azure ai
28 TopicsModel Mondays S2E01 Recap: Advanced Reasoning Session
About Model Mondays Want to know what Reasoning models are and how you can build advanced reasoning scenarios like a Deep Research agent using Azure AI Foundry? Check out this recap from Model Mondays Season 2 Ep 1. Model Mondays is a weekly series to help you build your model IQ in three steps: 1. Catch the 5-min Highlights on Monday, to get up to speed on model news 2. Catch the 15-min Spotlight on Monday, for a deep-dive into a model or tool 3. Catch the 30-min AMA on Friday, for a Q&A session with subject matter experts Want to follow along? Register Here- to watch upcoming livestreams for Season 2 Visit The Forum- to see the full AMA schedule for Season 2 Register Here - to join the AMA on Friday Jun 20 Spotlight On: Advanced Reasoning This week, the Model Mondays spotlight was on Advanced Reasoning with subject matter expert Marlene Mhangami. In this blog post, I'll talk about my five takeaways from this episode: Why Are Reasoning Models Important? What Is an Advanced Reasoning Scenario? How Can I Get Started with Reasoning Models ? Spotlight: My Aha Moment Highlights: What’s New in Azure AI 1. Why Are Reasoning Models Important? In today's fast-evolving AI landscape, it's no longer enough for models to just complete text or summarize content. We need AI that can: Understand multi-step tasks Make decisions based on logic Plan sequences of actions or queries Connect context across turns Reasoning models are large language models (LLMs) trained with reinforcement learning techniques to "think" before they answer. Rather than simply generating a response based on probability, these models follow an internal thought process producing a chain of reasoning before responding. This makes them ideal for complex problem-solving tasks. And they’re the foundation of building intelligent, context-aware agents. They enable next-gen AI workflows in everything from customer support to legal research and healthcare diagnostics. Reason: They allow AI to go beyond surface-level response and deliver solutions that reflect understanding, not just language patterning. 2. What does Advanced Reasoning involve? An advanced reasoning scenario is one where a model: Breaks a complex prompt into smaller steps Retrieves relevant external data Uses logic to connect dots Outputs a structured, reasoned answer Example: A user asks: What are the financial and operational risks of expanding a startup to Southeast Asia in 2025? This is the kind of question that requires extensive research and analysis. A reasoning model might tackle this by: Retrieving reports on Southeast Asia market conditions Breaking down risks into financial, political, and operational buckets Cross-referencing data with recent trends Returning a reasoned, multi-part answer 3. How Can I Get Started with Reasoning Models? To get started, you need to visit a catalog that has examples of these models. Try the GitHub Models Marketplace and look for the reasoning category in the filter. Try the Azure AI Foundry model catalog and look for reasoning models by name. Example: The o-series of models from Azure Open AI The DeepSeek-R1 models The Grok 3 models The Phi-4 reasoning models Next, you can use SDKs or Playground for exploring the model capabiliies. 1. Try Lab 331 - for a beginner-friendly guide. 2. Try Lab 333 - for an advanced project. 3. Try the GitHub Model Playground - to compare reasoning and GPT models. 4. Try the Deep Research Agent using LangChain - sample as a great starting project. Have questions or comments? Join the Friday AMA on Azure AI Foundry Discord: 4. Spotlight: My Aha Moment Before this session, I thought reasoning meant longer or more detailed responses. But this session helped me realize that reasoning means structured thinking — models now plan, retrieve, and respond with logic. This inspired me to think about building AI agents that go beyond chat and actually assist users like a teammate. It also made me want to dive deeper into LangChain + Azure AI workflows to build mini-agents for real-world use. 5. Highlights: What’s New in Azure AI Here’s what’s new in the Azure AI Foundry: Direct From Azure Models - Try hosted models like OpenAI GPT on PTU plans SORA Video Playground - Generate video from prompts via SORA models Grok 3 Models - Now available for secure, scalable LLM experiences DeepSeek R1-0528 - A reasoning-optimized, Microsoft-tuned open-source model These are all available in the Azure Model Catalog and can be tried with your Azure account. Did You Know? Your first step is to find the right model for your task. But what if you could have the model automatically selected for you_ based on the prompt you provide? That's the magic of Model Router a deployable AI chat model that dynamically selects the best LLM based on your prompt. Instead of choosing one model manually, the Router makes that choice in real time. Currently, this works with a fixed set of Azure OpenAI models, including a reasoning model option. Keep an eye on