agents
134 TopicsBuilding Interactive Agent UIs with AG-UI and Microsoft Agent Framework
Introduction Picture this: You've built an AI agent that analyzes financial data. A user uploads a quarterly report and asks: "What are the top three expense categories?" Behind the scenes, your agent parses the spreadsheet, aggregates thousands of rows, and generates visualizations. All in 20 seconds. But the user? They see a loading spinner. Nothing else. No "reading file" message, no "analyzing data" indicator, no hint that progress is being made. They start wondering: Is it frozen? Should I refresh? The problem isn't the agent's capabilities - it's the communication gap between the agent running on the backend and the user interface. When agents perform multi-step reasoning, call external APIs, or execute complex tool chains, users deserve to see what's happening. They need streaming updates, intermediate results, and transparent progress indicators. Yet most agent frameworks force developers to choose between simple request/response patterns or building custom solutions to stream updates to their UIs. This is where AG-UI comes in. AG-UI is a fairly new event-based protocol that standardizes how agents communicate with user interfaces. Instead of every framework and development team inventing their own streaming solution, AG-UI provides a shared vocabulary of structured events that work consistently across different agent implementations. When an agent starts processing, calls a tool, generates text, or encounters an error, the UI receives explicit, typed events in real time. The beauty of AG-UI is its framework-agnostic design. While this blog post demonstrates integration with Microsoft Agent Framework (MAF), the same AG-UI protocol works with LangGraph, CrewAI, or any other compliant framework. Write your UI code once, and it works with any AG-UI-compliant backend. (Note: MAF supports both Python and .NET - this blog post focuses on the Python implementation.) TL;DR The Problem: Users don't get real-time updates while AI agents work behind the scenes - no progress indicators, no transparency into tool calls, and no insight into what's happening. The Solution: AG-UI is an open, event-based protocol that standardizes real-time communication between AI agents and user interfaces. Instead of each development team and framework inventing custom streaming solutions, AG-UI provides a shared vocabulary of structured events (like TOOL_CALL_START, TEXT_MESSAGE_CONTENT, RUN_FINISHED) that work across any compliant framework. Key Benefits: Framework-agnostic - Write UI code once, works with LangGraph, Microsoft Agent Framework, CrewAI, and more Real-time observability - See exactly what your agent is doing as it happens Server-Sent Events - Built on standard HTTP for universal compatibility Protocol-managed state - No manual conversation history tracking In This Post: You'll learn why AG-UI exists, how it works, and build a complete working application using Microsoft Agent Framework with Python - from server setup to client implementation. What You'll Learn This blog post walks through: Why AG-UI exists - how agent-UI communication has evolved and what problems current approaches couldn't solve How the protocol works - the key design choices that make AG-UI simple, reliable, and framework-agnostic Protocol architecture - the generic components and how AG-UI integrates with agent frameworks Building an AG-UI application - a complete working example using Microsoft Agent Framework with server, client, and step-by-step setup Understanding events - what happens under the hood when your agent runs and how to observe it Thinking in events - how building with AG-UI differs from traditional APIs, and what benefits this brings Making the right choice - when AG-UI is the right fit for your project and when alternatives might be better Estimated reading time: 15 minutes Who this is for: Developers building AI agents who want to provide real-time feedback to users, and teams evaluating standardized approaches to agent-UI communication To appreciate why AG-UI matters, we need to understand the journey that led to its creation. Let's trace how agent-UI communication has evolved through three distinct phases. The Evolution of Agent-UI Communication AI agents have become more capable over time. As they evolved, the way they communicated with user interfaces had to evolve as well. Here's how this evolution unfolded. Phase 1: Simple Request/Response In the early days of AI agent development, the interaction model was straightforward: send a question, wait for an answer, display the result. This synchronous approach mirrored traditional API calls and worked fine for simple scenarios. # Simple, but limiting response = agent.run("What's the weather in Paris?") display(response) # User waits... and waits... Works for: Quick queries that complete in seconds, simple Q&A interactions where immediate feedback and interactivity aren't critical. Breaks down: When agents need to call multiple tools, perform multi-step reasoning, or process complex queries that take 30+ seconds. Users see nothing but a loading spinner, with no insight into what's happening or whether the agent is making progress. This creates a poor user experience and makes it impossible to show intermediate results or allow user intervention. Recognizing these limitations, development teams began experimenting with more sophisticated approaches. Phase 2: Custom Streaming Solutions As agents became more sophisticated, teams recognized the need for incremental feedback and interactivity. Rather than waiting for the complete response, they implemented custom streaming solutions to show partial results as they became available. # Every team invents their own format for chunk in agent.stream("What's the weather?"): display(chunk) # But what about tool calls? Errors? Progress? This was a step forward for building interactive agent UIs, but each team solved the problem differently. Also, different frameworks had incompatible approaches - some streamed only text tokens, others sent structured JSON, and most provided no visibility into critical events like tool calls or errors. The problem: No standardization across frameworks - client code that works with LangGraph won't work with Crew AI, requiring separate implementations for each agent backend Each implementation handles tool calls differently - some send nothing during tool execution, others send unstructured messages Complex state management - clients must track conversation history, manage reconnections, and handle edge cases manually The industry needed a better solution - a common protocol that could work across all frameworks while maintaining the benefits of streaming. Phase 3: Standardized Protocol (AG-UI) AG-UI emerged as a response to the fragmentation problem. Instead of each framework and development team inventing their own streaming solution, AG-UI provides a shared vocabulary of events that work consistently across different agent implementations. # Standardized events everyone understands async for event in agent.run_stream("What's the weather?"): if event.type == "TEXT_MESSAGE_CONTENT": display_text(event.delta) elif event.type == "TOOL_CALL_START": show_tool_indicator(event.tool_name) elif event.type == "TOOL_CALL_RESULT": show_tool_result(event.result) The key difference is structured observability. Rather than guessing what the agent is doing from unstructured text, clients receive explicit events for every stage of execution: when the agent starts, when it generates text, when it calls a tool, when that tool completes, and when the entire run finishes. What's different: A standardized vocabulary of event types, complete observability into agent execution, and