azure
188 TopicsHow to Ensure Seamless Data Recovery and Deployment in Microsoft Azure
Overcoming Cosmos DB Backup and Restore Challenges with Azure Databricks The Challenge of Backing Up and Restoring Azure Cosmos DB One of the significant pain points when working with Azure Cosmos DB is the lack of instant, self-service backup restoration. While Cosmos DB is engineered for global scalability and high availability, its backup and recovery process introduces a crucial bottleneck for organizations that demand agility. Backups in Cosmos DB are created automatically, but restoring them isn’t a seamless, on-demand operation. Instead, it often involves lengthy procedures and sometimes requires intervention from Microsoft support, causing delays that can stretch from hours to even longer—depending on the size and complexity of your data. Downtime Risks: During the drawn-out restore process, your applications might face downtime or reduced performance, impacting end-users and business operations. Deployment Delays: The inability to rapidly roll back or restore data can turn even minor deployment hiccups into major headaches. Lack of Flexibility: Developers and DevOps teams miss the control of instant, self-service restores, limiting their ability to efficiently manage data recovery. Compliance Hurdles: Industries with strict regulatory requirements may struggle to meet recovery time objectives due to slow data restoration. Why Instant Restore Capabilities Matter As cloud-native environments thrive on speed and reliability, the ability to restore data instantly is more than a convenience—it’s essential for: Rapid recovery from accidental data loss or corruption. Enabling safe, confident deployments with a reliable rollback plan. Supporting dynamic test and staging environments using current data snapshots. Without instant restore, organizations face heightened risks and operational slowdowns, which can stifle innovation and erode customer trust. How Azure Databricks Offers a Solution Azure Databricks steps in as a powerful ally for teams looking to bypass these backup limitations. Combining the flexibility of Apache Spark with seamless Azure integration, Databricks allows you to automate data exports, transformations, and—most importantly—restoration workflows customized to your exact needs. Restoring Data Before Deployment: A Practical Approach Automated, Periodic Backups: Databricks notebooks can regularly export Cosmos DB collections into Azure Data Lake or Blob Storage, providing you with up-to-date data snapshots. On-Demand Restoration: When it’s time to deploy or test, Databricks can efficiently restore backup data into a separate Cosmos DB container, preserving production data and minimizing risk. Deployment Safety Net: With a fresh container ready, teams can proceed with confidence, knowing that any deployment misstep can be instantly rolled back—no more waiting for time-consuming support escalations. Seamless Automation: Databricks workflows can be integrated with CI/CD pipelines, customized for various environments, and scheduled or triggered as needed. A Sample Workflow Set up Databricks to regularly back up Cosmos DB data to Azure storage. Before deployment, launch a Databricks job to restore the latest backup into a separate Cosmos DB container. Test and verify the deployment using the restored container, ensuring maximum safety and the ability to roll back instantly if needed. Once deployment is confirmed, switch over or merge as appropriate, with minimal risk to production data. The Benefits at a Glance Minimal Downtime: Quick restoration helps avoid business disruptions during incidents or rollbacks. Operational Agility: Teams can move faster, knowing that data can be restored whenever needed. Enhanced Data Protection: Using separate containers ensures production data remains shielded from accidental changes. Efficiency Gains: Automated processes reduce manual workload and the need for direct intervention. Conclusion Azure Cosmos DB’s backup and restore limitations present real challenges for organizations seeking agility and reliability. By harnessing Azure Databricks to automate backups and enable rapid restoration into separate containers, teams can unlock a new level of safety and flexibility. This approach empowers organizations to recover quickly, deploy fearlessly, and keep innovation moving at cloud speed. Call to Action Want to simplify Azure Cosmos DB backup and restore and avoid long recovery times? 📌 Explore these resources to get started: Azure Databricks documentation | Microsoft Learn Using Databricks to Enrich Data in Cosmos DB on the Fly | by Rahul Gosavi | Medium Azure Cosmos DB Workshop - Load Data Into Cosmos DB with Azure Databricks Automating backups and on-demand restores with Azure Databricks can help you reduce downtime, deploy with confidence, and stay in control of your data.Data Security: Azure key Vault in Data bricks