the documentation for more updates. Why it’s powerful: Saves cost by switching between models based on complexity Optimizes performance by selecting the right model for the task Lets you test and compare model outputs quickly Try it out in Azure AI Foundry or read more in the Model Catalog Coming Up Next Next week, we dive into Model Context Protocol, an open protocol that empowers agentic AI applications by making it easier to discover and integrate knowledge and action tools with your model choices. Register Here to get reminded - and join us live on Monday! Join The Community Great devs don't build alone! In a fast-pased developer ecosystem, there's no time to hunt for help. That's why we have the Azure AI Developer Community. Join us today and let's journey together! Join the Discord - for real-time chats, events & learning Explore the Forum - for AMA recaps, Q&A, and help! About Me. I'm Sharda, a Gold Microsoft Learn Student Ambassador interested in cloud and AI. Find me on Github, Dev.to,, Tech Community and Linkedin. In this blog series I have summarizef my takeaways from this week's Model Mondays livestream .380Views0likes0CommentsModel Mondays S2:E4 Understanding AI Developer Experiences with Leo Yao
This week in Model Mondays, we put the spotlight on the AI Toolkit for Visual Studio Code - and explore the tools and workflows that make building generative AI apps and agents easier for developers. Read on for my recap. This post was generated with AI help and human revision & review. To learn more about our motivation and workflows, please refer to this document in our website. About Model Mondays Model Mondays is a weekly series designed to help you grow your Azure AI Foundry Model IQ step by step. Each week includes: 5-Minute Highlights – Quick news and updates about Azure AI models and tools on Monday 15-Minute Spotlight – Deep dive into a key model, protocol, or feature on Monday 30-Minute AMA on Friday – Live Q&A with subject matter experts from the Monday livestream If you're looking to grow your skills with the latest in AI model development, this series is a great place to begin. Useful links: Register for upcoming livestreams Watch past episodes Join the AMA on AI Developer Experiences Visit the Model Mondays forum Spotlight On: AI Developer Experiences 1. What is this topic and why is it important? AI Developer Experiences focus on making the process of building, testing, and deploying AI models as efficient as possible. With the right tools—such as the AI Toolkit and Azure AI Foundry extensions for Visual Studio Code—developers can eliminate unnecessary friction and focus on innovation. This is essential for accelerating the real-world impact of generative AI. 2. What is one key takeaway from the episode? The integration of Azure AI Foundry with Visual Studio Code allows developers to manage models, run experiments, and deploy applications directly from their preferred development environment. This unified workflow enhances productivity and simplifies the AI development lifecycle. 3. How can I get started? Here are a few resources to explore: Install the AI Toolkit for VS Code Explore Azure AI Foundry Documentation Join the Microsoft Tech Community to follow and contribute to discussions 4. What’s New in Azure AI Foundry? Azure AI Foundry continues to evolve to meet developer needs with more power, flexibility, and productivity. Here are some of the latest updates highlighted in this week’s episode: AI Toolkit for Visual Studio Code Now with deeper integration, allowing developers to manage models, run experiments, and deploy applications directly within their editor—streamlining the entire workflow. Prompt Shields Enhanced security capabilities designed to protect generative AI applications from prompt injection and unsafe content, improving reliability in production environments. Model Router A new intelligent routing system that dynamically directs model requests to the most suitable model available—enhancing performance and efficiency at scale. Expanded Model Catalog The catalog now includes more open-source and proprietary models, featuring the latest from Hugging Face, OpenAI, and other leading providers. Improved Documentation and Sample Projects Newly added guides and ready-to-use examples to help developers get started faster, understand workflows, and build confidently. My A-Ha Moment Before watching this episode, setting up an AI development environment always felt like a challenge. There were so many moving parts—configurations, integrations, and dependencies—that it was hard to know where to begin. Seeing the AI Toolkit in action inside Visual Studio Code changed everything for me. It was a realization moment: “That’s it? I can explore models, test prompts, and deploy apps—without ever leaving my editor?” This episode made it clear that building with AI doesn’t have to be complex or intimidating. With the right tools, experimentation becomes faster and far more enjoyable. Now, I’m genuinely excited to build, test, and explore new generative