framework-agnostic clients that work with any AG-UI-compliant backend. You write your UI code once, and it works whether the backend uses Microsoft Agent Framework, LangGraph, or any other framework that speaks AG-UI. Now that we've seen why AG-UI emerged and what problems it solves, let's examine the specific design decisions that make the protocol work. These choices weren't arbitrary - each one addresses concrete challenges in building reliable, observable agent-UI communication. The Design Decisions Behind AG-UI Why Server-Sent Events (SSE)? Aspect WebSockets SSE (AG-UI) Complexity Bidirectional Unidirectional (simpler) Firewall/Proxy Sometimes blocked Standard HTTP Reconnection Manual implementation Built-in browser support Use case Real-time games, chat Agent responses (one-way) For agent interactions, you typically only need server→client communication, making SSE a simpler choice. SSE solves the transport problem - how events travel from server to client. But once connected, how does the protocol handle conversation state across multiple interactions? Why Protocol-Managed Threads? # Without protocol threads (client manages): conversation_history = [] conversation_history.append({"role": "user", "content": message}) response = agent.complete(conversation_history) conversation_history.append({"role": "assistant", "content": response}) # Complex, error-prone, doesn't work with multiple clients # With AG-UI (protocol manages): thread = agent.get_new_thread() # Server creates and manages thread agent.run_stream(message, thread=thread) # Server maintains context # Simple, reliable, shareable across clients With transport and state management handled, the final piece is the actual messages flowing through the connection. What information should the protocol communicate, and how should it be structured? Why Standardized Event Types? Instead of parsing unstructured text, clients get typed events: RUN_STARTED - Agent begins (start loading UI) TEXT_MESSAGE_CONTENT - Text chunk (stream to user) TOOL_CALL_START - Tool invoked (show "searching...", "calculating...") TOOL_CALL_RESULT - Tool finished (show result, update UI) RUN_FINISHED - Complete (hide loading) This lets UIs react intelligently without custom parsing logic. Now that we understand the protocol's design choices, let's see how these pieces fit together in a complete system. Architecture Overview Here's how the components interact: The communication between these layers relies on a well-defined set of event types. Here are the core events that flow through the SSE connection: Core Event Types AG-UI provides a standardized set of event types to describe what's happening during an agent's execution: RUN_STARTED - agent begins execution TEXT_MESSAGE_START, TEXT_MESSAGE_CONTENT, TEXT_MESSAGE_END - streaming segments of text TOOL_CALL_START, TOOL_CALL_ARGS, TOOL_CALL_END, TOOL_CALL_RESULT - tool execution events RUN_FINISHED - agent has finished execution RUN_ERROR - error information This model lets the UI update as the agent runs, rather than waiting for the final response. The generic architecture above applies to any AG-UI implementation. Now let's see how this translates to Microsoft Agent Framework. AG-UI with Microsoft Agent Framework While AG-UI is framework-agnostic, this blog post demonstrates integration with Microsoft Agent Framework (MAF) using Python. MAF is available in both Python and .NET, giving you flexibility to build AG-UI applications in your preferred language. Understanding how MAF implements the protocol will help you build your own applications or work with other compliant frameworks. Integration Architecture The Microsoft Agent Framework integration involves several specialized layers that handle protocol translation and execution orchestration: Understanding each layer: FastAPI Endpoint - Handles HTTP requests and establishes SSE connections for streaming AgentFrameworkAgent - Protocol wrapper that translates between AG-UI events and Agent Framework operations Orchestrators - Manage execution flow, coordinate tool calling sequences, and handle state transitions ChatAgent - Your agent implementation with instructions, tools, and business logic ChatClient - Interface to the underlying language model (Azure OpenAI, OpenAI, or other providers) The good news? When you call add_agent_framework_fastapi_endpoint, all the middleware layers are configured automatically. You simply provide your ChatAgent, and the integration handles protocol translation, event streaming, and state management behind the scenes. Now that we understand both the protocol architecture and the Microsoft Agent Framework integration, let's build a working application. Hands-On: Building Your First AG-UI Application This section demonstrates how to build an AG-UI server and client using Microsoft Agent Framework and FastAPI. Prerequisites Before building your first AG-UI application, ensure you have: Python 3.10 or later installed Basic understanding of async/await patterns in Python Azure CLI installed and authenticated (az login) Azure OpenAI service endpoint and deployment configured (setup guide) Cognitive Services OpenAI Contributor role for your Azure OpenAI resource You'll also need to install the AG-UI integration package: pip install agent-framework-ag-ui --pre This automatically installs agent-framework-core, fastapi, and uvicorn as dependencies. With your environment configured, let's create the server that will host your agent and expose it via the AG-UI protocol. Building the Server Let's create a FastAPI server that hosts an AI agent and exposes it via AG-UI: # server.py import os from typing import Annotated from dotenv import load_dotenv from fastapi import FastAPI from pydantic import Field from agent_framework import ChatAgent, ai_function from agent_framework.azure import AzureOpenAIChatClient from agent_framework_ag_ui import add_agent_framework_fastapi_endpoint from azure.identity import DefaultAzureCredential # Load environment variables from .env file load_dotenv() # Validate environment configuration openai_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") model_deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME") if not openai_endpoint: raise RuntimeError("Missing required environment variable: AZURE_OPENAI_ENDPOINT") if not model_deployment: raise RuntimeError("Missing required environment variable: AZURE_OPENAI_DEPLOYMENT_NAME") # Define tools the agent can use @ai_function def get_order_status( order_id: Annotated[str, Field(description="The order ID to look up (e.g., ORD-001)")] ) -> dict: """Look up the status of a customer order. Returns order status, tracking number, and estimated delivery date. """ # Simulated order lookup orders = { "ORD-001": {"status": "shipped", "tracking": "1Z999AA1", "eta": "Jan 25, 2026"}, "ORD-002": {"status": "processing", "tracking": None, "eta": "Jan 23, 2026"}, "ORD-003": {"status": "delivered", "tracking": "1Z999AA3", "eta": "Delivered Jan 20"}, } return orders.get(order_id, {"status": "not_found", "message": "Order not found"}) # Initialize Azure OpenAI client chat_client = AzureOpenAIChatClient( credential=DefaultAzureCredential(), endpoint=openai_endpoint, deployment_name=model_deployment, ) # Configure the agent with custom instructions and tools agent = ChatAgent( name="CustomerSupportAgent", instructions="""You are a helpful customer support assistant. You have access to a get_order_status tool that can look up order information. IMPORTANT: When a user mentions an order ID (like ORD-001, ORD-002, etc.), you MUST call the get_order_status tool to retrieve the actual order details. Do NOT make up or guess order information. After calling get_order_status, provide the actual results to the user in a friendly