analytics
159 TopicsUnderstand New Sentinel Pricing Model with Sentinel Data Lake Tier
Introduction on Sentinel and its New Pricing Model Microsoft Sentinel is a cloud-native Security Information and Event Management (SIEM) and Security Orchestration, Automation, and Response (SOAR) platform that collects, analyzes, and correlates security data from across your environment to detect threats and automate response. Traditionally, Sentinel stored all ingested data in the Analytics tier (Log Analytics workspace), which is powerful but expensive for high-volume logs. To reduce cost and enable customers to retain all security data without compromise, Microsoft introduced a new dual-tier pricing model consisting of the Analytics tier and the Data Lake tier. The Analytics tier continues to support fast, real-time querying and analytics for core security scenarios, while the new Data Lake tier provides very low-cost storage for long-term retention and high-volume datasets. Customers can now choose where each data type lands—analytics for high-value detections and investigations, and data lake for large or archival types—allowing organizations to significantly lower cost while still retaining all their security data for analytics, compliance, and hunting. Please flow diagram depicts new sentinel pricing model: Now let's understand this new pricing model with below scenarios: Scenario 1A (PAY GO) Scenario 1B (Usage Commitment) Scenario 2 (Data Lake Tier Only) Scenario 1A (PAY GO) Requirement Suppose you need to ingest 10 GB of data per day, and you must retain that data for 2 years. However, you will only frequently use, query, and analyze the data for the first 6 months. Solution To optimize cost, you can ingest the data into the Analytics tier and retain it there for the first 6 months, where active querying and investigation happen. After that period, the remaining 18 months of retention can be shifted to the Data Lake tier, which provides low-cost storage for compliance and auditing needs. But you will be charged separately for data lake tier querying and analytics which depicted as Compute (D) in pricing flow diagram. Pricing Flow / Notes The first 10 GB/day ingested into the Analytics tier is free for 31 days under the Analytics logs plan. All data ingested into the Analytics tier is automatically mirrored to the Data Lake tier at no additional ingestion or retention cost. For the first 6 months, you pay only for Analytics tier ingestion and retention, excluding any free capacity. For the next 18 months, you pay only for Data Lake tier retention, which is significantly cheaper. Azure Pricing Calculator Equivalent Assuming no data is queried or analyzed during the 18-month Data Lake tier retention period: Although the Analytics tier retention is set to 6 months, the first 3 months of retention fall under the free retention limit, so retention charges apply only for the remaining 3 months of the analytics retention window. Azure pricing calculator will adjust accordingly. Scenario 1B (Usage Commitment) Now, suppose you are ingesting 100 GB per day. If you follow the same pay-as-you-go pricing model described above, your estimated cost would be approximately $15,204 per month. However, you can reduce this cost by choosing a Commitment Tier, where Analytics tier ingestion is billed at a discounted rate. Note that the discount applies only to Analytics tier ingestion—it does not apply to Analytics tier retention costs or to any Data Lake tier–related charges. Please refer to the pricing flow and the equivalent pricing calculator results shown below. Monthly cost savings: $15,204 – $11,184 = $4,020 per month Now the question is: What happens if your usage reaches 150 GB per day? Will the additional 50 GB be billed at the Pay-As-You-Go rate? No. The entire 150 GB/day will still be billed at the discounted rate associated with the 100 GB/day commitment tier bucket. Azure Pricing Calculator Equivalent (100 GB/ Day) Azure Pricing Calculator Equivalent (150 GB/ Day) Scenario 2 (Data Lake Tier Only) Requirement Suppose you need to store certain audit or compliance logs amounting to 10 GB per day. These logs are not used for querying, analytics, or investigations on a regular basis, but must be retained for 2 years as per your organization’s compliance or forensic policies. Solution Since these logs are not actively analyzed, you should avoid ingesting them into the Analytics tier, which is more expensive and optimized for active querying. Instead, send them directly to the Data Lake tier, where they can be retained cost-effectively for future audit, compliance, or forensic needs. Pricing Flow Because the data is ingested directly into the Data Lake tier, you pay both ingestion and retention costs there for the entire 2-year period. If, at any point in the future, you need to perform advanced analytics, querying, or search, you will incur