Why this article? To remove the vulnerability of exposing the data base connection string in Databricks notebook directly, by using Azure key vault. Database connection strings are extremely confidential/vulnerable data, that we should not be exposed in the DataBricks notebook explicitly. Azure key vault is a secure option to read the secrets and establish connection. What do we need? Tenant Id of the app from the app registration with access to the azure key vault secrets Client Id of the of the app from the app registration with access to the azure key vault secrets Client secret of the app from the app registration with access to the azure key vault Where to find this information? Under the App registration, you can find the (application) Client Id, Directory (tenant) Id. Client secret value is found in the app registration of the service, under Manage -> Certificate & secrets. You can use an existing secret or create a new one and use it to access the key Vault secrets. Make sure the application is added with get access to read the secrets. Verify the key vault you are checking and using in Databricks is the same one with read access. You can verify this by going to the Azure key vault -> Access Policies and search for the application name. It should show up on search as below, this will confirm that the access of the application. What do we need to setup in Databricks notebook? Open your cluster and install azure.keyvault and azure-identity (installing version should be compatible with you cluster configuration, refer: https://docs.databricks.com/aws/en/libraries/package-repositories) In a new notebook, let’s start by importing the necessary modules. Your notebook would start with the modules, followed by tentatId, clientId, client secret, azure key vault URL , secretName of the connection string in the azure key vault and secretVersion. Lastly, we need to fetch the secret using the below code Vola, we have the DB connection string to perform the CRUD operations. Conclusion: By securely retrieving your database connection string from Azure Key Vault, you eliminate credential exposure and strengthen the overall security posture of your Databricks workflows. This simple shift ensures your notebooks remain clean, compliant, and production‑ready.Learn how to build MCP servers with Python and Azure
We just concluded Python + MCP, a three-part livestream series where we: Built MCP servers in Python using FastMCP Deployed them into production on Azure (Container Apps and Functions) Added authentication, including Microsoft Entra as the OAuth provider All of the materials from our series are available for you to keep learning from, and linked below: Video recordings of each stream Powerpoint slides Open-source code samples complete with Azure infrastructure and 1-command deployment If you're an instructor, feel free to use the slides and code examples in your own classes. Spanish speaker? We've got you covered- check out the Spanish version of the series. 🙋🏽♂️Have follow up questions? Join our weekly office hours on Foundry Discord: Tuesdays @ 11AM PT → Python + AI Thursdays @ 8:30 AM PT → All things MCP Building MCP servers with FastMCP 📺 Watch YouTube recording In the intro session of our Python + MCP series, we dive into the hottest technology of 2025: MCP (Model Context Protocol). This open protocol makes it easy to extend AI agents and chatbots with custom functionality, making them more powerful and flexible. We demonstrate how to use the Python FastMCP SDK to build an MCP server running locally. Then we consume that server from chatbots like GitHub Copilot in VS Code, using it's tools, resources, and prompts. Finally, we discover how easy it is to connect AI agent frameworks like Langchain and Microsoft agent-framework to the MCP server. Slides for this session Code repository with examples: python-mcp-demos Deploying MCP servers to the cloud 📺 Watch YouTube recording In our second session of the Python + MCP series, we deploy MCP servers to the cloud! We walk through the process of containerizing a FastMCP server with Docker and deploying to Azure Container Apps. Then we instrument the MCP server with OpenTelemetry and observe the tool calls using Azure Application Insights and Logfire. Finally, we explore private networking options for MCP servers, using virtual networks that restrict external access to internal MCP tools and agents. Slides for this session Code repository with examples: python-mcp-demos Authentication for MCP servers 📺 Watch YouTube recording In our third session of the Python + MCP series, we explore the best ways to build authentication layers on top of your MCP servers. We start off simple, with an API key to gate access, and demonstrate a key-restricted FastMCP server deployed to Azure Functions. Then we move on to OAuth-based authentication for MCP servers that provide user-specific data. We dive deep into MCP authentication, which is built on top of OAuth2 but with additional requirements like PRM and DCR/CIMD, which can make it difficult to implement fully. We demonstrate the full MCP auth flow in the open-souce identity provider KeyCloak, and show how to use an OAuth proxy pattern to implement MCP auth on top of Microsoft Entra. Slides for this session Code repository with Container Apps examples: python-mcp-demos Code repository with Functions examples: python-mcp-demos7.8KViews3likes2CommentsAI Upskilling Framework Level 3 Building
The Global AI Community is excited to bring you the latest updates on AI Upskilling Framework Level 3 Building, straight from Microsoft Ignite! This session dives deep into advanced concepts for building agentic workflows and showcases new announcements that will help developers accelerate their Agentic AI journey.On‑Device AI with Windows AI Foundry and Foundry Local