format.""", chat_client=chat_client, tools=[get_order_status], ) # Initialize FastAPI application app = FastAPI( title="AG-UI Customer Support Server", description="Interactive AI agent server using AG-UI protocol with tool calling" ) # Mount the AG-UI endpoint add_agent_framework_fastapi_endpoint(app, agent, path="/chat") def main(): """Entry point for the AG-UI server.""" import uvicorn print("Starting AG-UI server on http://localhost:8000") uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info") # Run the application if __name__ == "__main__": main() What's happening here: We define a tool: get_order_status with the AI_function decorator Use Annotated and Field for parameter descriptions to help the agent understand when and how to use the tool We create an Azure OpenAI chat client with credential authentication The ChatAgent is configured with domain-specific instructions and the tools parameter add_agent_framework_fastapi_endpoint automatically handles SSE streaming and tool execution The server exposes the agent at the /chat endpoint Note: This example uses Azure OpenAI, but AG-UI works with any chat model. You can also integrate with Azure AI Foundry's model catalog or use other LLM providers. Tool calling is supported by most modern LLMs including GPT-4, GPT-4o, and Claude models. To run this server: # Set your Azure OpenAI credentials export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com/" export AZURE_OPENAI_DEPLOYMENT_NAME="gpt-4o" # Start the server python server.py With your server running and exposing the AG-UI endpoint, the next step is building a client that can connect and consume the event stream. Streaming Results to Clients With the server running, clients can connect and stream events as the agent processes requests. Here's a Python client that demonstrates the streaming capabilities: # client.py import asyncio import os from dotenv import load_dotenv from agent_framework import ChatAgent, FunctionCallContent, FunctionResultContent from agent_framework_ag_ui import AGUIChatClient # Load environment variables from .env file load_dotenv() async def interactive_chat(): """Interactive chat session with streaming responses.""" # Connect to the AG-UI server base_url = os.getenv("AGUI_SERVER_URL", "http://localhost:8000/chat") print(f"Connecting to: {base_url}\n") # Initialize the AG-UI client client = AGUIChatClient(endpoint=base_url) # Create a local agent representation agent = ChatAgent(chat_client=client) # Start a new conversation thread conversation_thread = agent.get_new_thread() print("Chat started! Type 'exit' or 'quit' to end the session.\n") try: while True: # Collect user input user_message = input("You: ") # Handle empty input if not user_message.strip(): print("Please enter a message.\n") continue # Check for exit commands if user_message.lower() in ["exit", "quit", "bye"]: print("\nGoodbye!") break # Stream the agent's response print("Agent: ", end="", flush=True) # Track tool calls to avoid duplicate prints seen_tools = set() async for update in agent.run_stream(user_message, thread=conversation_thread): # Display text content if update.text: print(update.text, end="", flush=True) # Display tool calls and results for content in update.contents: if isinstance(content, FunctionCallContent): # Only print each tool call once if content.call_id not in seen_tools: seen_tools.add(content.call_id) print(f"\n[Calling tool: {content.name}]", flush=True) elif isinstance(content, FunctionResultContent): # Only print each result once result_id = f"result_{content.call_id}" if result_id not in seen_tools: seen_tools.add(result_id) result_text = content.result if isinstance(content.result, str) else str(content.result) print(f"[Tool result: {result_text}]", flush=True) print("\n") # New line after response completes except KeyboardInterrupt: print("\n\nChat interrupted by user.") except ConnectionError as e: print(f"\nConnection error: {e}") print("Make sure the server is running.") except Exception as e: print(f"\nUnexpected error: {e}") def main(): """Entry point for the AG-UI client.""" asyncio.run(interactive_chat()) if __name__ == "__main__": main() Key features: The client connects to the AG-UI endpoint using AGUIChatClient with the endpoint parameter run_stream() yields updates containing text and content as they arrive Tool calls are detected using FunctionCallContent and displayed with [Calling tool: ...] Tool results are detected using FunctionResultContent and displayed with [Tool result: ...] Deduplication logic (seen_tools set) prevents printing the same tool call multiple times as it streams Thread management maintains conversation context across messages Graceful error handling for connection issues To use the client: # Optional: specify custom server URL export AGUI_SERVER_URL="http://localhost:8000/chat" # Start the interactive chat python client.py Example Session: Connecting to: http://localhost:8000/chat Chat started! Type 'exit' or 'quit' to end the session. You: What's the status of order ORD-001? Agent: [Calling tool: get_order_status] [Tool result: {"status": "shipped", "tracking": "1Z999AA1", "eta": "Jan 25, 2026"}] Your order ORD-001 has been shipped! - Tracking Number: 1Z999AA1 - Estimated Delivery Date: January 25, 2026 You can use the tracking number to monitor the delivery progress. You: Can you check ORD-002? Agent: [Calling tool: get_order_status] [Tool result: {"status": "processing", "tracking": null, "eta": "Jan 23, 2026"}] Your order ORD-002 is currently being processed. - Status: Processing - Estimated Delivery: January 23, 2026 Your order should ship soon, and you'll receive a tracking number once it's on the way. You: exit Goodbye! The client we just built handles events at a high level, abstracting away the details. But what's actually flowing through that SSE connection? Let's peek under the hood. Event Types You'll See As the server streams back responses, clients receive a series of structured events. If you were to observe the raw SSE stream (e.g., using curl), you'd see events like: curl -N http://localhost:8000/chat \ -H "Content-Type: application/json" \ -H "Accept: text/event-stream" \ -d '{"messages": [{"role": "user", "content": "What'\''s the status of order ORD-001?"}]}' Sample event stream (with tool calling): data: {"type":"RUN_STARTED","threadId":"eb4d9850-14ef-446c-af4b-23037acda9e8","runId":"chatcmpl-xyz"} data: {"type":"TEXT_MESSAGE_START","messageId":"e8648880-a9ff-4178-a17d-4a6d3ec3d39c","role":"assistant"} data: {"type":"TOOL_CALL_START","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","toolCallName":"get_order_status","parentMessageId":"e8648880-a9ff-4178-a17d-4a6d3ec3d39c"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"{\""} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"order"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"_id"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"\":\""} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"ORD"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"-"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"001"} data: {"type":"TOOL_CALL_ARGS","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","delta":"\"}"} data: {"type":"TOOL_CALL_END","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y"} data: {"type":"TOOL_CALL_RESULT","messageId":"f048cb0a-a049-4a51-9403-a05e4820438a","toolCallId":"call_GTWj2N3ZyYiiQIjg3fwmiQ8y","content":"{\"status\": \"shipped\", \"tracking\": \"1Z999AA1\", \"eta\": \"Jan 25, 2026\"}","role":"tool"} data: {"type":"TEXT_MESSAGE_START","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","role":"assistant"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":"Your"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" order"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" ORD"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":"-"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":"001"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" has"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" been"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":" shipped"} data: {"type":"TEXT_MESSAGE_CONTENT","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf","delta":"!"