute setup in Azure Databricks is crucial for optimizing performance and controlling costs, as billing is based on Databricks Units (DBUs) using a per-second pricing model. Classic Compute: You can fine-tune your own compute by enabling auto-termination and autoscaling, using Photon acceleration, leveraging spot instances, selecting the right VM type and node count for your workload, and choosing SSDs for performance or HDDs for archival storage. Preferred by mature internal teams and developers who need advanced control over clusters—such as custom VM selection, tuning, and specialized configurations. Serverless Compute: Alternatively, managed services can simplify operations with built-in optimizations. Removes infrastructure management and offers instant scaling without cluster warm-up, making it ideal for agility and simplicity. Step 2: Plan the “Right” CIDR Range (Classic Compute) Note: You can skip this step if you plan to use serverless compute for all your resources, as CIDR range planning is not required in serverless deployments. When planning CIDR ranges for your Azure Databricks workspace, it's important to ensure your virtual network has enough IP address capacity to support cluster scaling. Why this matters: If you choose a small VNet address space and your analytics workloads grow, you might hit a ceiling where you simply cannot launch more clusters or scale-out because there are no free IPs in the subnet. The subnet sizes—and by extension, the VNet CIDR—determine how many nodes you can. Databricks recommends using a CIDR block between /16 and /24 for the VNet, and up to /26 for the two required subnets: the container subnet and the host subnet. Here’s a reference Microsoft provides. If your current workspace’s VNet lacks sufficient IP space for active cluster nodes, you can request a CIDR range update through your Azure Databricks account team as noted in the Microsoft documentation. 2.1 Considerations for CIDR Range Workload Type & Concurrency: Consider what kinds of workloads will run (ETL Pipelines, Machine Learning Notebooks, BI Dashboards, etc.) and how many jobs or clusters may need to run in parallel. High concurrency (e.g. multiple ETL jobs or many interactive clusters) means more nodes running at the same time, requiring a larger pool of IP addresses. Data Volume (Historical vs. Incremental): Are you doing a one-time historical data load or only processing new incremental data? A large backfill of terabytes of data may require spinning up a very large cluster (hundreds of nodes) to process in a reasonable time. Ongoing smaller loads might get by with fewer nodes. Estimate how much data needs processing. Transformation Complexity: The complexity of data transformations or machine learning workloads matters. Heavy transformations (joins, aggregations on big data) or complex model training can benefit more workers. If your use cases include these, you may need larger clusters (more nodes) to meet performance SLAs, which in turn demands more IP addresses available in the subnet. Data Sources and Integration: Consider how your Databricks environment will connect to data. If you have multiple data sources or sinks (e.g. ingest from many event hubs, databases, or IoT streams), you might design multiple dedicated clusters or workflows, potentially all active at once. Also, if using separate job clusters per job (Databricks Jobs), multiple clusters might launch concurrently. All these scenarios increase concurrent node count. 2.2 Configuring a Dedicated Network (VNet) per Workspace with Egress Control By default, Azure Databricks deploys its classic compute resources into a Microsoft-managed virtual network (VNet) within your Azure subscription. While this simplifies setup, it limits control over network configuration. For enhanced security and flexibility, it's recommended to use VNet Injection, which allows you to deploy the compute plane into your own customer-managed VNet. This approach enables secure integration with other Azure services using service endpoints or private endpoints, supports user-defined routes for accessing on-premises data sources, allows traffic inspection via network virtual appliances or firewalls, and provides the ability to configure custom DNS and enforce egress restrictions through network security group (NSG) rules. Within this VNet (which must reside in the same region and subscription as the Azure Databricks workspace), two subnets are required for Azure Databricks: a container subnet (referred to as private subnet) and a host subnet (referred to as public subnet). To implement front-end Private Link, back-end Private Link, or both, your workspace VNet needs a third subnet that will contain the private endpoint (PrivateLink subnet). It is recommended to also deploy an Azure Firewall for egress control. Step 3: Plan Network Architecture for Securing Azure-Databricks 3.1 Secure Cluster Connectivity Secure Cluster Connectivity, also known as No Public IP (NPIP), is a foundational security feature for Azure Databricks deployments. When enabled, it ensures that compute resources within the customer-managed virtual network (VNet) do not have public IP addresses, and no inbound ports are exposed. Instead, each cluster initiates a secure outbound connection to the Databricks control plane using port 443 (HTTPS), through a dedicated relay. This tunnel is used exclusively for administrative tasks, separate from the web application and REST API traffic, significantly reducing the attack surface. For the most secure deployment, Microsoft and Databricks strongly recommend enabling Secure Cluster Connectivity, especially in environments with strict compliance or regulatory requirements. When Secure Cluster Connectivity is enabled, both workspace subnets become private, as cluster nodes don’t have public IP addresses. 