From “waiting” to “instant”- without sending data away AI is everywhere, but speed, privacy, and reliability are critical. Users expect instant answers without compromise. On-device AI makes that possible: fast, private and available, even when the network isn’t - empowering apps to deliver seamless experiences. Imagine an intelligent assistant that works in seconds, without sending a text to the cloud. This approach brings speed and data control to the places that need it most; while still letting you tap into cloud power when it makes sense. Windows AI Foundry: A Local Home for Models Windows AI Foundry is a developer toolkit that makes it simple to run AI models directly on Windows devices. It uses ONNX Runtime under the hood and can leverage CPU, GPU (via DirectML), or NPU acceleration, without requiring you to manage those details. The principle is straightforward: Keep the model and the data on the same device. Inference becomes faster, and data stays local by default unless you explicitly choose to use the cloud. Foundry Local Foundry Local is the engine that powers this experience. Think of it as local AI runtime - fast, private, and easy to integrate into an app. Why Adopt On‑Device AI? Faster, more responsive apps: Local inference often reduces perceived latency and improves user experience. Privacy‑first by design: Keep sensitive data on the device; avoid cloud round trips unless the user opts in. Offline capability: An app can provide AI features even without a network connection. Cost control: Reduce cloud compute and data costs for common, high‑volume tasks. This approach is especially useful in regulated industries, field‑work tools, and any app where users expect quick, on‑device responses. Hybrid Pattern for Real Apps On-device AI doesn’t replace the cloud, it complements it. Here’s how: Standalone On‑Device: Quick, private actions like document summarization, local search, and offline assistants. Cloud‑Enhanced (Optional): Large-context models, up-to-date knowledge, or heavy multimodal workloads. Design an app to keep data local by default and surface cloud options transparently with user consent and clear disclosures. Windows AI Foundry supports hybrid workflows: Use Foundry Local for real-time inference. Sync with Azure AI services for model updates, telemetry, and advanced analytics. Implement fallback strategies for resource-intensive scenarios. Application Workflow Code Example using Foundry Local: 1. Only On-Device: Tries Foundry Local first, falls back to ONNX if foundry_runtime.check_foundry_available(): # Use on-device Foundry Local models try: answer = foundry_runtime.run_inference(question, context) return answer, source="Foundry Local (On-Device)" except Exception as e: logger.warning(f"Foundry failed: {e}, trying ONNX...") if onnx_model.is_loaded(): # Fallback to local BERT ONNX model try: answer = bert_model.get_answer(question, context) return answer, source="BERT ONNX (On-Device)" except Exception as e: logger.warning(f"ONNX failed: {e}") return "Error: No local AI available" 2. Hybrid approach: On-device first, cloud as last resort def get_answer(question, context): """ Priority order: 1. Foundry Local (best: advanced + private) 2. ONNX Runtime (good: fast + private) 3. Cloud API (fallback: requires internet, less private) # in case of Hybrid approach, based on real-time scenario """ if foundry_runtime.check_foundry_available(): # Use on-device Foundry Local models try: answer = foundry_runtime.run_inference(question, context) return answer, source="Foundry Local (On-Device)" except Exception as e: logger.warning(f"Foundry failed: {e}, trying ONNX...") if onnx_model.is_loaded(): # Fallback to local BERT ONNX model try: answer = bert_model.get_answer(question, context) return answer, source="BERT ONNX (On-Device)" except Exception as e: logger.warning(f"ONNX failed: {e}, trying cloud...") # Last resort: Cloud API (requires internet) if network_available(): try: import requests response = requests.post( '{BASE_URL_AI_CHAT_COMPLETION}', headers={'Authorization': f'Bearer {API_KEY}'}, json={ 'model': '{MODEL_NAME}', 'messages': [{ 'role': 'user', 'content': f'Context: {context}\n\nQuestion: {question}' }] }, timeout=10 ) answer = response.json()['choices'][0]['message']['content'] return answer, source="Cloud API (Online)" except Exception as e: return "Error: No AI runtime available", source="Failed" else: return "Error: No internet and no local AI available", source="Offline" Demo Project Output: Foundry Local answering context-based questions offline : The Foundry Local engine ran the Phi-4-mini model offline and retrieved context-based data. : The Foundry Local engine ran the Phi-4-mini model offline and mentioned that there is no answer. Practical Use Cases Privacy-First Reading Assistant: Summarize documents locally without sending text to the cloud. Healthcare Apps: Analyze medical data on-device for compliance. Financial Tools: Risk scoring without exposing sensitive financial data. IoT & Edge Devices: Real-time anomaly detection without network dependency. Conclusion On-device AI isn’t just a trend - it’s a shift toward smarter, faster, and more secure applications. With Windows AI Foundry and Foundry Local, developers can deliver experiences that respect user specific data, reduce latency, and work even when connectivity fails. By combining local inference with optional cloud enhancements, you get the best of both worlds: instant performance and scalable intelligence. Whether you’re creating document summarizers, offline assistants, or compliance-ready solutions, this approach ensures your apps stay responsive, reliable, and user-centric. References Get started with Foundry Local - Foundry Local | Microsoft Learn What is Windows AI Foundry? | Microsoft Learn https://devblogs.microsoft.com/foundry/unlock-instant-on-device-ai-with-foundry-local/Unlocking Your First AI Solution on Azure: Practical Paths for Developers of All Backgrounds