} ... (additional TEXT_MESSAGE_CONTENT events streaming the response) ... data: {"type":"TEXT_MESSAGE_END","messageId":"8215fc88-8cb6-4ce4-8bdb-a8715dcd26cf"} data: {"type":"RUN_FINISHED","threadId":"eb4d9850-14ef-446c-af4b-23037acda9e8","runId":"chatcmpl-xyz"} Understanding the flow: RUN_STARTED - Agent begins processing the request TEXT_MESSAGE_START - First message starts (will contain tool calls) TOOL_CALL_START - Agent invokes the get_order_status tool Multiple TOOL_CALL_ARGS events - Arguments stream incrementally as JSON chunks ({"order_id":"ORD-001"}) TOOL_CALL_END - Tool invocation structure complete TOOL_CALL_RESULT - Tool execution finished with result data TEXT_MESSAGE_START - Second message starts (the final response) Multiple TEXT_MESSAGE_CONTENT events - Response text streams word-by-word TEXT_MESSAGE_END - Response message complete RUN_FINISHED - Entire run completed successfully This granular event model enables rich UI experiences - showing tool execution indicators ("Searching...", "Calculating..."), displaying intermediate results, and providing complete transparency into the agent's reasoning process. Seeing the raw events helps, but truly working with AG-UI requires a shift in how you think about agent interactions. Let's explore this conceptual change. The Mental Model Shift Traditional API Thinking # Imperative: Call and wait response = agent.run("What's 2+2?") print(response) # "The answer is 4" Mental model: Function call with return value AG-UI Thinking # Reactive: Subscribe to events async for event in agent.run_stream("What's 2+2?"): match event.type: case "RUN_STARTED": show_loading() case "TEXT_MESSAGE_CONTENT": display_chunk(event.delta) case "RUN_FINISHED": hide_loading() Mental model: Observable stream of events This shift feels similar to: Moving from synchronous to async code Moving from REST to event-driven architecture Moving from polling to pub/sub This mental shift isn't just philosophical - it unlocks concrete benefits that weren't possible with request/response patterns. What You Gain Observability # You can SEE what the agent is doing TOOL_CALL_START: "get_order_status" TOOL_CALL_ARGS: {"order_id": "ORD-001"} TOOL_CALL_RESULT: {"status": "shipped", "tracking": "1Z999AA1", "eta": "Jan 25, 2026"} TEXT_MESSAGE_START: "Your order ORD-001 has been shipped..." Interruptibility # Future: Cancel long-running operations async for event in agent.run_stream(query): if user_clicked_cancel: await agent.cancel(thread_id, run_id) break Transparency # Users see the reasoning process "Looking up order ORD-001..." "Order found: Status is 'shipped'" "Retrieving tracking information..." "Your order has been shipped with tracking number 1Z999AA1..." To put these benefits in context, here's how AG-UI compares to traditional approaches across key dimensions: AG-UI vs. Traditional Approaches Aspect Traditional REST Custom Streaming AG-UI Connection Model Request/Response Varies Server-Sent Events State Management Manual Manual Protocol-managed Tool Calling Invisible Custom format Standardized events Framework Varies Framework-locked Framework-agnostic Browser Support Universal Varies Universal Implementation Simple Complex Moderate Ecosystem N/A Isolated Growing You've now seen AG-UI's design principles, implementation details, and conceptual foundations. But the most important question remains: should you actually use it? Conclusion: Is AG-UI Right for Your Project? AG-UI represents a shift toward standardized, observable agent interactions. Before adopting it, understand where the protocol stands and whether it fits your needs. Protocol Maturity The protocol is stable enough for production use but still evolving: Ready now: Core specification stable, Microsoft Agent Framework integration available, FastAPI/Python implementation mature, basic streaming and threading work reliably. Choose AG-UI If You Building new agent projects - No legacy API to maintain, want future compatibility with emerging ecosystem Need streaming observability - Multi-step workflows where users benefit from seeing each stage of execution Want framework flexibility - Same client code works with any AG-UI-compliant backend Comfortable with evolving standards - Can adapt to protocol changes as it matures Stick with Alternatives If You Have working solutions - Custom streaming working well, migration cost not justified Need guaranteed stability - Mission-critical systems where breaking changes are unacceptable Build simple agents - Single-step request/response without tool calling or streaming needs Risk-averse environment - Large existing implementations where proven approaches are required Beyond individual project decisions, it's worth considering AG-UI's role in the broader ecosystem. The Bigger Picture While this blog post focused on Microsoft Agent Framework, AG-UI's true power lies in its broader mission: creating a common language for agent-UI communication across the entire ecosystem. As more frameworks adopt it, the real value emerges: write your UI once, work with any compliant agent framework. Think of it like GraphQL for APIs or OpenAPI for REST - a standardization layer that benefits the entire ecosystem. The protocol is young, but the problem it solves is real. Whether you adopt it now or wait for broader adoption, understanding AG-UI helps you make informed architectural decisions for your agent applications. Ready to dive deeper? Here are the official resources to continue your AG-UI journey. Resources AG-UI & Microsoft Agent Framework Getting Started with AG-UI (Microsoft Learn) - Official tutorial AG-UI Integration Overview - Architecture and concepts AG-UI Protocol Specification - Official protocol documentation Backend Tool Rendering - Adding function tools Security Considerations - Production security guidance Microsoft Agent Framework Documentation - Framework overview AG-UI Dojo Examples - Live demonstrations UI Components & Integration CopilotKit for Microsoft Agent Framework - React component library Community & Support Microsoft Q&A - Community support Agent Framework GitHub - Source code and issues Related Technologies Azure AI Foundry Documentation - Azure AI platform FastAPI Documentation - Web framework Server-Sent Events (SSE) Specification - Protocol standard This blog post introduces AG-UI with Microsoft Agent Framework, focusing on fundamental concepts and building your first interactive agent application.From SOP Overload to Simple Answers: Building Q&A Agents With SharePoint Online + Agent Builder
Government teams run on Standard Operating Procedures, manuals, handbooks, review instructions, HR policies, and proposal workflows. They’re essential—and everywhere. But during every Government Prompt‑a‑thon we've run this year, one theme kept repeating: "Our policies are many and finding the right answer quickly is nearly impossible." Turning SOPs into Simple Q&A Agents with M365 Copilot's Agent Builder or SharePoint Agents is possibly one of the fastest wins for public‑sector teams.55Views0likes0CommentsBuilding Agents with GitHub Copilot SDK: A Practical Guide to Automated Tech Update Tracking