additional compute charges, based on actual usage. Even with occasional compute charges, the cost remains significantly lower than storing the same data in the Analytics tier. Realized Savings Scenario Cost per Month Scenario 1: 10 GB/day in Analytics tier $1,520.40 Scenario 2: 10 GB/day directly into Data Lake tier $202.20 (without compute) $257.20 (with sample compute price) Savings with no compute activity: $1,520.40 – $202.20 = $1,318.20 per month Savings with some compute activity (sample value): $1,520.40 – $257.20 = $1,263.20 per month Azure calculator equivalent without compute Azure calculator equivalent with Sample Compute Conclusion The combination of the Analytics tier and the Data Lake tier in Microsoft Sentinel enables organizations to optimize cost based on how their security data is used. High-value logs that require frequent querying, real-time analytics, and investigation can be stored in the Analytics tier, which provides powerful search performance and built-in detection capabilities. At the same time, large-volume or infrequently accessed logs—such as audit, compliance, or long-term retention data—can be directed to the Data Lake tier, which offers dramatically lower storage and ingestion costs. Because all Analytics tier data is automatically mirrored to the Data Lake tier at no extra cost, customers can use the Analytics tier only for the period they actively query data, and rely on the Data Lake tier for the remaining retention. This tiered model allows different scenarios—active investigation, archival storage, compliance retention, or large-scale telemetry ingestion—to be handled at the most cost-effective layer, ultimately delivering substantial savings without sacrificing visibility, retention, or future analytical capabilities.94Views0likes0CommentsSentinel Data Connector: Google Workspace (G Suite) (using Azure Functions)
I'm encountering a problem when attempting to run the GWorkspace_Report workbook in Azure Sentinel. The query is throwing this error related to the union operator: 'union' operator: Failed to resolve table expression named 'GWorkspace_ReportsAPI_gcp_CL' I've double-checked, and the GoogleWorkspaceReports connector is installed and updated to version 3.0.2. Has anyone seen this or know what might be causing the table GWorkspace_ReportsAPI_gcp_CL to be unresolved? Thanks!149Views0likes2CommentsDevice Tables are not ingesting tables for an orgs workspace
Device Tables are not ingesting tables for an orgs workspace. I can confirm that all devices are enrolled and onboarded to MDE (Microsoft defender for endpoint) I had placed an EICAR file on one of the machine which bought an alert through to sentinel,however this did not invoke any of the device related tables . Workspace i am targeting Workspace from another org with tables enabled and ingesting data Microsoft Defender XDR connector shows as connected however the tables do not seem to be ingesting data; I run the following; DeviceEvents | where TimeGenerated > ago(15m) | top 20 by TimeGenerated DeviceProcessEvents | where TimeGenerated > ago(15m) | top 20 by TimeGenerated I receive no results; No results found from the specified time range Try selecting another time range Please assist As I cannot think where this is failing91Views1like1CommentIssue while deploying Sentienl Rules
I know that when deleting a Sentinel rule, you need to wait a specific amount of time before it can be redeployed. However, in this tenant, we've been waiting for almost a month and are still getting the same deployment error ('was recently deleted. You need to allow some time before re-using the same ID. Please try again later. Click here for details'). I still want to use the same ID ect. Does anyone have any idea or similar issue why it's still not possible after waiting for about a month?545Views1like4CommentsSingle Rule for No logs receiving (Global + Per-device Thresholds)
Hi everyone, I currently maintain one Analytics rule per table to detect when logs stop coming in. Some tables receive data from multiple sources, each with a different expected interval (for example, some sources send every 10 minutes, others every 30 minutes). In other SIEM platforms there’s usually: A global threshold (e.g., 60 minutes) for all sources. Optional per-device/per-table thresholds that override the global value. Is there a recommended way to implement one global rule that uses a default threshold but allows per-source overrides when a particular device or log table has a different expected frequency? Also, if there are other approaches you use to manage “logs not received” detection, I’d love to hear your suggestions as well. This is a sample of my current rule let threshold = 1h; AzureActivity | summarize LastHeartBeat = max(TimeGenerated) | where LastHeartBeat < ago(threshold)44Views1like0CommentsHow to exclude IPs & accounts from Analytic Rule, with Watchlist?
