ai agents
49 TopicsIntegrate Custom Azure AI Agents with CoPilot Studio and M365 CoPilot
Integrating Custom Agents with Copilot Studio and M365 Copilot In today's fast-paced digital world, integrating custom agents with Copilot Studio and M365 Copilot can significantly enhance your company's digital presence and extend your CoPilot platform to your enterprise applications and data. This blog will guide you through the integration steps of bringing your custom Azure AI Agent Service within an Azure Function App, into a Copilot Studio solution and publishing it to M365 and Teams Applications. When Might This Be Necessary: Integrating custom agents with Copilot Studio and M365 Copilot is necessary when you want to extend customization to automate tasks, streamline processes, and provide better user experience for your end-users. This integration is particularly useful for organizations looking to streamline their AI Platform, extend out-of-the-box functionality, and leverage existing enterprise data and applications to optimize their operations. Custom agents built on Azure allow you to achieve greater customization and flexibility than using Copilot Studio agents alone. What You Will Need: To get started, you will need the following: Azure AI Foundry Azure OpenAI Service Copilot Studio Developer License Microsoft Teams Enterprise License M365 Copilot License Steps to Integrate Custom Agents: Create a Project in Azure AI Foundry: Navigate to Azure AI Foundry and create a project. Select 'Agents' from the 'Build and Customize' menu pane on the left side of the screen and click the blue button to create a new agent. Customize Your Agent: Your agent will automatically be assigned an Agent ID. Give your agent a name and assign the model your agent will use. Customize your agent with instructions: Add your knowledge source: You can connect to Azure AI Search, load files directly to your agent, link to Microsoft Fabric, or connect to third-party sources like Tripadvisor. In our example, we are only testing the CoPilot integration steps of the AI Agent, so we did not build out additional options of providing grounding knowledge or function calling here. Test Your Agent: Once you have created your agent, test it in the playground. If you are happy with it, you are ready to call the agent in an Azure Function. Create and Publish an Azure Function: Use the sample function code from the GitHub repository to call the Azure AI Project and Agent. Publish your Azure Function to make it available for integration. azure-ai-foundry-agent/function_app.py at main · azure-data-ai-hub/azure-ai-foundry-agent Connect your AI Agent to your Function: update the "AIProjectConnString" value to include your Project connection string from the project overview page of in the AI Foundry. Role Based Access Controls: We have to add a role for the function app on OpenAI service. Role-based access control for Azure OpenAI - Azure AI services | Microsoft Learn Enable Managed Identity on the Function App Grant "Cognitive Services OpenAI Contributor" role to the System-assigned managed identity to the Function App in the Azure OpenAI resource Grant "Azure AI Developer" role to the System-assigned managed identity for your Function App in the Azure AI Project resource from the AI Foundry Build a Flow in Power Platform: Before you begin, make sure you are working in the same environment you will use to create your CoPilot Studio agent. To get started, navigate to the Power Platform (https://make.powerapps.com) to build out a flow that connects your Copilot Studio solution to your Azure Function App. When creating a new flow, select 'Build an instant cloud flow' and trigger the flow using 'Run a flow from Copilot'. Add an HTTP action to call the Function using the URL and pass the message prompt from the end user with your URL. The output of your function is plain text, so you can pass the response from your Azure AI Agent directly to your Copilot Studio solution. Create Your Copilot Studio Agent: Navigate to Microsoft Copilot Studio and select 'Agents', then 'New Agent'. Make sure you are in the same environment you used to create your cloud flow. Now select ‘Create’ button at the top of the screen From the top menu, navigate to ‘Topics’ and ‘System’. We will open up the ‘Conversation boosting’ topic. When you first open the Conversation boosting topic, you will see a template of connected nodes. Delete all but the initial ‘Trigger’ node. Now we will rebuild the conversation boosting agent to call the Flow you built in the previous step. Select 'Add an Action' and then select the option for existing Power Automate flow. Pass the response from your Custom Agent to the end user and end the current topic. My existing Cloud Flow: Add action to connect to existing Cloud Flow: When this menu pops up, you should see the option to Run the flow you created. Here, mine does not have a very unique name, but you see my flow 'Run a flow from Copilot' as a Basic action menu item. If you do not see your cloud flow here add the flow to the default solution in the environment. Go to Solutions > select the All pill > Default Solution > then add the Cloud Flow you created to the solution. Then go back to Copilot Studio, refresh and the flow will be listed there. Now complete building out the conversation boosting topic: Make Agent Available in M365 Copilot: Navigate to the 'Channels' menu and select 'Teams + Microsoft 365'. Be sure to select the box to 'Make agent available in M365 Copilot'. Save and re-publish your Copilot Agent. It may take up to 24 hours for the Copilot Agent to appear in M365 Teams agents list. Once it has loaded, select the 'Get Agents' option from the side menu of Copilot and pin your Copilot Studio Agent to your featured agent list Now, you can chat with your custom Azure AI Agent, directly from M365 Copilot! Conclusion: By following these steps, you can successfully integrate custom Azure AI Agents with Copilot Studio and M365 Copilot, enhancing you’re the utility of your existing platform and improving operational efficiency. This integration allows you to automate tasks, streamline processes, and provide better user experience for your end-users. Give it a try! Curious of how to bring custom models from your AI Foundry to your CoPilot Studio solutions? Check out this blog15KViews3likes10CommentsThe Launch of "AI Agents for Beginners": Your Gateway to Building Intelligent Systems