AI solutions because the process finally feels accessible. Coming Up Next Week In the next episode, we’ll be exploring Fine-Tuning and Distillation with Dave Voutila. This session will focus on how to adapt Azure OpenAI models to your unique use cases and apply best practices for efficient knowledge transfer. Register here to reserve your spot and be part of the conversation. Join the Community Building in AI is better when we do it together. That’s why the Azure AI Developer Community exists—to support your journey and provide resources every step of the way. Join the Discord for real-time discussions, events, and peer learning Explore the Forum to catch up on AMAs, ask questions, and connect with other developers About Me I'm Sharda, a Gold Microsoft Learn Student Ambassador passionate about cloud technologies and artificial intelligence. I enjoy learning, building, and helping others grow in tech. Connect with me: LinkedIn GitHub Dev.to Microsoft Tech Community224Views0likes0CommentsPower Up Your Open WebUI with Azure AI Speech: Quick STT & TTS Integration
Introduction Ever found yourself wishing your web interface could really talk and listen back to you? With a few clicks (and a bit of code), you can turn your plain Open WebUI into a full-on voice assistant. In this post, you’ll see how to spin up an Azure Speech resource, hook it into your frontend, and watch as user speech transforms into text and your app’s responses leap off the screen in a human-like voice. By the end of this guide, you’ll have a voice-enabled web UI that actually converses with users, opening the door to hands-free controls, better accessibility, and a genuinely richer user experience. Ready to make your web app speak? Let’s dive in. Why Azure AI Speech? We use Azure AI Speech service in Open Web UI to enable voice interactions directly within web applications. This allows users to: Speak commands or input instead of typing, making the interface more accessible and user-friendly. Hear responses or information read aloud, which improves usability for people with visual impairments or those who prefer audio. Provide a more natural and hands-free experience especially on devices like smartphones or tablets. In short, integrating Azure AI Speech service into Open Web UI helps make web apps smarter, more interactive, and easier to use by adding speech recognition and voice output features. If you haven’t hosted Open WebUI already, follow my other step-by-step guide to host Ollama WebUI on Azure. Proceed to the next step if you have Open WebUI deployed already. Learn More about OpenWeb UI here. Deploy Azure AI Speech service in Azure. Navigate to the Azure Portal and search for Azure AI Speech on the Azure portal search bar. Create a new Speech Service by filling up the fields in the resource creation page. Click on “Create” to finalize the setup. After the resource has been deployed, click on “View resource” button and you should be redirected to the Azure AI Speech service page. The page should display the API Keys and Endpoints for Azure AI Speech services, which you can use in Open Web UI. Settings things up in Open Web UI Speech to Text settings (STT) Head to the Open Web UI Admin page > Settings > Audio. Paste the API Key obtained from the Azure AI Speech service page into the API key field below. Unless you use different Azure Region, or want to change the default configurations for the STT settings, leave all settings to blank. Text to Speech settings (TTS) Now, let's proceed with configuring the TTS Settings on OpenWeb UI by toggling the TTS Engine to Azure AI Speech option. Again, paste the API Key obtained from Azure AI Speech service page and leave all settings to blank. You can change the TTS Voice from the dropdown selection in the TTS settings as depicted in the image below: Click Save to reflect the change. Expected Result Now, let’s test if everything works well. Open a new chat / temporary chat on Open Web UI and click on the Call / Record button. The STT Engine (Azure AI Speech) should identify your voice and provide a response based on the voice input. To test the TTS feature, click on the Read Aloud (Speaker Icon) under any response from Open Web UI. The TTS Engine should reflect Azure AI Speech service! Conclusion And that’s a wrap! You’ve just given your Open WebUI the gift of capturing user speech, turning it into text, and then talking right back with Azure’s neural voices. Along the way you saw how easy it is to spin up a Speech resource in the Azure portal, wire up real-time transcription in the browser, and pipe responses through the TTS engine. From here, it’s all about experimentation. Try swapping in different neural voices or dialing in new languages. Tweak how you start and stop listening, play with silence detection, or add custom pronunciation tweaks for those tricky product names. Before you know it, your interface will feel less like a web page and more like a conversation partner.932Views2likes1CommentCreate Stunning AI Videos with Sora on Azure AI Foundry!