Over the past several months, I’ve spent hundreds of hours working directly with teams—from small startups to mid-market innovators—who share the same aspiration: “We want to use AI, but where do we start?” This question comes up everywhere. It crosses industries, geographies, skill levels, and team sizes. And as developers, we often feel the pressure to “solve AI” end-to-end—model selection, prompt engineering, security, deployment pipelines, integration…. The list is long, and the learning curve can feel even longer. But here’s what we’ve learned through our work in the SMB space and what we recently shared at Microsoft Ignite (Session OD1210). The first mile of AI doesn’t have to be complex. You don’t need an army of engineers, and you don’t need to start from scratch. You just need the right path. In our Ignite on-demand session with UnifyCloud, we demonstrated two fast, developer-friendly ways to get your first AI workload running on Azure—both grounded in real-world patterns we see every day. Path 1: Build Quickly with Microsoft Foundry Templates Microsoft Foundry gives developers pre-built, customizable templates that dramatically reduce setup time. In the session, I walked through how to deploy a fully functioning AI chatbot using: Azure AI Foundry GitHub (via the Azure Samples “Get Started with AI Chat” repo) Azure Cloudshell for deployment And zero specialized infra prep With five lines of code and a few clicks, you can spin up a secure internal chatbot tailored for your business. Want responses scoped to your internal content? Want control over the model, costs, or safety filters? Want to plug in your own data sources like SharePoint, Blob Storage, or uploaded docs? You can do all of that—easily and on your terms. This “build fast” path is ideal for: Developers who want control and extensibility Teams validating AI use cases Scenarios where data governance matters Lightweight experimentation without heavy architecture upfront And most importantly, you can scale it later. Path 2: Buy a Production-Ready Solution from a Trusted Partner Not every team wants to build. Not every team has the time, the resources, or the desire to compose their own AI stack. That’s why we showcased the “buy” path with UnifyCloud’s AI Factory, a Marketplace-listed solution that lets customers deploy mature AI capabilities directly into their Azure environment, complete with optional support, management, and best practices. In the demo, UnifyCloud’s founder Vivek Bhatnagar walked through: How to navigate Microsoft Marketplace How to evaluate solution listings How to review pricing plans and support tiers How to deploy a partner-built AI app with just a few clicks How customers can accelerate their time to value without implementation overhead This path is perfect when you want: A production-ready AI solution A supported, maintained experience Minimal engineering lift Faster time to outcome Why Azure? Why Now? During the session, we also outlined three reasons developers are choosing Azure for their first AI workloads: 1. Secure, governed, safe by design Azure mitigates risk with always-on guardrails and built-in commitments to security, privacy, and policy-based control. 2. Built for production with a complete AI platform From models to agents to tools and data integrations, Azure provides an enterprise-grade environment developers can trust. 3. Developer-first innovation with agentic DevOps Azure puts developers at the center, integrating AI across the software development lifecycle to help teams build faster and smarter. The Session: Build or Buy—Two Paths, One Goal Whether you build using Azure AI Foundry or buy through Marketplace, the goal is the same: Help teams get to their first AI solution quickly, confidently, and securely. You don’t need a massive budget. You don’t need deep ML experience. You don’t need a full-time AI team. What you need is a path that matches your skills, your constraints, and your timeline. Watch the Full Ignite Session You can watch the full session on-demand now also on YouTube: OD1201 — “Unlock Your First AI Solution on Azure” It includes: The full build and buy demos Partner perspectives Deployment walkthroughs And guidance you can take back to your teams today If you want to explore the same build path we showed at Ignite: ➡️ Azure Samples – Get Started with AI Chat https://github.com/Azure-Samples/get-started-with-ai-chat Deploy it, customize it, attach your data sources, and extend it. It’s a great starting point. If you’re curious about the Marketplace path: ➡️ Search for “UnifyCloud AI Factory” on Microsoft Marketplace You’ll see support offerings, solution details, and deployment instructions. Closing Thought The gap between wanting to adopt AI and actually running AI in production is shrinking fast. Azure makes it possible for teams, especially those without deep AI experience, to take meaningful steps today. No perfect architecture required. No million-dollar budget. No wait for a future-state roadmap. Just two practical paths: Build quickly. Buy confidently. Start now. If you have questions, ideas, or want to share what you’re building, feel free to reach out here in the Developer Community. I’d love to hear what you’re creating. — Joshua Huang Microsoft AzureBackground tasks in .NET