Introduction In the rapidly evolving tech landscape, staying on top of key project updates is crucial. This article explores how to leverage GitHub's newly released Copilot SDK to build intelligent agent systems, featuring a practical case study on automating daily update tracking and analysis for Microsoft's Agent Framework. GitHub Copilot SDK: Embedding AI Capabilities into Any Application SDK Overview On January 22, 2026, GitHub officially launched the GitHub Copilot SDK technical preview, marking a new era in AI agent development. The SDK provides these core capabilities: Production-grade execution loop: The same battle-tested agentic engine powering GitHub Copilot CLI Multi-language support: Node.js, Python, Go, and .NET Multi-model routing: Flexible model selection for different tasks MCP server integration: Native Model Context Protocol support Real-time streaming: Support for streaming responses and live interactions Tool orchestration: Automated tool invocation and command execution Core Advantages Building agentic workflows from scratch presents numerous challenges: Context management across conversation turns Orchestrating tools and commands Routing between models Handling permissions, safety boundaries, and failure modes The Copilot SDK encapsulates all this complexity. As Mario Rodriguez, GitHub's Chief Product Officer, explains: "The SDK takes the agentic power of Copilot CLI and makes it available in your favorite programming language... GitHub handles authentication, model management, MCP servers, custom agents, and chat sessions plus streaming. That means you are in control of what gets built on top of those building blocks." Quick Start Examples Here's a simple TypeScript example using the Copilot SDK: import { CopilotClient } from "@github/copilot-sdk"; const client = new CopilotClient(); await client.start(); const session = await client.createSession({ model: "gpt-5", }); await session.send({ prompt: "Hello, world!" }); And in Python, it's equally straightforward: from copilot import CopilotClient client = CopilotClient() await client.start() session = await client.create_session({ "model": "claude-sonnet-4.5", "streaming": True, "skill_directories": ["./.copilot_skills/pr-analyzer/SKILL.md"] }) await session.send_and_wait({ "prompt": "Analyze PRs from microsoft/agent-framework merged yesterday" }) Real-World Case Study: Automated Agent Framework Daily Updates Project Background agent-framework-update-everyday is an automated system built with GitHub Copilot SDK and CLI that tracks daily code changes in Microsoft's Agent Framework and generates high-quality technical blog posts. System Architecture The project leverages the following technology stack: GitHub Copilot CLI (@github/copilot): Command-line AI capabilities GitHub Copilot SDK (github-copilot-sdk): Programmatic AI interactions Copilot Skills: Custom PR analysis behaviors GitHub Actions: CI/CD automation pipeline Core Workflow The system runs fully automated via GitHub Actions, executing Monday through Friday at UTC 00:00 with these steps: Step Action Description 1 Checkout repository Clone the repo using actions/checkout@v4 2 Setup Node.js Configure Node.js 22 environment for Copilot CLI 3 Install Copilot CLI Install via npm i -g github/copilot 4 Setup Python Configure Python 3.11 environment 5 Install Python dependencies Install github-copilot-sdk package 6 Run PR Analysis Execute pr_trigger_v2.py with Copilot authentication 7 Commit and push Auto-commit generated blog posts to repository Technical Implementation Details 1. Copilot Skill Definition The project uses a custom Copilot Skill (.copilot_skills/pr-analyzer/SKILL.md) to define: PR analysis behavior patterns Blog post structure requirements Breaking changes priority strategy Code snippet extraction rules This skill-based approach enables the AI agent to focus on domain-specific tasks and produce higher-quality outputs. 2. Python SDK Integration The core script pr_trigger_v2.py demonstrates Python SDK usage: from copilot import CopilotClient # Initialize client client = CopilotClient() await client.start() # Create session with model and skill specification session = await client.create_session({ "model": "claude-sonnet-4.5", "streaming": True, "skill_directories": ["./.copilot_skills/pr-analyzer/SKILL.md"] }) # Send analysis request await session.send_and_wait({ "prompt": "Analyze PRs from microsoft/agent-framework merged yesterday" }) 3. CI/CD Integration The GitHub Actions workflow (.github/workflows/daily-pr-analysis.yml) ensures automated execution: name: Daily PR Analysis on: schedule: - cron: '0 0 * * 1-5' # Monday-Friday at UTC 00:00 workflow_dispatch: # Support manual triggers jobs: analyze: runs-on: ubuntu-latest steps: - name: Setup and Run Analysis env: COPILOT_GITHUB_TOKEN: ${{ secrets.COPILOT_GITHUB_TOKEN }} run: | npm i -g github/copilot pip install github-copilot-sdk --break-system-packages python pr_trigger_v2.py Output Results The system automatically generates structured blog posts saved in the blog/ directory with naming convention: blog/agent-framework-pr-summary-{YYYY-MM-DD}.md Each post includes: Breaking Changes (highlighted first) Major Updates (with code examples) Minor Updates and Bug Fixes Summary and impact assessment Latest Advancements in GitHub Copilot CLI Released alongside the SDK, Copilot CLI has also received major updates, making it an even more powerful development tool: Enhanced Core Capabilities Persistent Memory: Cross-session context retention and intelligent compaction Multi-Model Collaboration: Choose different models for explore, plan, and review workflows Autonomous Execution: Custom agent support Agent skill system Full MCP support Async task delegation Real-World Applications Development teams have already built innovative applications using the SDK: YouTube chapter generators Custom GUI interfaces for agents Speech-to-command workflows for desktop apps Games where you compete with AI Content summarization tools These examples showcase the flexibility and power of the Copilot SDK. SDK vs CLI: Complementary, Not Competing Understanding the relationship between SDK and CLI is important: CLI: An interactive tool for end users, providing a complete development experience SDK: A programmable layer for developers to build customized applications The SDK essentially provides programmatic access to the CLI's core capabilities, enabling developers to: Integrate Copilot agent capabilities into any environment Build graphical user interfaces Create personal productivity tools Run custom internal agents in enterprise workflows GitHub handles the underlying authentication, model management, MCP servers, and session management, while developers focus on building value on top of these building blocks. Best Practices and Recommendations Based on experience from the agent-framework-update-everyday project, here are practical recommendations: 1. Leverage Copilot Skills Effectively Define clear skill files that specify: Input and output formats for tasks Rules for handling edge cases Quality standards and priorities 2. Choose Models Wisely Use different models for different tasks: Exploratory tasks: Use more powerful models (e.g., GPT-5) Execution tasks: Use faster models (e.g., Claude Sonnet) Cost-sensitive tasks: Balance performance and budget 3. Implement Robust Error Handling AI calls in CI/CD environments need to consider: Network timeout and retry strategies API rate limit handling Output validation and fallback mechanisms 4. Secure Authentication Management Use fine-grained Personal Access Tokens (PAT): Create dedicated Copilot access tokens Set minimum permission scope (Copilot Requests: Read) Store securely using GitHub Secrets 5. Version Control and Traceability Automated systems should: Log metadata for each execution Preserve historical outputs for comparison Implement auditable change tracking Future Outlook The release of GitHub Copilot SDK marks the democratization of AI agent development. Developers