3.2 Egress with VNet Injection (NVA) For Databricks traffic, you’ll need to assign a UDR to the Databricks-managed VNet with a next hop type of Network Virtual Appliance (NVA)—this could be an Azure Firewall, NAT Gateway, or another routing device. For control plane traffic, Databricks recommends using Azure service tags, which are logical groupings of IP addresses for Azure services and should be routed with the next hop type of internet. This is important because Azure IP ranges can change frequently as new resources are provisioned, and manually maintaining IP lists is not practical. Using service tags ensures that your routing rules automatically stay up to date. 3.3 Front-End Connectivity with Azure Private Link (Standard Deployment) To further enhance security, Azure Databricks supports Private Link for front-end connections. In a standard deployment, Private Link enables users to access the Databricks web application, REST API, and JDBC/ODBC endpoints over a private VNet interface, bypassing the public internet. For organizations with no public internet access from user networks, a browser authentication private endpoint is required. This endpoint supports SSO login callbacks from Microsoft Entra ID and is shared across all workspaces in a region using the same private DNS zone. It is typically hosted in a transit VNet that bridges on-premises networks and Azure. Note: There are two deployment types: standard and simplified. To compare these deployment types, see Choose standard or simplified deployment. 3.4 Serverless Compute Networking Azure Databricks offers serverless compute options that simplify infrastructure management and accelerate workload execution. These resources run in a Databricks-managed serverless compute plane, isolated from the public internet and connected to the control plane via the Microsoft backbone network. To secure outbound traffic from serverless workloads, administrators can configure Serverless Egress Control using network policies that restrict connections by location, FQDN, or Azure resource type. Additionally, Network Connectivity Configurations (NCCs) allow centralized management of private endpoints and firewall rules. NCCs can be attached to multiple workspaces and are essential for enabling secure access to Azure services like Data Lake Storage from serverless SQL warehouses. DEPLOYMENT: Step-to-Step Implementation using Azure Portal Step 1: Create an Azure Resource Group For each new workspace, create a dedicated Resource Group (to contain the Databricks workspace resource and associated resources). Ensure that all resources are deployed in the same Region and Resource Group (i.e. workspace, subnets...) to optimize data movement performance and enhance security. Step 2: Deploy Workspace Specific Virtual Network (VNET) From your Resource Group, create a Virtual Network. Under the Security section, enable Azure Firewall. Deploying an Azure Firewall is recommended for egress control, ensuring that outbound traffic from your Databricks environment is securely managed. Define address spaces for your Virtual Network (Review Step 2 from Design). As documented, you could create a VNet with these values: IP range: First remove the default IP range, and then add IP range 10.28.0.0/23. Create subnet public-subnet with range 10.28.0.0/25. Create subnet private-subnet with range 10.28.0.128/25. Create subnet private-link with range 10.28.1.0/27. Please note: your IP values can be different depending on your IPAM and available scopes. Review + Create your Virtual Network. Step 3: Deploy Azure-Databricks Workspace: Now that networking is in place, create the Databricks workspace. Below are detailed steps your organization should review while creating workspace creation: In Azure Portal, search for Azure Databricks and click Create. Choose the Subscription, RG, Region, select Premium, enter in “Managed Resource Group name” and click Next. Managed Resource Group- will be created after your Databrick workspace is deployed and contains infrastructure resources for the workspace i.e. VNets, DBFS. Required: Enable “Secure Cluster Connectivity” (No Public IP for clusters), to ensure that Databricks clusters are deployed without public IP addresses (Review Section 3.1). Required: Enable the option to deploy into your Virtual Network (VNet Injection), also known as “Bring Your Own VNet” (Review Section 3.2). Select the Virtual Network created in Step 2. Enter Private, Public Subnet Names. Enable or Disable “Deploying Nat Gateway”, according to your workspace requirement. Disable “Allow Public Network Access”. Select “No Azure Databricks Rules” for Required NSG Rules. Select “Click on add to create a private endpoint”, this will open a panel for private endpoint setup. Click “Add” to enter your Private Link details created in Step 2. Also, ensure that Private DNS zone integration is set to “Yes” and that a new Private DNS Zone is created, indicated by (New)privatelink.azuredatabricks.net. Unless an existing DNS zone for this purpose already exists. (Optional) Under Encryption Tab, Enable Infrastructure Encryption, if you have requirement for FIPS 140-2. It comes at a