We are trying to filter out some false positives from a Analytic rule called "Service accounts performing RemotePS". Using automation rules still gives a lot of false mail notifications we don't want so we would like to try using a watchlist with the serviceaccounts and IP combination we want to exclude. Anyone knows where and what syntax we would need to exlude the items on the specific Watchlist? Query: let InteractiveTypes = pack_array( // Declare Interactive logon type names 'Interactive', 'CachedInteractive', 'Unlock', 'RemoteInteractive', 'CachedRemoteInteractive', 'CachedUnlock' ); let WhitelistedCmdlets = pack_array( // List of whitelisted commands that don't provide a lot of value 'prompt', 'Out-Default', 'out-lineoutput', 'format-default', 'Set-StrictMode', 'TabExpansion2' ); let WhitelistedAccounts = pack_array('FakeWhitelistedAccount'); // List of accounts that are known to perform this activity in the environment and can be ignored DeviceLogonEvents // Get all logon events... | where AccountName !in~ (WhitelistedAccounts) // ...where it is not a whitelisted account... | where ActionType == "LogonSuccess" // ...and the logon was successful... | where AccountName !contains "$" // ...and not a machine logon. | where AccountName !has "winrm va_" // WinRM will have pseudo account names that match this if there is an explicit permission for an admin to run the cmdlet, so assume it is good. | extend IsInteractive=(LogonType in (InteractiveTypes)) // Determine if the logon is interactive (True=1,False=0)... | summarize HasInteractiveLogon=max(IsInteractive) // ...then bucket and get the maximum interactive value (0 or 1)... by AccountName // ... by the AccountNames | where HasInteractiveLogon == 0 // ...and filter out all accounts that had an interactive logon. // At this point, we have a list of accounts that we believe to be service accounts // Now we need to find RemotePS sessions that were spawned by those accounts // Note that we look at all powershell cmdlets executed to form a 29-day baseline to evaluate the data on today | join kind=rightsemi ( // Start by dropping the account name and only tracking the... DeviceEvents // ... | where ActionType == 'PowerShellCommand' // ...PowerShell commands seen... | where InitiatingProcessFileName =~ 'wsmprovhost.exe' // ...whose parent was wsmprovhost.exe (RemotePS Server)... | extend AccountName = InitiatingProcessAccountName // ...and add an AccountName field so the join is easier ) on AccountName // At this point, we have all of the commands that were ran by service accounts | extend Command = tostring(extractjson('$.Command', tostring(AdditionalFields))) // Extract the actual PowerShell command that was executed | where Command !in (WhitelistedCmdlets) // Remove any values that match the whitelisted cmdlets | summarize (Timestamp, ReportId)=arg_max(TimeGenerated, ReportId), // Then group all of the cmdlets and calculate the min/max times of execution... make_set(Command, 100000), count(), min(TimeGenerated) by // ...as well as creating a list of cmdlets ran and the count.. AccountName, AccountDomain, DeviceName, DeviceId // ...and have the commonality be the account, DeviceName and DeviceId // At this point, we have machine-account pairs along with the list of commands run as well as the first/last time the commands were ran | order by AccountName asc // Order the final list by AccountName just to make it easier to go through | extend HostName = iff(DeviceName has '.', substring(DeviceName, 0, indexof(DeviceName, '.')), DeviceName) | extend DnsDomain = iff(DeviceName has '.', substring(DeviceName, indexof(DeviceName, '.') + 1), "")220Views0likes1CommentSentinel Datalake - How to query outside of defender portal?
I've been doing some testing on Sentinel Datalake but I'm running into a major gap. How do we query the datalake outside Jupyter notebooks or the defender portal? Currently, this is done by connecting to the log analytics workspace. But I don't see any way to query the datalake from another system.148Views0likes2CommentsInsecure Protocol Workbook
Greetings, maybe most orgs have already eliminated insecure protocols and this workbook is no longer functional? I have it added and it appears to be collecting but when I go to open the template it is completely empty. Is the Insecure Protocol aka IP still supported and if so is there any newer documentation than the blog from 2000 around it? I am hoping to identify ntlm by user and device as the domain controllers are all logging this and the MDI agents on them are forwarding this data to Defender for Identity and Sentinel.288Views1like4CommentsHow do you investigate network anomaly related alerts?
Hello everyone. Using some of the built-in analytical rules such as "Anomaly was observed with IPv6-ICMP Traffic", when you go into the incident event details, its just some numbers of the expected baseline vs actual value. What do you do with this? Similar case with following rules: Anomaly found in Network Session Traffic (ASIM Network Session schema) Anomaly was observed with ESP Traffic Anomaly was observed with Outbound Traffic Anomaly was observed with Unassigned Traffic1.1KViews1like2Comments