What is a Background Task? A background task (or background service) is work that runs behind the scenes in an application without blocking the main user flow and often without direct user interaction. Think of it as a worker or helper that performs tasks independently while the main app continues doing other things. Problem Statement - What do you do when your downstream API is flaky or sometimes down for hours or even days , yet your UI and main API must stay responsive? Solution - This is a very common architecture problem in enterprise systems, and .NET gives us excellent tools to solve it cleanly: BackgroundService and exponential backoff retry logic. In this article, I’ll walk you through: A real production-like use case The architecture needed to make it reliable Why exponential backoff matters How to build a robust BackgroundService A full working code example The Use Case You have two APIs: API 1 : called frequently by the UI (hundreds or thousands of times). API 2 : a downstream system you must call, but it is known to be unstable, slow, or completely offline for long periods. If API 1 directly calls API 2: * Users experience lag * API 1 becomes slow or unusable * You overload API 2 with retries * Calls fail when API 2 is offline * You lose data What do we do then? Here goes the solution The Architecture Instead of calling API 2 synchronously, API 1 simply stores the intended call, and returns immediately. A BackgroundService will later: Poll for pending jobs Call API 2 Retry with exponential backoff if API 2 is still unavailable Mark jobs as completed when successful This creates a resilient, smooth, non-blocking system. Why Exponential Backoff? When a downstream API is completely offline, retrying every 1–5 seconds is disastrous: It wastes CPU and bandwidth It floods logs It overloads API 2 when it comes back online It burns resources Exponential backoff solves this. Examples retry delays: Retry 1 → 2 sec Retry 2 → 4 sec Retry 3 → 8 sec Retry 4 → 16 sec Retry 5 → 32 sec Retry 6 → 64 sec (Max delay capped at 5 minutes) This gives the system room to breathe. Complete Working Example (Using In-Memory Store) 1. The Model public class PendingJob { public Guid Id { get; set; } = Guid.NewGuid(); public string Payload { get; set; } = string.Empty; public int RetryCount { get; set; } = 0; public DateTime NextRetryTime { get; set; } = DateTime.UtcNow; public bool Completed { get; set; } = false; } 2. The In-Memory Store public interface IPendingJobStore { Task AddJobAsync(string payload); Task<List<PendingJob>> GetExecutableJobsAsync(); Task MarkJobAsCompletedAsync(Guid jobId); Task UpdateJobAsync(PendingJob job); } public class InMemoryPendingJobStore : IPendingJobStore { private readonly List<PendingJob> _jobs = new(); private readonly object _lock = new(); public Task AddJobAsync(string payload) { lock (_lock) { _jobs.Add(new PendingJob { Payload = payload, RetryCount = 0, NextRetryTime = DateTime.UtcNow }); } return Task.CompletedTask; } public Task<List<PendingJob>> GetExecutableJobsAsync() { lock (_lock) { return Task.FromResult(_jobs.Where(j => !j.Completed && j.NextRetryTime <= DateTime.UtcNow).ToList()); } } public Task MarkJobAsCompletedAsync(Guid jobId) { lock (_lock) { var job = _jobs.FirstOrDefault(j => j.Id == jobId); if (job != null) job.Completed = true; } return Task.CompletedTask; } public Task UpdateJobAsync(PendingJob job) => Task.CompletedTask; } 3. The BackgroundService with Exponential Backoff using System.Text; public class Api2RetryService : BackgroundService { private readonly IHttpClientFactory _clientFactory; private readonly IPendingJobStore _store; private readonly ILogger<Api2RetryService> _logger; public Api2RetryService(IHttpClientFactory clientFactory, IPendingJobStore store, ILogger<Api2RetryService> logger) { _clientFactory = clientFactory; _store = store; _logger = logger; } protected override async Task ExecuteAsync(CancellationToken stoppingToken) { _logger.LogInformation("Background retry service started."); while (!stoppingToken.IsCancellationRequested) { var jobs = await _store.GetExecutableJobsAsync(); foreach (var job in jobs) { var client = _clientFactory.CreateClient("api2"); try { var response = await client.PostAsync("/simulate", new StringContent(job.Payload, Encoding.UTF8, "application/json"), stoppingToken); if (response.IsSuccessStatusCode) { _logger.LogInformation("Job {JobId} processed successfully.", job.Id); await _store.MarkJobAsCompletedAsync(job.Id); } else { await HandleFailure(job); } } catch (Exception ex) { _logger.LogError(ex, "Error calling API 2."); await HandleFailure(job); } } await Task.Delay(TimeSpan.FromSeconds(5), stoppingToken); } } private async Task HandleFailure(PendingJob job) { job.RetryCount++; var delay = CalculateBackoff(job.RetryCount); job.NextRetryTime = DateTime.UtcNow.Add(delay); await _store.UpdateJobAsync(job); _logger.LogWarning("Retrying job {JobId} in {Delay}. RetryCount={RetryCount}", job.Id, delay, job.RetryCount); } private TimeSpan CalculateBackoff(int retryCount) { var seconds = Math.Pow(2, retryCount); var maxSeconds = TimeSpan.FromMinutes(5).TotalSeconds; return TimeSpan.FromSeconds(Math.Min(seconds, maxSeconds)); } } 4. The API 1 — Public Endpoint using System.Runtime.InteropServices; using System.Text.Json; [ApiController] [Route("api1")] public class Api1Controller : ControllerBase { private readonly IPendingJobStore _store; private readonly ILogger<Api1Controller> _logger; public Api1Controller(IPendingJobStore store, ILogger<Api1Controller> logger) { _store = store; _logger = logger; } [HttpPost("process")] public async Task<IActionResult> Process([FromBody] object data) { var payload = JsonSerializer.Serialize(data); await _store.AddJobAsync(payload); _logger.LogInformation("Stored job for background processing."); return Ok("Request received. Will process when API 2 recovers."); } } 5. The API 2 (Simulating Downtime) using System.Runtime.InteropServices; [ApiController][Route("api2")] public class Api2Controller: ControllerBase { private static bool shouldFail = true; [HttpPost("simulate")] public IActionResult Simulate([FromBody] object payload) { if (shouldFail) return StatusCode(503, "API 2 is down"); return Ok("API 2 processed payload"); } [HttpPost("toggle")] public IActionResult Toggle() { shouldFail = !shouldFail; return Ok($"API 2 failure mode = {shouldFail}"); } } 6. The