cost, it takes time to encrypt and decrypt. By default your data is already encrypted. If you have a standard regulatory requirement (ex. HIPAA). (Optional) Compliance security profile- for HIPAA. (Optional) Automatic cluster updates, First Sunday of every Month. Review + Create the workspace and wait for it to deploy. Step 4: Create a private endpoint to support SSO for web browser access: Note: This step is required when front-end Private Link is enabled, and client networks cannot access the public internet. After creating your Azure Databricks workspace, if you try to launch it without the proper Private Link configuration, you will see an error like the image below: This happens because the workspace is configured to block public network access, and the necessary Private Endpoints (including the browser_authentication endpoint for SSO) are not yet in place. Create Web-Auth Workspace Note: Deploy a “dummy”: WEB_AUTH_DO_NOT_DELETE_<region> workspace in the same region as your production workspace. Purpose: Host the browser_authentication private endpoint (one required per region). Lock the workspace (Delete lock) to prevent accidental removal. Follow step 2 to create Virtual Network (Vnet) Follow step 3 and create a VNet injected “dummy” workspace. Create Browser Authentication Private Endpoint In Azure Portal, Databricks workspace (dummy), Networking, Private endpoint connections, + Private endpoint. Resource step: Target sub-resource: browser_authentication Virtual Network step: VNet: Transit/Hub VNet (central network for Private Link) Subnet: Private Endpoint subnet in that VNet (not Databricks host subnets) DNS step: Integrate with Private DNS zone: Yes Zone: privatelink.azuredatabricks.net Ensure DNS zone is linked to the Transit VNet After creation: A-records for *.pl-auth.azuredatabricks.net are auto-created in the DNS zone. Workspace Connectivity Testing If you have VPN or ExpressRoute, Bastion is not required. However, for the purposes of this article we will be testing our workpace connectivity through Bastion. If you don’t have private connectivity and need to test from inside the VNet, Azure Bastion is a convenient option. Step 5: Create Storage Account From your Resource Group, click Create and select Storage account. On the configuration page: Select Preferred Storage type as: Azure Blob Storage or Azure Data Lake Storage Gen 2. Choose Performance and Redundancy options based on your business requirements. Click Next to proceed. Under the Advanced tab: Enable Hierarchical namespace under Data Lake Storage Gen2. This is critical for: Directory and file-level operations, Access Control Lists (ACLs). Under the Networking tab: Set Public Network Access to Disabled. Complete the creation process and then create container(s) inside the storage account. Step 6: Create Private Endpoints for Workspace Storage Account Pre-requisite: You need to create two private endpoints from the VNet used for VNet injection to your workspace storage account for the following Target sub-resources: dfs and blob. Navigate to your Storage Account. Go to Networking, Private Endpoints tab and click on to + Create Private Endpoint. In the Create Private Endpoint wizard: Resource tab: Select your Storage Account. Set Target sub-resource to dfs for the first endpoint. Virtual Network tab: Choose the VNet you used for VNet injection. Select the appropriate subnet. Complete the creation process. The private endpoint will be auto approved and visible under Private Endpoints. Repeat the process for the second private endpoint: This time set Target sub-resource to blob. Step 7: Link Storage and Databricks Workspace: Create Access Connector In your Resource Group, create an Access Connector for Azure Databricks. No additional configuration is required during creation. Assign Role to Access Connector Navigate to your Storage Account, Access Control (IAM), Add role assignment. Select: Role: Storage Blob Data Contributor Assign access to: Managed Identity Under Members: Click Select members. Find and select your newly created Access Connector for Azure Databricks. Save the role assignment. Copy Resource ID Go to the Access Connector Overview page. Copy the Resource ID for later use in Databricks configuration. Step 8: Link Storage and Databricks Workspace: Navigate to Unity Catalog In your Databricks Workspace, go to Unity Catalog, External Data and select “Create external Location” button. Configure External Location Select ADLS as the storage type. Enter the ADLS storage URL in the following format: abfss://<container_name>@<storage_account_name>.dfs.core.windows.net/ Update these two parameters: <container_name> and <storage_name> Provide Access Connector Select “Create new storage credential” from Storage credential field. Paste the Resource ID of the Access Connector for Azure Databricks (from Step 10) into the Access Connector ID field. Validate Connection Click Submit. You should see a “Successful” message confirming the connection. Click submit and you should receive a “Successful” message, indicating your connection has succeeded. You can now create Catalogs and link your secure storage. Step 9: Configuring Serverless Compute Networking: If your organization plans to use Serverless SQL Warehouses or Serverless Jobs Compute, you must configure Serverless Networking. Add Network Connectivity Configuration (NCC) Go to the Databricks Account Console: https://accounts.azuredatabricks.net/ Navigate to Cloud resources, click Add Network