Special credit to Rory Preddy for creating the GitHub resource that enable us to learn more about Azure Sora. Reach him out on LinkedIn to say thanks. Introduction Artificial Intelligence (AI) is revolutionizing content creation, and video generation is at the forefront of this transformation. OpenAI's Sora, a groundbreaking text-to-video model, allows creators to generate high-quality videos from simple text prompts. When paired with the powerful infrastructure of Azure AI Foundry, you can harness Sora's capabilities with scalability and efficiency, whether on a local machine or a remote setup. In this blog post, I’ll walk you through the process of generating AI videos using Sora on Azure AI Foundry. We’ll cover the setup for both local and remote environments. Requirements: Azure AI Foundry with sora model access A Linux Machine/VM. Make sure that the machine already has the package below: Java JRE 17 (Recommended) OR later Maven Step Zero – Deploying the Azure Sora model on AI Foundry Navigate to the Azure AI Foundry portal and head to the “Models + Endpoints” section (found on the left side of the Azure AI Foundry portal) > Click on the “Deploy Model” button > “Deploy base model” > Search for Sora > Click on “Confirm”. Give a deployment name and specify the Deployment type > Click “Deploy” to finalize the configuration. You should receive an API endpoint and Key after successful deploying Sora on Azure AI Foundry. Store these in a safe place because we will be using them in the next steps. Step one – Setting up the Sora Video Generator in the local/remote machine. Clone the roryp/sora repository on your machine by running the command below: git clone https://github.com/roryp/sora.git cd sora Then, edit the application.properties file in the src/main/resources/ folder to include your Azure OpenAI Credentials. Change the configuration below: azure.openai.endpoint=https://your-openai-resource.cognitiveservices.azure.com azure.openai.api-key=your_api_key_here If port 8080 is used for another application, and you want to change the port for which the web app will run, change the “server.port” configuration to include the desired port. Allow appropriate permissions to run the “mvnw” script file. chmod +x mvnw Run the application ./mvnw spring-boot:run Open your browser and type in your localhost/remote host IP (format: [host-ip:port]) in the browser search bar. If you are running a remote host, please do not forget to update your firewall/NSG to allow inbound connection to the configured port. You should see the web app to generate video with Sora AI using the API provided on Azure AI Foundry. Now, let’s generate a video with Sora Video Generator. Enter a prompt in the first text field, choose the video pixel resolution, and set the video duration. (Due to technical limitation, Sora can only generate video of a maximum of 20 seconds). Click on the “Generate video” button to proceed. The cost to generate the video should be displayed below the “Generate Video” button, for transparency purposes. You can click on the “View Breakdown” button to learn more about the cost breakdown. The video should be ready to download after a maximum of 5 minutes. You can check the status of the video by clicking on the “Check Status” button on the web app. The web app will inform you once the download is ready and the page should refresh every 10 seconds to fetch real-time update from Sora. Once it is ready, click on the “Download Video” button to download the video. Conclusion Generating AI videos with Sora on Azure AI Foundry is a game-changer for content creators, marketers, and developers. By following the steps outlined in this guide, you can set up your environment, integrate Sora, and start creating stunning AI-generated videos. Experiment with different prompts, optimize your workflow, and let your imagination run wild! Have you tried generating AI videos with Sora or Azure AI Foundry? Share your experiences or questions in the comments below. Don’t forget to subscribe for more AI and cloud computing tutorials!922Views0likes3CommentsDeploy Open Web UI on Azure VM via Docker: A Step-by-Step Guide with Custom Domain Setup.
Introductions Open Web UI (often referred to as "Ollama Web UI" in the context of LLM frameworks like Ollama) is an open-source, self-hostable interface designed to simplify interactions with large language models (LLMs) such as GPT-4, Llama 3, Mistral, and others. It provides a user-friendly, browser-based environment for deploying, managing, and experimenting with AI models, making advanced language model capabilities accessible to developers, researchers, and enthusiasts without requiring deep technical expertise. This article will delve into the step-by-step configurations on hosting OpenWeb UI on Azure. Requirements: Azure Portal Account - For students you can claim $USD100 Azure Cloud credits from this URL. Azure Virtual Machine - with a Linux of any distributions installed. Domain Name and Domain Host Caddy Open WebUI Image Step One: Deploy a Linux – Ubuntu VM from Azure Portal Search and Click on “Virtual Machine” on the Azure portal search bar and create a new VM by clicking on the “+ Create” button > “Azure Virtual Machine”. Fill out the form and select any Linux Distribution image – In this demo, we will deploy Open WebUI on Ubuntu Pro 24.04. Click “Review + Create” > “Create” to create the Virtual Machine. Tips: If you plan to locally download and host open source AI models via Open on your VM, you could save time by