can now: Lower Development Barriers: No need to deeply understand complex AI infrastructure Accelerate Innovation: Focus on business logic rather than underlying implementation Flexible Integration: Embed AI capabilities into any application scenario Production-Ready: Leverage proven execution loops and security mechanisms As the SDK moves from technical preview to general availability, we can expect: Official support for more languages Richer tool ecosystem More powerful MCP integration capabilities Community-driven best practice libraries Conclusion This article demonstrates how to build practical automation systems using GitHub Copilot SDK through the agent-framework-update-everyday project. This case study not only validates the SDK's technical capabilities but, more importantly, showcases a new development paradigm: Using AI agents as programmable building blocks, integrated into daily development workflows, to liberate developer creativity. Whether you want to build personal productivity tools, enterprise internal agents, or innovative AI applications, the Copilot SDK provides a solid technical foundation. Visit github/copilot-sdk to start your AI agent journey today! Reference Resources GitHub Copilot SDK Official Repository Agent Framework Update Everyday Project GitHub Copilot CLI Documentation Microsoft Agent Framework Build an agent into any app with the GitHub Copilot SDK1.8KViews0likes0CommentsEngineering a Local-First Agentic Podcast Studio: A Deep Dive into Multi-Agent Orchestration
The transition from standalone Large Language Models (LLMs) to Agentic Orchestration marks the next frontier in AI development. We are moving away from simple "prompt-and-response" cycles toward a paradigm where specialized, autonomous units—AI Agents—collaborate to solve complex, multi-step problems. As a Technology Evangelist, my focus is on building these production-grade systems entirely on the edge, ensuring privacy, speed, and cost-efficiency. This technical guide explores the architecture and implementation of The AI Podcast Studio. This project demonstrates the seamless integration of the Microsoft Agent Framework, Local Small Language Models (SLMs), and VibeVoice to automate a complete tech podcast pipeline. I. The Strategic Intelligence Layer: Why Local-First? At the core of our studio is a Local-First philosophy. While cloud-based LLMs are powerful, they introduce friction in high-frequency, creative pipelines. By using Ollama as a model manager, we run SLMs like Qwen-3-8B directly on user hardware. 1. Architectural Comparison: Local vs. Cloud Choosing the deployment environment is a fundamental architectural decision. For an agentic podcasting workflow, the edge offers distinct advantages: Dimension Local Models (e.g., Qwen-3-8B) Cloud Models (e.g., GPT-4o) Latency Zero/Ultra-low: Instant token generation without network "jitter". Variable: Dependent on network stability and API traffic. Privacy Total Sovereignty: Creative data and drafts never leave the local device. Shared Risk: Data is processed on third-party servers. Cost Zero API Fees: One-time hardware investment; free to run infinite tokens. Pay-as-you-go: Costs scale with token count and frequency of calls. Availability Offline: The studio remains functional without an internet connection. Online Only: Requires a stable, high-speed connection. 2. Reasoning and Tool-Calling on the Edge To move beyond simple chat, we implement Reasoning Mode, utilizing Chain-of-Thought (CoT) prompting. This allows our local agents to "think" through the podcast structure before writing. Furthermore, we grant them "superpowers" through Tool-Calling, allowing them to execute Python functions for real-time web searches to gather the latest news. II. The Orchestration Engine: Microsoft Agent Framework The true complexity of this project lies in Agent Orchestration—the coordination of specialized agents to work as a cohesive team. We distinguish between Agents, who act as "Jazz Musicians" making flexible decisions, and Workflows, which act as the "Orchestra" following a predefined score. 1. Advanced Orchestration Patterns Drawing from the WorkshopForAgentic architecture, the studio utilizes several sophisticated patterns: Sequential: A strict pipeline where the output of the Researcher flows into the Scriptwriter. Concurrent (Parallel): Multiple agents search different news sources simultaneously to speed up data gathering. Handoff: An agent dynamically "transfers" control to another specialist based on the context of the task. Magentic-One: A high-level "Manager" agent decides which specialist should handle the next task in real-time. III. Implementation: Code Analysis (Workshop Patterns) To maintain a production-grade codebase, we follow the modular structure found in the WorkshopForAgentic/code directory. This ensures that agents, clients, and workflows are decoupled and maintainable. 1. Configuration: Connecting to Local SLMs The first step is initializing the local model client using the framework's Ollama integration. # Based on WorkshopForAgentic/code/config.py from agent_framework.ollama import OllamaChatClient # Initialize the local client for Qwen-3-8B # Standard Ollama endpoint on localhost chat_client = OllamaChatClient( model_id="qwen3:8b", endpoint="http://localhost:11434" ) 2. Agent Definition: Specialized Roles Each agent is a ChatAgent instance defined by its persona and instructions. # Based on WorkshopForAgentic/code/agents.py from agent_framework import ChatAgent # The Researcher Agent: Responsible for web discovery researcher_agent = client.create_agent( name="SearchAgent", instructions="You are my assistant. Answer the questions based on the search engine.", tools=[web_search], ) # The Scriptwriter Agent: Responsible for conversational narrative generate_script_agent = client.create_agent( name="GenerateScriptAgent", instructions=""" You are my podcast script generation assistant. Please generate a 10-minute Chinese podcast script based on the provided content. The podcast script should be co-hosted by Lucy (the host) and Ken (the expert). The script content should be generated based on the input, and the final output format should be as follows: Speaker 1: …… Speaker 2: …… Speaker 1: …… Speaker 2: …… Speaker 1: …… Speaker 2: …… """ ) 3. Workflow Setup: The Sequential Pipeline For a deterministic production line, we use the WorkflowBuilder to connect our agents. # Based on WorkshopForAgentic/code/workflow_setup.py from agent_framework import WorkflowBuilder # Building the podcast pipeline search_executor = AgentExecutor(agent=search_agent, id="search_executor") gen_script_executor = AgentExecutor(agent=gen_script_agent, id="gen_script_executor") review_executor = ReviewExecutor(id="review_executor", genscript_agent_id="gen_script_executor") # Build workflow with approval loop # search_executor -> gen_script_executor -> review_executor # If not approved, review_executor -> gen_script_executor (loop back) workflow = ( WorkflowBuilder() .set_start_executor(search_executor) .add_edge(search_executor, gen_script_executor) .add_edge(gen_script_executor, review_executor) .add_edge(review_executor, gen_script_executor) # Loop back for regeneration .build() ) IV. Multimodal Synthesis: VibeVoice Technology The "Future Bytes" podcast is brought to life using VibeVoice, a specialized technology from Microsoft Research designed for natural conversational synthesis. Conversational Rhythm: It automatically handles natural turn-taking and speech cadences. High Efficiency: By operating at an ultra-low 7.5 Hz frame rate, it significantly reduces the compute power required for high-fidelity audio. Scalability: The system supports up to 4 distinct voices and can generate up to 90 minutes of continuous