Connectivity Configuration. Fill in the required fields and create a new NCC. Associate NCC with Workspace In the Account Console, go to Workspaces. Select your workspace, click Update Workspace. From the Network Connectivity Configuration dropdown, select the NCC you just created. Add Private Endpoint Rule In Cloud resources, select your NCC, select Private Endpoint Rules and click Add Private Endpoint Rule. Provide: Resource ID: Enter your Storage Account Resource ID. Note: this can be found from your storage account, click on “JSON View” top right. Azure Subresource type: dfs & blob. Approve Pending Connection Go to your Storage Account, Networking, Private Endpoints. You will see a Pending connection from Databricks. Approve the connection and you will see the Connection status in your Account Console as ESTABLISHED. Step 10: Test Your Workspace: Launch a small test cluster and verify the following: It can start (which means it can talk to the control plane). It can read/write from the storage, following the following code to confirm read/write to storage: Set Spark properties to configure Azure credentials to access Azure storage. Check Private DNS Record has been created. (Optional) If on-prem data is needed: try connecting to an on-prem database (using the ExpressRoute path): Connect your Azure Databricks workspace to your on-premises network - Azure Databricks | Microsoft Learn. Step 11: Account Console, Planning Workspace Access Controls and Getting Started: Once your Azure Databricks workspace is deployed, it's essential to configure access controls and begin onboarding users with the right permissions. From your account console: https://accounts.azuredatabricks.net/, you can centrally manage your environment: add users and groups, enable preview features, and view or configure all your workspaces. Azure Databricks supports fine-grained access management through Unity Catalog, cluster policies, and workspace-level roles. Start by defining who needs access to what—whether it's notebooks, tables, jobs, or clusters—and apply least-privilege principles to minimize risk. DBFS Limitation: DBFS is automatically created upon Databricks Workspace creation. DBFS can be found in your Managed Resource Group. Databricks cannot secure DBFS (see reference image below). If there is a business need to avoid DBFS then you can disable DBFS access following instructions here: Disable access to DBFS root and mounts in your existing Azure Databricks workspace. Use Unity Catalog to manage data access across catalogs, schemas, and tables, and consider implementing cluster policies to standardize compute configurations across teams. To help your teams get started, Microsoft provides a range of tutorials and best practice guides: Best practice articles - Azure Databricks | Microsoft Learn. Step 12: Planning Data Migration: As you prepare to move data into your Azure Databricks environment, it's important to assess your migration strategy early. This includes identifying source systems, estimating data volumes, and determining the appropriate ingestion methods—whether batch, streaming, or hybrid. For organizations with complex migration needs or legacy systems, Microsoft offers specialized support through its internal Azure Cloud Accelerated Factory program. Reach out to your Microsoft account team to explore nomination for Azure Cloud Accelerated Factory, which provides hands-on guidance, tooling, and best practices to accelerate and streamline your data migration journey. Summary Regular maintenance and governance are as important as the initial design. Continuously review the environment and update configurations as needed to address evolving requirements and threats. For example, tag all resources (workspaces, VNets, clusters, etc.) with clear identifiers (workspace name, environment, department) to track costs and ownership effectively. Additionally, enforce least privilege across the platform: ensure that only necessary users are given admin privileges, and use cluster-level access control to restrict who can create or start clusters. By following the above steps, an organization will have an Azure Databricks architecture that is securely isolated, well-governed, and scalable. References: [1] 5 Best Practices for Databricks Workspaces AzureDatabricksBestPractices/toc.md at master · Azure ... - GitHub Deploy a workspace using the Azure Portal Additional Links: Quick Introduction to Databricks: what is databricks | introduction - databricks for dummies Connect Purview with Azure Databricks: Integrating Microsoft Purview with Azure Databricks Secure Databricks Delta Share between Workspaces: Secure Databricks Delta Share for Serverless Compute Azure-Databricks Cost Optimization Guide: Databricks Cost Optimization: A Practical Guide Integrate Azure Databricks with Microsoft Fabric: Integrating Azure Databricks with Microsoft Fabric Databricks Solution Accelerators for Data & AI Azure updates Appendix 3.5 Understanding Data Transfer (Express Route vs. Public Internet) For data transfers, your organization must decide to use ExpressRoute or Internet Egress. There are several considerations that can help you determine your choice: 3.5.1. Connectivity Model • ExpressRoute: Provides a private, dedicated connection between your on-premises infrastructure and Microsoft Azure. It bypasses the public internet entirely and connects through a network service provider. • Internet Egress: Refers to outbound data traffic from Azure to the public internet. This is the default path for most Azure services unless configured otherwise. 