azure openai
59 TopicsAMA on Camera - AI Revolution: Azure OpenAI's Game-Changing Enhancements
Discover the latest enhancements to Azure OpenAI Service offering and deployments. Join our engineering experts to learn about Azure OpenAI Data Zones for flexible, multi-regional data processing and compliance. Explore simplified deployment flows, industry-leading performance guarantees, and cost-efficiency at scale. Perfect for anyone looking to leverage adaptable, reliable, and scalable AI solutions for enterprise applications. Please check out this blog post for more information: Accelerate scale with Azure OpenAI Service Provisioned offering | Microsoft Azure Blog Azure OpenAI Global Batch offering is designed to handle large-scale and high-volume processing tasks efficiently. Process asynchronous groups of requests with separate quota, a 24-hour turnaround time, at 50% less cost than global standard. Learn more There will be presentations on Batch, Data Zone Standard and Data Zone Provisioned and we will be taking questions throughout. Please share any questions that you would like our experts to address in the comments below. Questions can be posted anytime in the comments below beforehand, if it fits your schedule or time zone better, though questions will not be answered until the live hour. Questions will be answered both in the live broadcast on video and in text below. This will be a live stream video directly on this event page. NOTE: Please be aware the link sent via the private message to folks will not work due to some platform changes. We are working on redirecting it, but just in case, the new event link (the page you are on) is here: AMA on Camera - AI Revolution: Azure OpenAI's Game-Changing Enhancements | Microsoft Community Hub )4.8KViews13likes11CommentsAzure Data Explorer for Vector Similarity Search
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/series-cosine-similarity-function In the world of AI & data analytics, vector databases are emerging as a powerful tool for managing complex and high-dimensional data. In this article, we will explore the concept of vector databases, the need for vector databases in data analytics, and how Azure Data Explorer (ADX) aka Kusto can be used as a vector database.32KViews13likes5CommentsBuilding a Scalable Web Crawling and Indexing Pipeline with Azure storage and AI Search
In the ever-evolving world of data management, keeping search indexes up-to-date with dynamic data can be challenging. Traditional approaches, such as manual or scheduled indexing, are resource-intensive, delay-prone, and difficult to scale. Azure Blob Trigger combined with an AI Search Indexer offers a cutting-edge solution to overcome these challenges, enabling real-time, scalable, and enriched data indexing. This blog explores how Blob Trigger, integrated with Azure Cognitive Search, transforms the indexing process by automating workflows and enriching data with AI capabilities. It highlights the step-by-step process of configuring Blob Storage, creating Azure Functions for triggers, and seamlessly connecting with an AI-powered search index. The approach leverages Azure's event-driven architecture, ensuring efficient and cost-effective data management.2.1KViews7likes10CommentsTeach ChatGPT to Answer Questions: Using Azure AI Search & Azure OpenAI (Semantic Kernel)
In this two-part series, we will explore how to build intelligent service using Azure. In Series 1, we'll use Azure AI Search to extract keywords from unstructured data stored in Azure Blob Storage. In Series 2, we'll Create a feature to answer questions based on PDF documents using Azure OpenAI26KViews4likes3CommentsTeach ChatGPT to Answer Questions: Using Azure AI Search & Azure OpenAI (Lang Chain)
In this two-part series, we will explore how to build intelligent service using Azure. In Series 1, we'll use Azure AI Search to extract keywords from unstructured data stored in Azure Blob Storage. In Series 2, we'll Create a feature to answer questions based on PDF documents using Azure OpenAI.43KViews4likes9CommentsUnlocking the Power of Open AI – Azure DevOps Backlogs from Images/PDFs
In today's digital world, the need to convert images and PDFs to text is becoming increasingly important. However, the process of manually transcribing images and PDFs can be time-consuming and error-prone. Fortunately, there is a better way. With the Azure Open AI service, you can easily and quickly convert images and PDFs to text.4.7KViews4likes0CommentsAzure OpenAI Model Upgrades: Prompt Safety Pitfalls with GPT-4o and Beyond