Program.cs var builder = WebApplication.CreateBuilder(args); builder.Services.AddControllers(); builder.Services.AddSingleton<IPendingJobStore, InMemoryPendingJobStore>(); builder.Services.AddHttpClient("api2", c => { c.BaseAddress = new Uri("http://localhost:5000/api2"); }); builder.Services.AddHostedService<Api2RetryService>(); var app = builder.Build(); app.MapControllers(); app.Run(); Testing the Whole Flow #1 API 2 starts in failure mode All attempts will fail and exponential backoff kicks in. #2 Send a request to API 1 POST /api1/process { "name": "hello" } Job is stored. #3 Watch logs You’ll see: Retrying job in 2 seconds... Retrying job in 4 seconds... Retrying job in 8 seconds... ... #4 Bring API 2 back online: POST /api2/toggle Next retry will succeed: Job {id} processed successfully. Conclusion This pattern is extremely powerful for: Payment gateways ERP integrations Long-running partner APIs Unstable third-party services Internal microservices that spike or go offline References Background tasks with hosted services in ASP.NET CoreAI Toolkit Extension Pack for Visual Studio Code: Ignite 2025 Update
Unlock the Latest Agentic App Capabilities The Ignite 2025 update delivers a major leap forward for the AI Toolkit extension pack in VS Code, introducing a unified, end-to-end environment for building, visualizing, and deploying agentic applications to Microsoft Foundry, and the addition of Anthropic’s frontier Claude models in the Model Catalog! This release enables developers to build and debug locally in VS Code, then deploy to the cloud with a single click. Seamlessly switch between VS Code and the Foundry portal for visualization, orchestration, and evaluation, creating a smooth roundtrip workflow that accelerates innovation and delivers a truly unified AI development experience. Download the http://aka.ms/aitoolkit today and start building next-generation agentic apps in VS Code! What Can You Do with the AI Toolkit Extension Pack? Access Anthropic models in the Model Catalog Following the Microsoft, NVIDIA and Anthropic strategic partnerships announcement today, we are excited to share that Anthropic’s frontier Claude models including Claude Sonnet 4.5, Claude Opus 4.1, and Claude Haiku 4.5, are now integrated into the AI Toolkit, providing even more choices and flexibility when building intelligent applications and AI agents. Build AI Agents Using GitHub Copilot Scaffold agent applications using best-practice patterns, tool-calling examples, tracing hooks, and test scaffolds, all powered by Copilot and aligned with the Microsoft Agent Framework. Generate agent code in Python or .NET, giving you flexibility to target your preferred runtime. Build and Customize YAML Workflows Design YAML-based workflows in the Foundry portal, then continue editing and testing directly in VS Code. To customize your YAML-based workflows, instantly convert it to Agent Framework code using GitHub Copilot. Upgrade from declarative design to code-first customization without starting from scratch. Visualize Multi-Agent Workflows Envision your code-based agent workflows with an interactive graph visualizer that reveals each component and how they connect Watch in real-time how each node lights up as you run your agent. Use the visualizer to understand and debug complex agent graphs, making iteration fast and intuitive. Experiment, Debug, and Evaluate Locally Use the Hosted Agents Playground to quickly interact with your agents on your development machine. Leverage local tracing support to debug reasoning steps, tool calls, and latency hotspots—so you can quickly diagnose and fix issues. Define metrics, tasks, and datasets for agent evaluation, then implement metrics using the Foundry Evaluation SDK and orchestrate evaluations runs with the help of Copilot. Seamless Integration Across Environments Jump from Foundry Portal to VS Code Web for a development environment in your preferred code editor setting. Open YAML workflows, playgrounds, and agent templates directly in VS Code for editing and deployment. How to Get Started Install the AI Toolkit extension pack from the VS Code marketplace. Check out documentation. Get started with building workflows with Microsoft Foundry in VS Code 1. Work with Hosted (Pro-code) Agent workflows in VS Code 2. Work with Declarative (Low-code) Agent workflows in VS Code Feedback & Support Try out the extensions and let us know what you think! File issues or feedback on our GitHub repo for Foundry extension and AI Toolkit extension. Your input helps us make continuous improvements.2.3KViews4likes0CommentsSimplifying Microservice Reliability with Dapr
What is Dapr? Dapr is an open-source runtime developed by Microsoft that is used in building resilient, event-driven, and portable applications. It works using the sidecar pattern, meaning every microservice gets a small companion container — the Dapr sidecar — which handles communication, retries, secrets, state, and more. What is Sidecar ? A sidecar is a helper process that runs beside your app, handling system tasks so your code can focus on business logic. Lets see some offerings from Dapr along with examples. #1 . Bindings Connects your app to external systems (like queues, email, or storage) with zero SDK or protocol handling. Without Dapr ❌ var httpClient = new HttpClient(); await httpClient.PostAsJsonAsync("https://api.sendgrid.com/send", email); * Manage HTTP endpoints & credentials * Change provider → rewrite logic With Dapr ✅ await daprClient.InvokeBindingAsync("send-email", "create", email); * One call, no SDK * Replace SendGrid → SMTP → Twilio just by editing config * No code change, no redeploy How to enable binding