increasing the size of the OS disk / attach a large disk to the VM. You may also need a higher performance VM specification since large resources are needed to run the Large Language Model (LLM) locally. Once the VM has been successfully created, click on the “Go to resource” button. You will be redirected to the VM’s overview page. Jot down the public IP Address and access the VM using the ssh credentials you have setup just now. Step Two: Deploy the Open WebUI on the VM via Docker Once you are logged into the VM via SSH, run the Docker Command below: docker run -d --name open-webui --network=host --add-host=host.docker.internal:host-gateway -e PORT=8080 -v open-webui:/app/backend/data --restart always ghcr.io/open-webui/open-webui:dev This Docker command will download the Open WebUI Image into the VM and will listen for Open Web UI traffic on port 8080. Wait for a few minutes and the Web UI should be up and running. If you had setup an inbound Network Security Group on Azure to allow port 8080 on your VM from the public Internet, you can access them by typing into the browser: [PUBLIC_IP_ADDRESS]:8080 Step Three: Setup custom domain using Caddy Now, we can setup a reverse proxy to map a custom domain to [PUBLIC_IP_ADDRESS]:8080 using Caddy. The reason why Caddy is useful here is because they provide automated HTTPS solutions – you don’t have to worry about expiring SSL certificate anymore, and it’s free! You must download all Caddy’s dependencies and set up the requirements to install it using this command: sudo apt install -y debian-keyring debian-archive-keyring apt-transport-https curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/gpg.key' | sudo gpg --dearmor -o /usr/share/keyrings/caddy-stable-archive-keyring.gpg curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/debian.deb.txt' | sudo tee /etc/apt/sources.list.d/caddy-stable.list sudo apt update && sudo apt install caddy Once Caddy is installed, edit Caddy’s configuration file at: /etc/caddy/Caddyfile , delete everything else in the file and add the following lines: yourdomainname.com { reverse_proxy localhost:8080 } Restart Caddy using this command: sudo systemctl restart caddy Next, create an A record on your DNS Host and point them to the public IP of the server. Step Four: Update the Network Security Group (NSG) To allow public access into the VM via HTTPS, you need to ensure the NSG/Firewall of the VM allow for port 80 and 443. Let’s add these rules into Azure by heading to the VM resources page you created for Open WebUI. Under the “Networking” Section > “Network Settings” > “+ Create port rule” > “Inbound port rule” On the “Destination port ranges” field, type in 443 and Click “Add”. Repeat these steps with port 80. Additionally, to enhance security, you should avoid external users from directly interacting with Open Web UI’s port - port 8080. You should add an inbound deny rule to that port. With that, you should be able to access the Open Web UI from the domain name you setup earlier. Conclusion And just like that, you’ve turned a blank Azure VM into a sleek, secure home for your Open Web UI, no magic required! By combining Docker’s simplicity with Caddy’s “set it and forget it” HTTPS magic, you’ve not only made your app accessible via a custom domain but also locked down security by closing off risky ports and keeping traffic encrypted. Azure’s cloud muscle handles the heavy lifting, while you get to enjoy the perks of a pro setup without the headache. If you are interested in using AI models deployed on Azure AI Foundry on OpenWeb UI via API, kindly read my other article: Step-by-step: Integrate Ollama Web UI to use Azure Open AI API with LiteLLM Proxy3.1KViews1like1CommentLearn How to Build Smarter AI Agents with Microsoft’s MCP Resources Hub
If you've been curious about how to build your own AI agents that can talk to APIs, connect with tools like databases, or even follow documentation you're in the right place. Microsoft has created something called MCP, which stands for Model‑Context‑Protocol. And to help you learn it step by step, they’ve made an amazing MCP Resources Hub on GitHub. In this blog, I’ll Walk you through what MCP is, why it matters, and how to use this hub to get started, even if you're new to AI development. What is MCP (Model‑Context‑Protocol)? Think of MCP like a communication bridge between your AI model and the outside world. Normally, when we chat with AI (like ChatGPT), it only knows what’s in its training data. But with MCP, you can give your AI real-time context from: APIs Documents Databases Websites This makes your AI agent smarter and more useful just like a real developer who looks up things online, checks documentation, and queries databases. What’s Inside the MCP Resources Hub? The MCP Resources Hub is a collection of everything you need to learn MCP: Videos Blogs Code examples Here are some beginner-friendly videos that explain MCP: Title What You'll Learn VS Code Agent Mode Just Changed Everything See how VS Code and MCP build an app with AI connecting to a database and following docs. The Future of AI in VS Code Learn how MCP makes GitHub Copilot smarter with real-time tools. Build MCP Servers using Azure Functions Host your own MCP servers using Azure in C#, .NET, or TypeScript. Use APIs as Tools with MCP See how to use APIs as tools inside your AI agent. Blazor Chat App with MCP + Aspire Create a chat app powered by MCP in .NET Aspire Tip: Start with the VS Code videos if you’re just beginning. Blogs Deep Dives and