3.6 Planning for User-Defined Routes (UDRs) When working with Databricks deployments—especially in VNet-injected workspaces—setting up User Defined Routes (UDRs) is a smart move. It’s a best practice that helps manage and secure network traffic more effectively. By using UDRs, teams can steer traffic between Databricks components and external services in a controlled way, which not only boosts security but also supports compliance efforts. 3.6.1 UDRs and Hub and Spoke Topology If your Databricks workspace is deployed into your own virtual network (VNet), you’ll need to configure standard user-defined routes (UDRs) to manage traffic flow. In a typical hub-and-spoke architecture, UDRs are used to route all traffic from the spoke VNets to the hub VNet. 3.6.2 Hub and Spoke with VWANHUB If your Databricks workspace is deployed into your own virtual network (VNet) and is peered to a Virtual WAN (VWAN) hub as the primary connectivity hub into Azure, a user-defined route (UDR) is not required—provided that a private traffic routing policy or internet traffic routing policy is configured in the VWAN hub. 3.6.3 Use of NVAs and Service Tags For Databricks traffic, you’ll need to assign a UDR to the Databricks-managed VNet with a next hop type of Network Virtual Appliance (NVA)—this could be an Azure Firewall, NAT Gateway, or another routing device. For control plane traffic, Databricks recommends using Azure service tags, which are logical groupings of IP addresses for Azure services and should be routed with the next hop type of internet. This is important because Azure IP ranges can change frequently as new resources are provisioned, and manually maintaining IP lists is not practical. Using service tags ensures that your routing rules automatically stay up to date. 3.6.4 Default Outbound Access Retirement (Non-Serverless Compute) Microsoft is retiring default outbound internet access for new deployments starting September 30,2025. Going forward, outbound connectivity will require an explicit configuration using an NVA, NAT Gateway, Load Balancer, or Public IP address. Also, note that using a Public IP Address in the deployment is discouraged for Security purposes, and it is recommended to deploy the workspace in a ‘Secure Cluster Connectivity ration.” Configure connectivity will require an explicit configuration using an NVA, NAT Gateway, Load Balancer, or Public IP address. Also, note that using a Public IP Address in the deployment is discouraged for Security purposes, and it is recommended to deploy the workspace in a ‘Secure Cluster Connectivity ration.”1.4KViews2likes0CommentsData Security: Azure key Vault in Data bricks
Why this article? To remove the vulnerability of exposing the data base connection string in Databricks notebook directly, by using Azure key vault. Database connection strings are extremely confidential/vulnerable data, that we should not be exposed in the DataBricks notebook explicitly. Azure key vault is a secure option to read the secrets and establish connection. What do we need? Tenant Id of the app from the app registration with access to the azure key vault secrets Client Id of the of the app from the app registration with access to the azure key vault secrets Client secret of the app from the app registration with access to the azure key vault Where to find this information? Under the App registration, you can find the (application) Client Id, Directory (tenant) Id. Client secret value is found in the app registration of the service, under Manage -> Certificate & secrets. You can use an existing secret or create a new one and use it to access the key Vault secrets. Make sure the application is added with get access to read the secrets. Verify the key vault you are checking and using in Databricks is the same one with read access. You can verify this by going to the Azure key vault -> Access Policies and search for the application name. It should show up on search as below, this will confirm that the access of the application. What do we need to setup in Databricks notebook? Open your cluster and install azure.keyvault and azure-identity (installing version should be compatible with you cluster configuration, refer: https://docs.databricks.com/aws/en/libraries/package-repositories) In a new notebook, let’s start by importing the necessary modules. Your notebook would start with the modules, followed by tentatId, clientId, client secret, azure key vault URL , secretName of the connection string in the azure key vault and secretVersion. Lastly, we need to fetch the secret using the below code Vola, we have the DB connection string to perform the CRUD operations. Conclusion: By securely retrieving your database connection string from Azure Key Vault, you eliminate credential exposure and strengthen the overall security posture of your Databricks workflows. This simple shift ensures your notebooks remain clean, compliant, and production‑ready.Learn how to build MCP servers with Python and Azure