🌱 Getting Started Each lesson covers fundamental aspects of building AI Agents. Whether you're a novice or have some experience, you'll find valuable insights and practical knowledge. We also support multiple languages, so you can learn in your preferred language. To see the available languages, click here. If this is your first time working with Generative AI models, we highly recommend our "Generative AI For Beginners" course, which includes 21 lessons on building with GenAI. Remember to star (🌟) this repository and fork it to run the code! 📋 What You Need The course includes code examples that you can find in the code_samples folder. Feel free to fork this repository to create your own copy. The exercises utilize Azure AI Foundry and GitHub Model Catalogs for interacting with Language Models: Github Models - Free / Limited Azure AI Foundry - Azure Account Required We also leverage the following AI Agent frameworks and services from Microsoft: Azure AI Agent Service Semantic Kernel AutoGen For more information on running the code for this course, visit the Course Setup. 🙏 Want to Help? We welcome contributions from the community! If you have suggestions or spot any errors, please raise an issue or create a pull request. If you encounter any difficulties or have questions about building AI Agents, join our Azure AI Community on Discord. 📂 Each Lesson Includes A written lesson located in the README (Videos Coming March 2025) Python code samples supporting Azure AI Foundry and Github Models (Free) Links to extra resources to continue your learning 🗃️ Lessons Overview Intro to AI Agents and Use Cases Exploring Agentic Frameworks Understanding Agentic Design Patterns Tool Use Design Pattern Agentic RAG Building Trustworthy AI Agents Planning Design Pattern Multi-Agent Design Pattern Metacognition Design Pattern AI Agents in Production 🌐 Multi-Language Support We offer translations in several languages and will updating these on a regular basis. 🚀 Go Fork or Clone this repo and get started on your AI Agents journey 🤖 at https://aka.ms/ai-agents-beginners15KViews3likes4CommentsStep-by-Step Tutorial: Building an AI Agent Using Azure AI Foundry
This blog post provides a comprehensive tutorial on building an AI agent using Azure AI Agent service and the Azure AI Foundry portal. AI agents represent a powerful new paradigm in application development, offering a more intuitive and dynamic way to interact with software. They can understand natural language, reason about user requests, and take actions to fulfill those requests. This tutorial will guide you through the process of creating and deploying an intelligent agent on Azure. We'll cover setting up an Azure AI Foundry hub, crafting effective instructions to define the agent's behavior, including recognizing user intent, processing requests, and generating helpful responses. We'll also discuss testing the agent's conversational abilities and provide additional resources for expanding your knowledge of AI agents and the Azure AI ecosystem. This hands-on guide is perfect for anyone looking to explore the practical application of Azure's conversational AI capabilities and build intelligent virtual assistants. Join us as we dive into the exciting world of AI agents.13KViews1like2CommentsThe Future of AI: Computer Use Agents Have Arrived
Discover the groundbreaking advancements in AI with Computer Use Agents (CUAs). In this blog, Marco Casalaina shares how to use the Responses API from Azure OpenAI Service, showcasing how CUAs can launch apps, navigate websites, and reason through tasks. Learn how CUAs utilize multimodal models for computer vision and AI frameworks to enhance automation. Explore the differences between CUAs and traditional Robotic Process Automation (RPA), and understand how CUAs can complement RPA systems. Dive into the future of automation and see how CUAs are set to revolutionize the way we interact with technology.10KViews6likes0CommentsIgnite 2024: Streamlining AI Development with an Enhanced User Interface, Accessibility, and Learning Experiences in Azure AI Foundry portal
Announcing Azure AI Foundry, a unified platform that simplifies AI development and management. The platform portal (formerly Azure AI Studio) features a revamped user interface, enhanced model catalog, new management center, improved accessibility and learning, making it easier than ever for Developers and IT Admins to design, customize, and manage AI apps and agents efficiently.5.9KViews2likes0CommentsAI Agents: The Multi-Agent Design Pattern - Part 8
This blog post, Part 8 in a series on AI agents, explores the Multi-Agent Design Pattern, outlining the benefits and key components of building systems with multiple interacting agents. It details the scenarios where multi-agent systems excel (large workloads, complex tasks, diverse expertise), highlights their advantages over single-agent approaches (specialization, scalability, fault tolerance), and discusses the fundamental building blocks for implementation, including agent communication, coordination mechanisms, and architectural considerations. The post introduces common multi-agent patterns (group chat, hand-off, collaborative filtering) and illustrates these concepts with a refund process example. Finally, it includes a practical assignment and provides links to further resources and previous posts in the series.4.2KViews1like0Comments