How-To Guides Microsoft has also written blogs that explain MCP concepts in detail. Some of the best ones include: Build AI agent tools using remote MCP with Azure Functions: Learn how to deploy MCP servers remotely using Azure. Create an MCP Server with Azure AI Agent Service : Enables Developers to create an agent with Azure AI Agent Service and uses the model context protocol (MCP) for consumption of the agents in compatible clients (VS Code, Cursor, Claude Desktop). Vibe coding with GitHub Copilot: Agent mode and MCP support: MCP allows you to equip agent mode with the context and capabilities it needs to help you, like a USB port for intelligence. When you enter a chat prompt in agent mode within VS Code, the model can use different tools to handle tasks like understanding database schema or querying the web. Enhancing AI Integrations with MCP and Azure API Management Enhance AI integrations using MCP and Azure API Management Understanding and Mitigating Security Risks in MCP Implementations Overview of security risks and mitigation strategies for MCP implementations Protecting Against Indirect Injection Attacks in MCP Strategies to prevent indirect injection attacks in MCP implementations Microsoft Copilot Studio MCP Announcement of the Microsoft Copilot Studio MCP lab Getting started with MCP for Beginners 9 part course on MCP Client and Servers Code Repositories Try it Yourself Want to build something with MCP? Microsoft has shared open-source sample code in Python, .NET, and TypeScript: Repo Name Language Description Azure-Samples/remote-mcp-apim-functions-python Python Recommended for Secure remote hosting Sample Python Azure Functions demonstrating remote MCP integration with Azure API Management Azure-Samples/remote-mcp-functions-python Python Sample Python Azure Functions demonstrating remote MCP integration Azure-Samples/remote-mcp-functions-dotnet C# Sample .NET Azure Functions demonstrating remote MCP integration Azure-Samples/remote-mcp-functions-typescript TypeScript Sample TypeScript Azure Functions demonstrating remote MCP integration Microsoft Copilot Studio MCP TypeScript Microsoft Copilot Studio MCP lab You can clone the repo, open it in VS Code, and follow the instructions to run your own MCP server. Using MCP with the AI Toolkit in Visual Studio Code To make your MCP journey even easier, Microsoft provides the AI Toolkit for Visual Studio Code. This toolkit includes: A built-in model catalog Tools to help you deploy and run models locally Seamless integration with MCP agent tools You can install the AI Toolkit extension from the Visual Studio Code Marketplace. Once installed, it helps you: Discover and select models quickly Connect those models to MCP agents Develop and test AI workflows locally before deploying to the cloud You can explore the full documentation here: Overview of the AI Toolkit for Visual Studio Code – Microsoft Learn This is perfect for developers who want to test things on their own system without needing a cloud setup right away. Why Should You Care About MCP? Because MCP: Makes your AI tools more powerful by giving them real-time knowledge Works with GitHub Copilot, Azure, and VS Code tools you may already use Is open-source and beginner-friendly with lots of tutorials and sample code It’s the future of AI development connecting models to the real world. Final Thoughts If you're learning AI or building software agents, don’t miss this valuable MCP Resources Hub. It’s like a starter kit for building smart, connected agents with Microsoft tools. Try one video or repo today. Experiment. Learn by doing and start your journey with the MCP for Beginners curricula.2.9KViews2likes2CommentsStep-by-step: Integrate Ollama Web UI to use Azure Open AI API with LiteLLM Proxy
Introductions Ollama WebUI is a streamlined interface for deploying and interacting with open-source large language models (LLMs) like Llama 3 and Mistral, enabling users to manage models, test them via a ChatGPT-like chat environment, and integrate them into applications through Ollama’s local API. While it excels for self-hosted models on platforms like Azure VMs, it does not natively support Azure OpenAI API endpoints—OpenAI’s proprietary models (e.g., GPT-4) remain accessible only through OpenAI’s managed API. However, tools like LiteLLM bridge this gap, allowing developers to combine Ollama-hosted models with OpenAI’s API in hybrid workflows, while maintaining compliance and cost-efficiency. This setup empowers users to leverage both self-managed open-source models and cloud-based AI services. Problem Statement As of February 2025, Ollama WebUI, still do not support Azure Open AI API. The Ollama Web UI only support self-hosted Ollama API and managed OpenAI API service (PaaS). This will be an issue if users want to use Open AI models they already deployed on Azure AI Foundry. Objective To integrate Azure OpenAI API via LiteLLM proxy into with Ollama Web UI. LiteLLM translates Azure AI API requests into OpenAI-style requests on Ollama Web UI allowing users to use OpenAI models deployed on Azure AI Foundry. If you haven’t hosted Ollama WebUI already, follow my other step-by-step guide to host Ollama WebUI on Azure. Proceed to the next step if you have Ollama WebUI deployed already. Step 1: Deploy OpenAI models on Azure Foundry. If you haven’t created an Azure AI Hub already, search for Azure AI Foundry on Azure, and click on the “+ Create” button > Hub. Fill out all the empty fields with the appropriate configuration and click