in for a Azure Container App Open Azure Portal → go to your Container App Environment. From the left pane, click on Container Apps, and choose your desired app (e.g., orders-api). In the Settings section, select Dapr. Enable Dapr toggle → switch it ON. Provide the basic Dapr settings: App ID: A unique name (e.g., orders-app). App Port: The internal port your API listens on (e.g., 8080). App Protocol: Choose HTTP or gRPC (usually HTTP). Click Save to apply. Now, under the same Container App Environment, go to Dapr Components. Click Create → select Binding → choose the type of binding (e.g., azure.storagequeues). #2 . Configuration Centralizes app settings, allowing live configuration updates without redeploying services. Without Dapr ❌ var featureFlag = Configuration["FeatureX"]; * Requires redeploys for every config change * No centralized versioning or dynamic update With Dapr ✅ var config = await daprClient.GetConfiguration("appconfigstore", new[] { "FeatureX" }); * Use Azure App Config, Consul, or any provider * Centralized updates — no redeploys * Consistent access via Dapr SDK How to enable configuration in for a Azure Container App Open Azure Portal → go to your Container App Environment. From the left pane, click on Container Apps, and choose your desired app (e.g., orders-api). In the Settings section, select Dapr. Enable Dapr toggle → switch it ON. Provide the basic Dapr settings: App ID: A unique name (e.g., orders-app). App Port: The internal port your API listens on (e.g., 8080). App Protocol: Choose HTTP or gRPC (usually HTTP). Click Save to apply. Now, under the same Container App Environment, go to Dapr Components. Click Create → select Configuration→ choose the type of configuration (e.g., configuration.azure.appconfig). #3 . Pub/Sub Enables event-driven communication between microservices without needing to know each other's endpoints. Without Dapr ❌ var client = new ServiceBusClient("<connection-string>"); var sender = client.CreateSender("order-topic"); await sender.SendMessageAsync(new ServiceBusMessage(orderJson)); * Tied to Azure Service Bus * Must manage SDKs, connections, retries * Hard to switch to another broker (Kafka, RabbitMQ) With Dapr ✅ await daprClient.PublishEventAsync("pubsub", "order-created", order); * pubsub component defined in YAML (can be Kafka, Redis Streams, etc.) * No SDK, no broker dependency * Just publish the event — Dapr handles transport & retries How to enable pub/sub in for a Azure Container App Open Azure Portal → go to your Container App Environment. From the left pane, click on Container Apps, and choose your desired app (e.g., orders-api). In the Settings section, select Dapr. Enable Dapr toggle → switch it ON. Provide the basic Dapr settings: App ID: A unique name (e.g., orders-app). App Port: The internal port your API listens on (e.g., 8080). App Protocol: Choose HTTP or gRPC (usually HTTP). Click Save to apply. Now, under the same Container App Environment, go to Dapr Components. Click Create → select Pub/Sub→ choose the type of configuration (e.g., pubsub.azure.servicebus.topics). #4 . Secret Stores Securely retrieves credentials and secrets from vaults, keeping them out of configs and code. Without Dapr ❌ var connString = Configuration["ConnectionStrings:DB"]; * Secrets stored in configs or env vars * Risk of leaks and manual rotation With Dapr ✅ var secret = await daprClient.GetSecretAsync("vault", "dbConnection"); * Fetch directly from Azure Key Vault, AWS Secrets, etc. * No secrets in configs * Secure by default, consistent across services How to enable Secret Stores in for a Azure Container App Open Azure Portal → go to your Container App Environment. From the left pane, click on Container Apps, and choose your desired app (e.g., orders-api). In the Settings section, select Dapr. Enable Dapr toggle → switch it ON. Provide the basic Dapr settings: App ID: A unique name (e.g., orders-app). App Port: The internal port your API listens on (e.g., 8080). App Protocol: Choose HTTP or gRPC (usually HTTP). Click Save to apply. Now, under the same Container App Environment, go to Dapr Components. Click Create → select Secret stores→ choose the type of configuration (e.g., secretstores.azure.keyvault). #5 . State Provides a consistent way to store and retrieve application data across services using a simple API. Without Dapr ❌ var cosmosClient = new CosmosClient(connStr); var container = cosmosClient.GetContainer("db", "state"); await container.UpsertItemAsync(order); * Direct dependency on Cosmos DB * Manual retry logic * Tight coupling to storage type With Dapr ✅ await daprClient.SaveStateAsync("statestore", "order-101", order); var data = await daprClient.GetStateAsync<Order>("statestore", "order-101"); * Plug any backend (Redis, Cosmos, PostgreSQL) * Dapr handles retries and consistency * Same code, different backend — total flexibility How to enable State in for a Azure Container App Open Azure Portal → go to your Container App Environment. From the left pane, click on Container Apps, and choose your desired app (e.g., orders-api). In the Settings section, select Dapr. Enable Dapr toggle → switch it ON. Provide the basic Dapr settings: App ID: A unique name (e.g., orders-app). App Port: The internal port your API listens on (e.g., 8080). App Protocol: Choose HTTP or gRPC (usually HTTP). Click Save to apply. Now, under the same Container App Environment, go to Dapr Components. Click Create → select State → choose the type of configuration (e.g., state.azure.cosmosdb). 🧩 Summary Think of Dapr as your invisible co-pilot for building distributed apps. It abstracts away all the repetitive plumbing — state management, pub/sub messaging, secret handling, and external bindings — letting you focus on writing features that matter. With Dapr, you don’t just write code that runs locally; you write code that just works across clouds, containers, and environments, without having to worry about wiring up retries, event delivery, or service-to-service communication manually. 🧰 Demo Source Code I've prepared complete sample on .Net core that touches all major Dapr features: * State Store * Pub/Sub * Bindings * Configuration * Secret Store You can explore it from Github-Dapr-Api Clone, run locally, and experiment — the project uses in-memory storage to keep things lightweight for testing and learning. 📚 References for Deep Dive Official Dapr Docs Dapr for .NET Developers — Microsoft Learn Dapr .NET SDK GitHubPython + IA: Resumen y Recursos