We just concluded Python + MCP, a three-part livestream series where we: Built MCP servers in Python using FastMCP Deployed them into production on Azure (Container Apps and Functions) Added authentication, including Microsoft Entra as the OAuth provider All of the materials from our series are available for you to keep learning from, and linked below: Video recordings of each stream Powerpoint slides Open-source code samples complete with Azure infrastructure and 1-command deployment If you're an instructor, feel free to use the slides and code examples in your own classes. Spanish speaker? We've got you covered- check out the Spanish version of the series. 🙋🏽♂️Have follow up questions? Join our weekly office hours on Foundry Discord: Tuesdays @ 11AM PT → Python + AI Thursdays @ 8:30 AM PT → All things MCP Building MCP servers with FastMCP 📺 Watch YouTube recording In the intro session of our Python + MCP series, we dive into the hottest technology of 2025: MCP (Model Context Protocol). This open protocol makes it easy to extend AI agents and chatbots with custom functionality, making them more powerful and flexible. We demonstrate how to use the Python FastMCP SDK to build an MCP server running locally. Then we consume that server from chatbots like GitHub Copilot in VS Code, using it's tools, resources, and prompts. Finally, we discover how easy it is to connect AI agent frameworks like Langchain and Microsoft agent-framework to the MCP server. Slides for this session Code repository with examples: python-mcp-demos Deploying MCP servers to the cloud 📺 Watch YouTube recording In our second session of the Python + MCP series, we deploy MCP servers to the cloud! We walk through the process of containerizing a FastMCP server with Docker and deploying to Azure Container Apps. Then we instrument the MCP server with OpenTelemetry and observe the tool calls using Azure Application Insights and Logfire. Finally, we explore private networking options for MCP servers, using virtual networks that restrict external access to internal MCP tools and agents. Slides for this session Code repository with examples: python-mcp-demos Authentication for MCP servers 📺 Watch YouTube recording In our third session of the Python + MCP series, we explore the best ways to build authentication layers on top of your MCP servers. We start off simple, with an API key to gate access, and demonstrate a key-restricted FastMCP server deployed to Azure Functions. Then we move on to OAuth-based authentication for MCP servers that provide user-specific data. We dive deep into MCP authentication, which is built on top of OAuth2 but with additional requirements like PRM and DCR/CIMD, which can make it difficult to implement fully. We demonstrate the full MCP auth flow in the open-souce identity provider KeyCloak, and show how to use an OAuth proxy pattern to implement MCP auth on top of Microsoft Entra. Slides for this session Code repository with Container Apps examples: python-mcp-demos Code repository with Functions examples: python-mcp-demos7.6KViews3likes2CommentsEntra Risky Users Custom Role
My customer implemented unified RBAC (Defender Portal) and removed the Entra Security Operator role. They lost the ability to manage Risky Users in Entra. Two options explored by the customer - Protected Identity Administrator role (licensing unclear) or create a custom role with microsoft.directory/identityProtection/riskyUsers/update, which they couldn't find under custom role. Do you know if there are other options to manage Risky Users without using the Security Operator role?80Views0likes3CommentsPostgreSQL for the enterprise: scale, secure, simplify
This week at Microsoft Ignite, along with unveiling the new Azure HorizonDB cloud native database service, we’re announcing multiple improvements to our fully managed open-source Azure Database for PostgreSQL service, delivering significant advances in performance, analytics, security, and AI-assisted migration. Let’s walk through nine of the top Azure Database for PostgreSQL features and improvements we’re announcing at Microsoft Ignite 2025. Feature Highlights New Intel and AMD v6-series SKUs (Preview) Scale to multiple nodes with Elastic Clusters (GA) PostgreSQL 18 (GA) Realtime analytics with Fabric Mirroring (GA) Analytical queries inside PostgreSQL with the pg_duckdb extension (Preview) Adding Parquet to the azure_storage extension (GA) Meet compliance requirements with the credcheck, anon & ip4r extensions (GA) Integrated identity with Entra token-refresh libraries for Python AI-Assisted Oracle to PostgreSQL Migration Tool (Preview) Performance and scale New Intel and AMD v6 series SKUs (Preview) You can run your most demanding Postgres workloads on new Intel and AMD v6 General Purpose and Memory Optimized hardware SKUs, now availble in preview These SKUs deliver massive scale for high-performance OLTP, analytics and complex queries, with improved price performance and higher memory ceilings. AMD Confidential Compute v6 SKUs are also in Public Preview, enabling enhanced security for sensitive workloads while leveraging AMD’s advanced hardware capabilities. Here’s what you need to know: Processors: Powered by 5th Gen Intel® Xeon® processor (code-named Emerald Rapids) and AMD's fourth Generation EPYC™ 9004 processors Scale: VM size options scale up to 192 vCores and 1.8 TiB IO: Using the NVMe protocol for data disk access, IO is parallelized to the number of CPU cores and processed more efficiently, offering significant IO improvements Compute tier: Available in our General Purpose and Memory Optimized tiers. You can scale up to these new compute SKUs as needed with minimal downtime. Learn more: Here's a quick summary of the v6 SKUs we’re launching, with links to more information: Processor SKU Max vCores Max Mem Intel Ddsv6 192 768 GiB Edsv6 192 1.8 TiB AMD Dadsv6 96 384 GiB Eadsv6 96 672 GiB DCadsv6 96 386 GiB ECadsv6 96 672 GiB Scale to