Upgrading to New Azure OpenAI Models? Beware Your Old Prompts Might Break. I recently worked on upgrading our Azure OpenAI integration from gpt-35-turbo to gpt-4o-mini, expecting it to be a straightforward configuration change. Just update the Azure Foundry resource endpoint, change the model name, deploy the code — and voilà, everything should work as before. Right? Not quite. The Unexpected Roadblock As soon as I deployed the updated code, I started seeing 400 status errors from the OpenAI endpoint. The message was cryptic: The response was filtered due to the prompt triggering Azure OpenAI's content management policy. At first, I assumed it was a bug in my SDK call or a malformed payload. But after digging deeper, I realized this wasn’t a technical failure — it was a content safety filter kicking in before the prompt even reached the model. The Prompt That Broke It Here’s the original system prompt that worked perfectly with gpt-35-turbo: YOU ARE A QNA EXTRACTOR IN TEXT FORMAT. YOU WILL GET A SET OF SURVEYJS QNA JSONS. YOU WILL CONVERT THAT INTO A TEXT DOCUMENT. FOR THE QUESTIONS WHERE NO ANSWER WAS GIVEN, MARK THOSE AS NO ANSWER. HERE IS THE QNA: BE CREATIVE AND PROFESSIONAL. I WANT TO GENERATE A DOCUMENT TO BE PUBLISHED. {{$style}} +++++ {{$input}} +++++ This prompt had been reliable for months. But with gpt-4o-mini, it triggered Azure’s new input safety layer, introduced in mid-2024. What Changed with GPT-4o-mini? Unlike gpt-35-turbo, the gpt-4o family: Applies stricter content filtering — not just on the output, but also on the input prompt. Treats system messages and user messages as role-based chat messages, passing them through moderation before the model sees them. Flags prompts that look like prompt injection attempts like aggressive instructions like “YOU ARE…”, “BE CREATIVE”, “GENERATE”, “PROFESSIONAL”. Flags unusual formatting (like `+++++`), artificial delimiters or token markers as it may look like encoded content. In short, the model didn’t even get a chance to process my prompt — it was blocked at the gate. Fixing It: Softening the Prompt The solution wasn’t to rewrite the entire logic, but to soften the system prompt and remove formatting that could be misinterpreted. Here’s what helped: - Replacing “YOU ARE…” with a gentler instruction like “Please help convert the following Q&A data…” - Removing creative directives like “BE CREATIVE” or “PROFESSIONAL” unless clearly contextualized. - Avoiding raw JSON markers and template syntax (`{{ }}`, `+++++`) in the prompt. Once I made these changes, the model responded smoothly — and the upgrade was finally complete. Evolving the Prompt — Not Abandoning It Interestingly, for some prompts I didn’t have to completely eliminate the “YOU ARE…” structure. Instead, I refined it to be more natural and less directive. Here’s a comparison: ❌ Old Prompt (Blocked) ✅ New Prompt (Accepted) YOU ARE A SOURCING AND PROCUREMENT MANAGER. YOU WILL GET BUYER'S REQUIREMENTS IN QNA FORMAT. HERE IS THE QNA: {{$input}} +++++ YOU WILL GENERATE TOP 10 {{$category}} RELATED QUESTIONS THAT CAN BE ASKED OF A SUPPLIER IN JSON FORMAT. THE JSON MUST HAVE QUESTION NUMBER AS THE KEY AND QUESTION TEXT AS THE QUESTION. DON'T ADD ANY DESCRIPTION TEXT OR FORMATTING IN THE OUTPUT. BE CREATIVE AND PROFESSIONAL. I WANT TO GENERATE AN RFX. You are an AI assistant that helps clarify sourcing requirements. You will receive buyer's requirements in QnA format. Here is the QnA: {$input} Your task is to generate the top 10 {$category} related questions that can be asked of a supplier, in JSON format. - The JSON must use the question number as the key and the question text as the value. - Do not include any description text or formatting in the output. - Focus on creating clear, professional, and relevant questions that will help prepare an RFX. Key Takeaways - Model upgrades aren’t just about configuration changes — they can introduce new moderation layers that affect prompt design. - Prompt safety filtering is now a first-class citizen in Azure OpenAI, especially for newer models. - System prompts need to be rewritten with moderation in mind, not just clarity or creativity. This experience reminded me that even small upgrades can surface big learning moments. If you're planning to move to gpt-4o-mini or any newer Azure OpenAI model, take a moment to review your prompts — they might need a little more finesse than before.66Views3likes1CommentPrinciple Does not have Access to API/Operation
Hi all, I am trying to connect Azure OpenAI service to Azure AI Search service to Azure Gen 2 Data lake. In the Azure AI Foundry studio Chat Playground, I am able to add my data source, which is a .csv file in the data lake that has been indexed successfully. I use "System Assigned Managed Identity". The following RBAC has been applied: AI Search service has Cognitive Services OpenAI Contributor in Azure Open AI service Azure OpenAI service has Search Index Data Reader in AI Search Service Azure OpenAI service has Search Service Contributor in AI Search Service AI Search Service has Storage Blob Data Reader in Storage account (Data Lake) As mentioned when adding the data source it passes validation but when I try to ask a question, I get the error "We couldn't connect your data Principal does not have access to API/Operation"967Views3likes9CommentsWhy should you migrate from OpenAI to Azure OpenAI?
As the field of AI continues to grow, developers are constantly seeking new and innovative ways to integrate it into their work. With the launch of Azure OpenAI Service, developers now have even more tools at their disposal to take advantage of this powerful technology. Azure OpenAI Service can be used to create chatbots, generate text, translate languages, and write different kinds of creative content. As the platform continues to evolve, developers will be able to use it to build even more powerful and sophisticated applications.3.2KViews3likes2Comments