audio. V. Observability and Debugging: DevUI Building multi-agent systems requires deep visibility into the agentic "thinking" process. We leverage DevUI, a specialized web interface for testing and tracing: Interactive Tracing: Developers can watch the message flow and tool-calling in real-time. Automatic Discovery: DevUI auto-discovers agents defined within the project structure. Input Auto-Generation: The UI generates input fields based on workflow requirements, allowing for rapid iteration. VI. Technical Requirements for Edge Deployment Deploying this studio locally requires specific hardware and software configurations to handle simultaneous LLM and TTS inference: Software: Python 3.10+, Ollama, and the Microsoft Agent Framework. Hardware: 16GB+ RAM is the minimum requirement; 32GB is recommended for running multiple agents and VibeVoice concurrently. Compute: A modern GPU/NPU (e.g., NVIDIA RTX or Snapdragon X Elite) is essential for smooth inference. Final Perspective: From Coding to Directing The AI Podcast Studio represents a significant shift toward Agentic Content Creation. By mastering these orchestration patterns and leveraging local EdgeAI, developers move from simply writing code to directing entire ecosystems of intelligent agents. This "local-first" model ensures that the future of creativity is private, efficient, and infinitely scalable. Download sample Here Resource EdgeAI for Beginners - https://github.com/microsoft/edgeai-for-beginners Microsoft Agent Framework - https://github.com/microsoft/agent-framework Microsoft Agent Framework Samples - https://github.com/microsoft/agent-framework-samples613Views0likes0CommentsMicrosoft 365 & Power Platform product updates call
💡Microsoft 365 & Power Platform product updates call concentrates on the different use cases and features within the Microsoft 365 and in Power Platform. Call includes topics like Microsoft 365 Copilot, Copilot Studio, Microsoft Teams, Power Platform, Microsoft Graph, Microsoft Viva, Microsoft Search, Microsoft Lists, SharePoint, Power Automate, Power Apps and more. 👏 Weekly Tuesday call is for all community members to see Microsoft PMs, engineering and Cloud Advocates showcasing the art of possible with Microsoft 365 and Power Platform. 📅 On the 27th of January we'll have following agenda: News and updates from Microsoft Together mode group photo Patrick Rodgers – Introduction to SharePoint Site Creation in Microsoft Graph Natalie Pienkowska – Announcing Frontline Agent in Microsoft 365 Copilot 📞 & 📺 Join the Microsoft Teams meeting live at https://aka.ms/community/ms-speakers-call-join 👋 See you in the call! 💡 Building something cool for Microsoft 365 or Power Platform (Copilot, SharePoint, Power Apps, etc)? We are always looking for presenters - Volunteer for a community call demo at https://aka.ms/community/request/demo 📖 Resources: Previous community call recordings and demos from the Microsoft Community Learning YouTube channel at https://aka.ms/community/youtube Microsoft 365 & Power Platform samples from Microsoft and community - https://aka.ms/community/samples Microsoft 365 & Power Platform community details - https://aka.ms/community/home133Views0likes0CommentsMicrosoft Foundry for VS Code: January 2026 Update
Enhanced Workflow and Agent Experience The January 2026 update for Microsoft Foundry extension in VS Code brings a follow update to the capabilities we introduced during Ignite of last year. We’re excited to announce a set of powerful updates that make building and managing AI workflows in Azure AI Foundry even more seamless. These enhancements are designed to give developers greater flexibility, visibility, and control when working with multi-agent systems and workflows. Support for Multiple Workflows in the Visualizer Managing complex AI solutions often involves multiple workflows. With this update, the Workflow Visualizer now supports viewing and navigating multiple workflows in a single project. This makes it easier to design, debug, and optimize interconnected workflows without switching contexts. View and Test Prompt Agents in the Playground Prompt agents are a critical part of orchestrating intelligent behaviors. You can now view all prompt agents directly in the Playground and test them interactively. This feature helps you validate agent logic and iterate quickly, ensuring your prompts deliver the desired outcomes. Open Code files Transparency and customization are key for developers. We’ve introduced the ability to open sample code files for all agents, including: Prompt agents YAML-based workflows Hosted agents Foundry classic agents This gives you the ability to programmatically run agents, enabling adding these agents into your existing project. Separated Resource View for v1 and v2 Agents To reduce confusion and improve clarity, we’ve introduced a separated resource view for Foundry Classic resources and agents. This makes it simple to distinguish between legacy and new-generation agents, ensuring you always know which resources you’re working with. How to Get Started Download the extension here: Microsoft Foundry in VS Code Marketplace Get started with building agents and workflows with Microsoft Foundry in VS Code MS Learn Docs Feedback & Support These improvements are part of our ongoing commitment to deliver a developer-first experience in Microsoft Foundry. Whether you’re orchestrating multi-agent workflows or fine-tuning prompt logic, these features help you build smarter, faster, and with greater confidence. Try out the extensions and let us know what you think! File issues or feedback on our GitHub repo for Foundry extension. Your input helps us make continuous improvements.Join our free livestream series on building agents in Python
Join us for a new 6‑part livestream series where we explore the foundational concepts behind building AI agents in Python using the Microsoft Agent Framework. This series is for anyone who wants to understand how agents work—how they call tools, use memory and context, and construct workflows on top of them. Over two weeks, we’ll dive into the practical building blocks that shape real agent behavior. You’ll learn how to: 🔧 Register and structure tools 🔗 Connect local MCP servers 📚 Add context with database calls 🧠 Add memory for personalization 📈 Monitor agent behavior with OpenTelemetry ✅ Evaluate the quality of agent output Throughout the series, we’ll use Python for all live examples and share full code so you can run everything yourself. You can also follow along live using GitHub Models and GitHub Codespaces. 👉 Register for the full series. Spanish speaker? ¡Tendremos una serie para hispanohablantes! Regístrese aquí In addition to the live streams, you can also join Join the Microsoft Foundry Discord to ask follow-up questions after each stream. If you are brand new to generative AI with Python, start with our 9-part Python + AI series, which covers topics such as LLMs, embedding models, RAG, tool calling, MCP, and will prepare you perfectly for the agents series. To learn more about each live stream or register for individual sessions, scroll down: Python + Agents: Building your first agent in Python 24 February, 2026 | 6:30 PM - 7:30 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In the first session of our Python + Agents series, we’ll kick things off with the fundamentals: what AI agents are, how they work, and how to build your first one using the Microsoft Agent Framework. We’ll start with the core anatomy of an agent, then walk through how tool calling works in practice—beginning with a single tool, expanding to multiple tools, and finally connecting to tools exposed through local MCP servers. We’ll conclude with the supervisor agent pattern, where a single supervisor agent