azure hardware infrastructure
12 TopicsUnleashing GitHub Copilot for Infrastructure as Code
Introduction In the world of managing infrastructure, things are always changing. People really want solutions that work, can handle big tasks, and won't let them down. Now, as more companies switch to using cloud-based systems and start using Infrastructure as Code (IaC), the job of folks who handle infrastructure is getting even more important. They're facing new problems in setting up and keeping everything running smoothly. The Challenges faced by Infrastructure Professionals Complexity of IaC: Managing infrastructure through code introduces a layer of complexity. Infrastructure professionals often grapple with the intricate syntax and structure required by tools like Terraform and PowerShell. This complexity can lead to errors, delays, and increased cognitive load. Consistency Across Environments: Achieving consistency across multiple environments—development, testing, and production—poses a significant challenge. Maintaining uniformity in configurations is crucial for ensuring the reliability and stability of the deployed infrastructure. Learning Curve: The learning curve associated with IaC tools and languages can be steep for those new to the domain. As teams grow and diversify, onboarding members with varying levels of expertise becomes a hurdle. Time-Consuming Development Cycles: Crafting infrastructure code manually is a time-consuming process. Infrastructure professionals often find themselves reinventing the wheel, writing boilerplate code, and handling repetitive tasks that could be automated. Unleashing GitHub Copilot for Infrastructure as Code In response to these challenges, Leveraging GitHub Copilot to generate infra code specifically for infrastructure professionals is helping to revolutionize the way infrastructure is written, addressing the pain points experienced by professionals in the field. The Significance of GH Copilot for Infra Code Generation with accuracy: Copilot harnesses the power of machine learning to interpret the intent behind prompts and swiftly generate precise infrastructure code. It understands the context of infrastructure tasks, allowing professionals to express their requirements in natural language and receive corresponding code suggestions. Streamlining the IaC Development Process: By automating the generation of infrastructure code, Copilot significantly streamlines the IaC development process. Infrastructure professionals can now focus on higher-level design decisions and business logic rather than wrestling with syntax intricacies. Consistency Across Environments and Projects: GH Copilot ensures consistency across environments by generating standardized code snippets. Whether deploying resources in a development, testing, or production environment, GH Copilot helps maintain uniformity in configurations. Accelerating Onboarding and Learning: For new team members and those less familiar with IaC, GH Copilot serves as an invaluable learning service. It provides real-time examples and best practices, fostering a collaborative environment where knowledge is shared seamlessly. Efficiency and Time Savings: The efficiency gains brought about by GH Copilot are substantial. Infrastructure professionals can witness a dramatic reduction in development cycles, allowing for faster iteration and deployment of infrastructure changes. Copilot in Action Prerequisites 1.Install visual studio code latest version - https://code.visualstudio.com/download Have a GitHub Copilot license with a personal free trial or your company/enterprise GitHub account, install the Copilot extension, and sign in from Visual Studio Code. https://docs.github.com/en/copilot/quickstart Install the PowerShell extension for VS Code, as we are going to use PowerShell for our IaC sample. Below is the PowerShell code generated using VS Code & GitHub Copilot. It demonstrates how to create a simple Azure VM. We're employing a straightforward prompt with #, with the underlying code automatically generated within the VS Code editor. Another example to create azure vm with vm scale set with minimum and maximum number of instance count. Prompt used with # in below example. The PowerShell script generated above can be executed either from the local system or from the Azure Portal Cloud Shell. Similarly, we can create Terraform and devops code using this Infra Copilot. Conclusion In summary, GH Copilot is a big deal in the world of infrastructure as code. It helps professionals overcome challenges and brings about a more efficient and collaborative way of working. As we finish talking about GH Copilot's abilities, the examples we've looked at have shown how it works, what technologies it uses, and how it can be used in real life. This guide aims to give infrastructure professionals the info they need to improve how they do infrastructure as code.31KViews9likes9CommentsMt Diablo - Disaggregated Power Fueling the Next Wave of AI Platforms
AI platforms have quickly shifted the industry from rack powers near 20 kilowatts to a hundred kilowatts and beyond in just the span of a few years. To enable the largest accelerator pod size within a physical rack domain, and enable scalability between platforms, we are moving to a disaggregated power rack architecture. Our disaggregated power rack is known as Mt Diablo and comes in both 48 Volt and 400 Volt flavors. This shift enables us to leverage more of the server rack for AI accelerators and at the same time gives us the flexibility to scale the power to meet the needs of today’s platforms and the platforms of the future. This forward thinking strategy enables us to move faster and foster collaboration to power the world’s most complex AI systems.12KViews2likes5CommentsOCP-SAFE, a systematic hardware security appraisal framework
In the ever-evolving landscape of data center technology, security is paramount. Today, data centers are an intricate web of diverse processing devices and peripherals, all dependent on firmware. But how can we ensure the security and reliability of this critical code? Microsoft and Google have joined forces with the Open Compute Foundation to introduce OCP - SAFE (Security Appraisal Framework Enablement). This framework introduces systematic firmware security reviews that focus on firmware provenance, development practices, and vulnerability check. In this article, we explore how OCP - SAFE standardizes security requirements, streamlines compliance, and empowers hardware device manufacturers to meet security assurance standards across various market segments, reducing time-to-market, expanding market reach, and enhancing product quality.9.1KViews1like0CommentsLiquid Cooling in Air Cooled Data Centers on Microsoft Azure
With the advent of artificial intelligence and machine learning (AI/ML), hyperscale datacenters are increasingly accommodating AI accelerators at scale, demanding higher power at higher density than is customary in traditionally air-cooled facilities. As Microsoft continues to expand our growing datacenter fleet to enable the world’s AI transformation, we are faced with a need to develop methods for utilizing air-cooled datacenters to provide liquid cooling capabilities for new AI . Additionally, increasing per-rack-density for AI accelerators necessitates the use of standalone liquid-to-air heat-exchangers to support legacy datacenters that are typically not equipped with the infrastructure to support direct-to-chip (DTC) liquid cooling.5.5KViews1like0CommentsAzure Extended Zones: Optimizing Performance, Compliance, and Accessibility
Azure Extended Zones are small-scale Azure extensions located in specific metros or jurisdictions to support low-latency and data residency workloads. They enable users to run latency-sensitive applications close to end users while maintaining compliance with data residency requirements, all within the Azure ecosystem.3KViews2likes0Comments