on “Create”. After the Azure AI Hub is successfully deployed, click on the deployed resources and launch the Azure AI Foundry service. To deploy new models on Azure AI Foundry, find the “Models + Endpoints” section on the left hand side and click on “+ Deploy Model” button > “Deploy base model” A popup will appear, and you can choose which models to deploy on Azure AI Foundry. Please note that the o-series models are only available to select customers at the moment. You can request access to the o-series models by completing this request access form, and wait until Microsoft approves the access request. Click on “Confirm” and another popup will emerge. Now name the deployment and click on “Deploy” to deploy the model. Wait a few moments for the model to deploy. Once it successfully deployed, please save the “Target URI” and the API Key. Step 2: Deploy LiteLLM Proxy via Docker Container Before pulling the LiteLLM Image into the host environment, create a file named “litellm_config.yaml” and list down the models you deployed on Azure AI Foundry, along with the API endpoints and keys. Replace "API_Endpoint" and "API_Key" with “Target URI” and “Key” found from Azure AI Foundry respectively. Template for the “litellm_config.yaml” file. model_list: - model_name: [model_name] litellm_params: model: azure/[model_name_on_azure] api_base: "[API_ENDPOINT/Target_URI]" api_key: "[API_Key]" api_version: "[API_Version]" Tips: You can find the API version info at the end of the Target URI of the model's endpoint: Sample Endpoint - https://example.openai.azure.com/openai/deployments/o1-mini/chat/completions?api-version=2024-08-01-preview Run the docker command below to start LiteLLM Proxy with the correct settings: docker run -d \ -v $(pwd)/litellm_config.yaml:/app/config.yaml \ -p 4000:4000 \ --name litellm-proxy-v1 \ --restart always \ ghcr.io/berriai/litellm:main-latest \ --config /app/config.yaml --detailed_debug Make sure to run the docker command inside the directory where you created the “litellm_config.yaml” file just now. The port used to listen for LiteLLM Proxy traffic is port 4000. Now that LiteLLM proxy had been deployed on port 4000, lets change the OpenAI API settings on Ollama WebUI. Navigate to Ollama WebUI’s Admin Panel settings > Settings > Connections > Under the OpenAI API section, write http://127.0.0.1:4000 as the API endpoint and set any key (You must write anything to make it work!). Click on “Save” button to reflect the changes. Refresh the browser and you should be able to see the AI models deployed on the Azure AI Foundry listed in the Ollama WebUI. Now let’s test the chat completion + Web Search capability using the "o1-mini" model on Ollama WebUI. Conclusion Hosting Ollama WebUI on an Azure VM and integrating it with OpenAI’s API via LiteLLM offers a powerful, flexible approach to AI deployment, combining the cost-efficiency of open-source models with the advanced capabilities of managed cloud services. While Ollama itself doesn’t support Azure OpenAI endpoints, the hybrid architecture empowers IT teams to balance data privacy (via self-hosted models on Azure AI Foundry) and cutting-edge performance (using Azure OpenAI API), all within Azure’s scalable ecosystem. This guide covers every step required to deploy your OpenAI models on Azure AI Foundry, set up the required resources, deploy LiteLLM Proxy on your host machine and configure Ollama WebUI to support Azure AI endpoints. You can test and improve your AI model even more with the Ollama WebUI interface with Web Search, Text-to-Image Generation, etc. all in one place.9.4KViews1like4CommentsMicrosoft AI Agents Learn Live Starting 15th April
Join us for an exciting Learn Live webinar where we dive into the fundamentals of using Azure AI Foundry and AI Agents. The series is to help you build powerful Agent applications. This learn live series will help you understand the AI agents, including when to use them and how to build them, using Azure AI Agent Service and Semantic Kernel Agent Framework. By the end of this learning series, you will have the skills needed to develop AI agents on Azure. This sessions will introduce you to AI agents, the next frontier in intelligent applications and explore how they can be developed and deployed on Microsoft Azure. Through this webinar, you'll gain essential skills to begin creating agents with the Azure AI Agent Service. We'll also discuss how to take your agents to the next level by integrating custom tools, allowing you to extend their capabilities beyond built-in functionalities to better meet your specific needs. Don't miss this opportunity to gain hands-on knowledge and insights from experts in the field. Register now and start your journey into building intelligent agents on Azure Register NOW Learn Live: Master the Skills to Create AI Agents | Microsoft Reactor Plan and Prepare to Develop AI Solution on Azure Microsoft Azure offers multiple services that enable developers to build amazing AI-powered solutions. Proper planning and preparation involves identifying the services you'll use and creating an optimal working environment for your development team. Learning objectives By the end of this module, you'll be able to: Identify common AI capabilities that you can implement in applications Describe Azure AI Services and considerations for using them Describe Azure AI Foundry and considerations for using it Identify appropriate developer tools and SDKs for an AI project Describe considerations for responsible AI Format: Livestream Topic: Core AI Language: English Details Fundamentals of AI agents on Azure AI agents represent the next generation of intelligent applications. Learn how they can be developed and used on Microsoft Azure. Learning objectives By the end of this module, you'll be able to: Describe core concepts related to AI agents Describe options for agent development Create and test an agent in the Azure AI Foundry portal Format: Livestream Topic: Core AI Language: English Details Develop an AI agent with Azure AI Agent Service This module provides engineers with the skills to begin building agents with Azure AI Agent Service. Learning objectives By the end of this module, you'll be able to: Describe the purpose of AI agents Explain the key features of Azure AI Agent Service Build an agent using the Azure AI Agent Service Integrate an agent in the Azure AI Agent Service into your own application Format: Livestream Topic: Core AI Language: English Details Integrate custom tools into your agent Built-in tools are useful, but they may not meet all your needs. In this module, learn how to extend the capabilities of your agent by integrating custom tools for your agent to use. Learning objectives By the end of this module, you'll be able to: Describe the benefits of using custom tools with your agent. Explore the different options for custom tools. Build an agent that integrates custom tools using the Azure AI Agent Service. Format: Livestream Topic: Core AI Language: English Details Develop an AI agent with Semantic Kernel - Training | Microsoft Learn By the end of this module, you'll be able to: Use Semantic Kernel to connect to an Azure AI Foundry project Create Azure AI Agent Service agents using the Semantic Kernel SDK Integrate plugin functions with your AI agent Develop an AI agent with Semantic Kernel Format: Livestream Topic: Core AI Language: English Details Details Orchestrate a multi-agent solution using Semantic Kernel Learn how to use the Semantic Kernel SDK to develop your own AI agents that can collaborate for a multi-agent solution. Learning objectives By the end of this module, you'll be able to: Build AI agents using the Semantic Kernel SDK Develop multi-agent solutions Create custom selection and termination strategies for agent collaboration Format: Livestream Topic: Core AI Language: English Details1.3KViews3likes0CommentsTake Your Startup from Campus to the Cloud at the European AI and Cloud Summit
Why University Startups Should Attend This is more than just a conference—it’s a launchpad for student-led startups eager to make their mark in AI and cloud computing. Here’s how the summit can accelerate your journey: - Pitch to Industry Leaders: Present your solution to a live audience of investors, potential clients, and mentors. - Build Connections: Meet industry pioneers, Microsoft experts, and other startups—expand your network and unlock collaboration opportunities. - Gain Expertise: Learn from thought leaders in AI and cloud through insightful talks and workshops. 🏆 AI Competition: A Game-Changing Opportunity The AI & Cloud Startup Stage competition is specifically designed for emerging startups, like those in university accelerator programs, that are building AI with Microsoft Azure. Compete against other top startups for incredible prizes, including: - $25,000 in Microsoft Azure Credits to power your solution. - A one-on-one mentoring session with Marco Casalaina, VP of Products at Azure AI. - Exclusive access to the resources and support of the Microsoft for Startups Program. How to Apply: Make sure your product or solution runs on AI from Microsoft Azure. Register your start-up and submit your application by 14 April 2025. Register NOW AI Competition 2025 Application Form If shortlisted, you'll pitch live on 28 May 2025 to a panel of experts and an audience of innovators. Launch Your Startup on the Summit Stage University startups are uniquely positioned to drive fresh ideas and bold solutions. The AI and Cloud Startup Area offers a cost-effective way to showcase your product, connect with the ecosystem, and gain visibility in the tech space. Whether you choose a booth or launchpad, this summit is your platform to shine. 📢 Ready to Seize the Moment? Don’t miss out—tickets are already 70% sold out! Visit the [European AI and Cloud Summit](https://ecs.events) website to learn more, purchase tickets, or download the sponsorship brochure. Be part of a community that transforms ideas into impactful businesses. This is your opportunity to move your startup from the accelerator into the global market. Düsseldorf is calling—see you there! 🌍🎉148Views0likes0CommentsAI Agents: Key Principles and Guidelines - Part 3
This blog post, the third in a series on AI agents, focuses on user-centric design principles for building effective and trustworthy agentic systems. Drawing from the "Agentic Design Patterns" section of Microsoft's "AI Agents for Beginners" GitHub repository, the post outlines key principles categorized by Agent (Space), Agent (Time), and Agent (Core). These principles emphasize connection, accessibility, leveraging historical context, adapting to future needs, and establishing trust through transparency and control. Practical implementation guidelines are provided, along with a travel agent example to illustrate how these principles can be applied in real-world scenarios. The post also links to additional resources and previous installments in the series for a comprehensive learning experience.2.6KViews1like0Comments