multiple nodes with Elastic clusters (GA) Elastic clusters are now generally available in Azure Database for PostgreSQL. Built on Citus open-source technology, elastic clusters bring the horizontal scaling of a distributed database to the enterprise features of Azure Database for PostgreSQL. Elastic clusters enable horizontal scaling of databases running across multiple server nodes in a “shared nothing” architecture. This is ideal for workloads with high-throughput and storage-intensive demands such as multi-tenant SaaS and IoT-based workloads. Elastic clusters come with all the enterprise-level capabilities that organizations rely upon in Azure Database for PostgreSQL, including high availability, read replicas, private networking, integrated security and connection pooling. Built-in sharding support at both row and schema level enables you to distribute your data across a cluster of compute resources and run queries in parallel, dramatically increasing throughput and capacity. Learn more: Elastic clusters in Azure Database for PostgreSQL PostgreSQL 18 (GA) When PostgreSQL 18 was released in September, we made a preview available on Azure on the same day. Now we’re announcing that PostgreSQL 18 is generally available on Azure Database for PostgreSQL, with full Major Version Upgrade (MVU) support, marking our fastest-ever turnaround from open-source release to managed service general availability. This release reinforces our commitment to delivering the latest PostgreSQL community innovations to Azure customers, so you can adopt the latest features, performance improvements, and security enhancements on a fully managed, production-ready platform without delay. ^Note: MVU to PG18 is currently available in the NorthCentralUS and WestCentralUS regions, with additional regions being enabled over the next few weeks Now you can: Deploy PostgreSQL 18 in all public Azure regions. Perform in-place major version upgrades to PG18 with no endpoint or connection string changes. Use Microsoft Entra ID authentication for secure, centralized identity management in all PG versions. Enable Query Store and Index Tuning for built-in performance insights and automated optimization. Leverage the 90+ Postgres extensions supported by Azure Database for PostgreSQL. PostgreSQL 18 also delivers major improvements under the hood, ranging from asynchronous I/O and enhanced vacuuming to improved indexing and partitioning, ensuring Azure continues to lead as the most performant, secure, and developer-friendly PostgreSQL managed service in the cloud. Learn more: PostgreSQL 18 open-source release announcement Supported versions of PostgreSQL in Azure Database for PostgreSQL Analytics Real-time analytics with Fabric Mirroring (GA) With Fabric mirroring in Azure Database for PostgreSQL, now generally available, you can run your Microsoft Fabric analytical workloads and capabilities on near-real-time replicated data, without impacting the performance of your production PostgreSQL databases, and at no extra cost. Mirroring in Fabric connects your operational and analytical platforms with continuous data replication from PostgreSQL to Fabric. Transactions are mirrored to Fabric in near real-time, enabling advanced analytics, machine learning, and reporting on live data sets without waiting for traditional batch ETL processes to complete. This approach eliminates the overhead of custom integrations or data pipelines. Production PostgreSQL servers can run mission-critical transactional workloads without being affected by surges in analytical queries and reporting. With our GA announcement Fabric mirroring is ready for production workloads, with secure networking (VNET integration and Private Endpoints supported), Entra ID authentication for centralized identity management, and support for high availability enabled servers, ensuring business continuity for mirroring sessions. Learn more: Mirroring Azure Database for PostgreSQL flexible server Adding Parquet support to the azure_storage extension (GA) In addition to mirroring data directly to Microsoft Fabric, there are many other scenarios that require moving operational data into data lakes for analytics or archival. The complexity of building and maintaining ETL pipelines can be expensive and time-consuming. Azure Database for PostgreSQL now natively supports Parquet via the azure_storage extension, enabling direct SQL-based read/write to Parquet files in Azure Storage. This makes it easy to import and export data in Postgres without external tools or scripts. Parquet is a popular columnar storage format often used in big data and analytics environments (like Spark and Azure Data Lake) because of its efficient compression and query performance for large datasets. Now you can use the azure_storage extension to can skip an entire step: just issue a SQL command to write to and query from a Parquet file in Azure Blob Storage. Learn more: Azure storage extension in Azure Database for PostgreSQL Analytical queries inside PostgreSQL with the pg_duckdb extension (Preview) DuckDB’s columnar engine excels at high performance scans, aggregations and joins over large tables, making it particularly well-suited for analytical queries. The pg_duckdb extension, now available in preview for Azure Database for PostgreSQL combines PostgreSQL’s transactional performance and reliability with DuckDB’s analytical speed for large datasets. Together pg_duckdb and PostgreSQL are an ideal combination for hybrid OLTP + OLAP environments