Acabamos de concluir nuestra serie sobre Python + IA, un recorrido completo de nueve sesiones donde exploramos a fondo cómo usar modelos de inteligencia artificial generativa desde Python. Durante la serie presentamos varios tipos de modelos, incluyendo LLMs, modelos de embeddings y modelos de visión. Profundizamos en técnicas populares como RAG, tool calling y salidas estructuradas. Evaluamos la calidad y seguridad de la IA mediante evaluaciones automatizadas y red-teaming. Finalmente, desarrollamos agentes de IA con frameworks populares de Python y exploramos el nuevo Model Context Protocol (MCP). Para que puedas aplicar lo aprendido, todos nuestros ejemplos funcionan con GitHub Models, un servicio que ofrece modelos gratuitos a todos los usuarios de GitHub para experimentación y aprendizaje. Aunque no hayas asistido a las sesiones en vivo, ¡todavía puedes acceder a todos los materiales usando los enlaces de abajo! Si eres instructor, puedes usar las diapositivas y el código en tus propias clases. Python + IA: Modelos de Lenguaje Grandes (LLMs) 📺 Ver grabación En esta sesión exploramos los LLMs, los modelos que impulsan ChatGPT y GitHub Copilot. Usamos Python con paquetes como OpenAI SDK y LangChain, experimentamos con prompt engineering y ejemplos few-shot, y construimos una aplicación completa basada en LLMs. También explicamos la importancia de la concurrencia y el streaming en apps de IA. Diapositivas: aka.ms/pythonia/diapositivas/llms Código: python-openai-demos Guía de repositorio: video Python + IA: Embeddings Vectoriales 📺 Ver grabación En nuestra segunda sesión, aprendemos sobre los modelos de embeddings vectoriales, que convierten texto o imágenes en arreglos numéricos. Comparamos métricas de distancia, aplicamos cuantización y experimentamos con modelos multimodales. Diapositivas: aka.ms/pythonia/diapositivas/embeddings Código: vector-embedding-demos Guía de repositorio: video Python + IA: Retrieval Augmented Generation (RAG) 📺 Ver grabación Descubrimos cómo usar RAG para mejorar las respuestas de los LLMs añadiendo contexto relevante. Construimos flujos RAG en Python con distintas fuentes (CSVs, sitios web, documentos y bases de datos) y terminamos con una aplicación completa basada en Azure AI Search. Diapositivas: aka.ms/pythonia/diapositivas/rag Código: python-openai-demos Guía de repositorio: video Python + IA: Modelos de Visión 📺 Ver grabación Los modelos de visión aceptan texto e imágenes, como GPT-4o y GPT-4o mini. Creamos una app de chat con imágenes, realizamos extracción de datos y construimos un motor de búsqueda multimodal. Diapositivas: aka.ms/pythonia/diapositivas/vision Código: vector-embeddings Guía de repositorio: video Python + IA: Salidas Estructuradas 📺 Ver grabación Aprendemos a generar respuestas estructuradas con LLMs usando Pydantic BaseModel. Este enfoque permite validación automática de los resultados, útil para extracción de entidades, clasificación y flujos de agentes. Diapositivas: aka.ms/pythonia/diapositivas/salidas Código: python-openai-demos y entity-extraction-demos Guía de repositorio: video Python + IA: Calidad y Seguridad 📺 Ver grabación Analizamos cómo usar la IA de forma segura y cómo evaluar la calidad de las respuestas. Mostramos cómo configurar Azure AI Content Safety y usar el Azure AI Evaluation SDK para medir resultados de los modelos. Diapositivas: aka.ms/pythonia/diapositivas/calidad Código: ai-quality-safety-demos Guía de repositorio: video Python + IA: Tool Calling 📺 Ver grabación Exploramos el tool calling, base para crear agentes de IA. Definimos herramientas con esquemas JSON y funciones Python, manejamos llamadas paralelas y flujos iterativos. Diapositivas: aka.ms/pythonia/diapositivas/herramientas Código: python-openai-demos Guía de repositorio: video Python + IA: Agentes de IA 📺 Ver grabación Creamos agentes de IA con frameworks como el agent-framework de Microsoft y LangGraph, mostrando arquitecturas con múltiples herramientas, supervisores y flujos con intervención humana. Diapositivas: aka.ms/pythonia/diapositivas/agentes Código: python-ai-agents-demos Guía de repositorio: video Python + IA: Model Context Protocol (MCP) 📺 Ver grabación Cerramos la serie con MCP (Model Context Protocol), la tecnología más innovadora de 2025. Mostramos cómo usar el SDK de FastMCP en Python para crear un servidor MCP local, conectarlo a GitHub Copilot, construir un cliente MCP y conectar frameworks como LangGraph y agent-framework. También discutimos los riesgos de seguridad asociados. Diapositivas: aka.ms/pythonia/diapositivas/mcp Código: python-ai-mcp-demos Guía de repositorio: video Además Si tienen preguntas, por favor, en el canal #Espanol en nuestro Discord: https://aka.ms/pythonia/discord Todos los jueves tengo office hours: https://aka.ms/pythonia/horas Encuentra más tutoriales 100% en español sobre Python + AI en https://youtube.com/@lagps