where you need to run analytical queries directly in PostgreSQL without sacrificing performance., To see the pg_duckdb extension in action check out this demo video: https://aka.ms/pg_duckdb Learn more: pg_duckdb – PostgreSQL extension for DuckDB Security Meet compliance requirements with the credcheck, anon & ip4r extensions (GA) Operating in a regulated industry such as Finance, Healthcare and Government means negotiating compliance requirements like HIPAA and PCI-DSS, GDPR that include protection for personalized data and password complexity, expiration and reuse. This week the anon extension, previously in preview, is now generally available for Azure Database for PostgreSQL adding support for dynamic and static masking, anonymized exports, randomization and many other advanced masking techniques. We’ve also added GA support for the credcheck extension, which provides credential checks for usernames, and password complexity, including during user creation, password change and user renaming. This is particularly useful if your application is not using Entra ID and needs to rely on native PostgreSQL users and passwords. If you need to store and query IP ranges for scenarios like auditing, compliance, access control lists, intrusion detection and threat intelligence, another useful extension announced this week is the ip4r extension which provides a set of data types for IPv4 and IPv6 network addresses. Learn more: PostgreSQL Anonymizer credcheck – PostgreSQL username/password checks IP4R - IPv4/v6 and IPv4/v6 range index type for PostgreSQL The Azure team maintains an active pipeline of new PostgreSQL extensions to onboard and upgrade to Azure Database for PostgreSQL For example, another important extension upgraded this week is pg_squeeze which removes unused space from a table. The updated 1.9.1 version adds important stability improvements. Learn more: List of extensions and modules by name Integrated identity with Entra token-refresh libraries for Python In a modern cloud-connected enterprise, identity becomes the most important security perimeter. Azure Database for PostgreSQL is the only managed PostgreSQL service with full Entra integration, but coding applications to take care of Entra token refresh can be complex. This week we’re announcing a new Python library to simplify Entra token refresh. The library automatically refreshes authentication tokens before they expire, eliminating manual token handling and reducing connection failures. The new python_azure_pg_auth library provides seamless Azure Entra ID authentication and supports the latest psycopg and SQLAlchemy drivers with automatic token acquisition, validation, and refresh. Built-in connection pooling is available for both synchronous and asynchronous workloads. Designed for cross-platform use (Windows, Linux, macOS), the package features clean architecture and flexible installation options for different driver combinations. This is our first milestone in a roadmap to add token refresh for additional programming languages and frameworks. Learn more, with code samples to get started here: https://aka.ms/python-azure-pg-auth Migration AI-Assisted Oracle to PostgreSQL Migration Tool (Preview) Database migration is a challenging and time-consuming process, with multiple manual steps requiring schema and apps specific information. The growing popularity, maturity and low cost of PostgreSQL has led to a healthy demand for migration tooling to simplify these steps. The new AI-assisted Oracle Migration Tool preview announced this week greatly simplifies moving from Oracle databases to Azure Database for PostgreSQL. Available in the VS Code PostgreSQL extension the new migration tool combines GitHub Copilot, Azure OpenAI, and custom Language Model Tools to convert Oracle schema, database code and client applications into PostgreSQL-compatible formats. Unlike traditional migration tools that rely on static rules, Azure’s approach leverages Large Language Models (LLMs) and validates every change against a running Azure Database for PostgreSQL instance. This system not only translates syntax but also detects and fixes errors through iterative re-compilation, flagging any items that require human review. Application codebases like Spring Boot and other popular frameworks are refactored and converted. The system also understands context by querying the target Postgres instance for version and installed extensions. It can even invoke capabilities from other VS Code extensions to validate the converted code. The new AI-assisted workflow reduces risk, eliminates significant manual effort, and enables faster modernization while lowering costs. Learn more: https://aka.ms/pg-migration-tooling Be sure to follow the Microsoft Blog for PostgreSQL for regular updates from the Postgres on Azure team at Microsoft. We publish monthly recaps about new features in Azure Database for PostgreSQL, as well as an annual blog about what’s new in Postgres at Microsoft.1.3KViews9likes0CommentsAzure customer usage attribution (CUA) - report or validate it is working?
Per this article - https://learn.microsoft.com/en-us/partner-center/marketplace-offers/azure-partner-customer-usage-attribution#example-azure-powershell If we use Azure PowerShell along with the ISV/SDC's Tracking GUID (created earlier in Partner Centre), to provision Azure VM's and other resources in end-customer tenants directly related to our IP as an ISV/SDC - how do we report or validate that this CUA is working?Solved