coordinates subtasks across multiple subagents, by treating each agent as a tool. Along the way, we'll share tips for debugging and inspecting agents, like using the DevUI interface from Microsoft Agent Framework for interacting with agent prototypes. Python + Agents: Adding context and memory to agents 25 February, 2026 | 6:30 PM - 7:30 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In the second session of our Python + Agents series, we’ll extend agents built with the Microsoft Agent Framework by adding two essential capabilities: context and memory. We’ll begin with context, commonly known as Retrieval‑Augmented Generation (RAG), and show how agents can ground their responses using knowledge retrieved from local data sources such as SQLite or PostgreSQL. This enables agents to provide accurate, domain‑specific answers based on real information rather than model hallucination. Next, we’ll explore memory—both short‑term, thread‑level context and long‑term, persistent memory. You’ll see how agents can store and recall information using solutions like Redis or open‑source libraries such as Mem0, enabling them to remember previous interactions, user preferences, and evolving tasks across sessions. By the end, you’ll understand how to build agents that are not only capable but context‑aware and memory‑efficient, resulting in richer, more personalized user experiences. Python + Agents: Monitoring and evaluating agents 26 February, 2026 | 6:30 PM - 7:30 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In the third session of our Python + Agents series, we’ll focus on two essential components of building reliable agents: observability and evaluation. We’ll begin with observability, using OpenTelemetry to capture traces, metrics, and logs from agent actions. You'll learn how to instrument your agents and use a local Aspire dashboard to identify slowdowns and failures. From there, we’ll explore how to evaluate agent behavior using the Azure AI Evaluation SDK. You’ll see how to define evaluation criteria, run automated assessments over a set of tasks, and analyze the results to measure accuracy, helpfulness, and task success. By the end of the session, you’ll have practical tools and workflows for monitoring, measuring, and improving your agents—so they’re not just functional, but dependable and verifiably effective. Python + Agents: Building your first AI-driven workflows 3 March, 2026 | 6:30 PM - 7:30 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In Session 4 of our Python + Agents series, we’ll explore the foundations of building AI‑driven workflows using the Microsoft Agent Framework: defining workflow steps, connecting them, passing data between them, and introducing simple ways to guide the path a workflow takes. We’ll begin with a conceptual overview of workflows and walk through their core components: executors, edges, and events. You’ll learn how workflows can be composed of simple Python functions or powered by full AI agents when a step requires model‑driven behavior. From there, we’ll dig into conditional branching, showing how workflows can follow different paths depending on model outputs, intermediate results, or lightweight decision functions. We’ll introduce structured outputs as a way to make branching more reliable and easier to maintain—avoiding vague string checks and ensuring that workflow decisions are based on clear, typed data. We'll discover how the DevUI interface makes it easier to develop workflows by visualizing the workflow graph and surfacing the streaming events during a workflow's execution. Finally, we'll dive into an E2E demo application that uses workflows inside a user-facing application with a frontend and backend. Python + Agents: Orchestrating advanced multi-agent workflows 4 March, 2026 | 6:30 PM - 7:30 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In Session 5 of our Python + Agents series, we’ll go beyond workflow fundamentals and explore how to orchestrate advanced, multi‑agent workflows using the Microsoft Agent Framework. This session focuses on patterns that coordinate multiple steps or multiple agents at once, enabling more powerful and flexible AI‑driven systems. We’ll begin by comparing sequential vs. concurrent execution, then dive into techniques for running workflow steps in parallel. You’ll learn how fan‑out and fan‑in edges enable multiple branches to run at the same time, how to aggregate their results, and how concurrency allows workflows to scale across tasks efficiently. From there, we’ll introduce two multi‑agent orchestration approaches that are built into the framework. We’ll start with handoff, where control moves entirely from one agent to another based on workflow logic, which is useful for routing tasks to the right agent as the workflow progresses. We’ll then look at Magentic, a planning‑oriented supervisor that generates a high‑level plan for completing a task and delegates portions of that plan to other agents. Finally, we'll wrap up with a demo of an E2E application that showcases a concurrent multi-agent workflow in action. Python + Agents: Adding a human in the loop to agentic workflows 5 March, 2026 | 6:30 PM - 7:30 PM (UTC) Coordinated Universal Time Register for the stream on Reactor In the final session of our Python + Agents series, we’ll explore how to incorporate human‑in‑the‑loop (HITL) interactions into agentic workflows using the Microsoft Agent Framework. This session focuses on adding points where a workflow can pause, request input or approval from a user, and then resume once the human has responded. HITL is especially important because LLMs can produce uncertain or inconsistent outputs, and human checkpoints provide an added layer of accuracy and oversight. We’ll begin with the framework’s requests‑and‑responses model, which provides a structured way for workflows to ask questions, collect human input, and continue execution with that data. We'll move onto tool approval, one of the most frequent reasons an agent requests input from a human, and see how workflows can surface pending tool calls for approval or rejection. Next, we’ll cover checkpoints and resuming, which allow workflows to pause and be restarted later. This is especially important for HITL scenarios where the human may not be available immediately. We’ll walk through examples that demonstrate how checkpoints store progress, how resuming picks up the workflow state, and how this mechanism supports longer‑running or multi‑step review cycles. This session brings together everything from the series—agents, workflows, branching, orchestration—and shows how to integrate humans thoughtfully into AI‑driven processes, especially when reliability and judgment matter most.🚀 AI Toolkit for VS Code: January 2026 Update
Happy New Year! 🎆 We are kicking off 2026 with a major set of updates designed to streamline how you build, test, and deploy AI agents. This month, we’ve focused on aligning with the latest GitHub Copilot standards, introducing powerful new debugging tools, and enhancing our support for enterprise-grade models via Microsoft Foundry. 💡 From Copilot Instructions to Agent Skills The biggest architectural shift following the latest VS Code Copilot standards, in v0.28.1 is the transition from Copilot Instructions to Copilot Skills. This transition has equipped GitHub Copilot specialized skills on developing AI agents using Microsoft Foundry and Agent Framework in a cost-efficient way. In AI Toolkit, we have migrated our Copilot Tools from the Custom Instructions to Agent Skills. This change allows for a more capable integration within GitHub Copilot Chat. 🔄 Enhanced AIAgentExpert: Our custom agent now has a deeper understanding of workflow code generation and evaluation planning/execution. 🧹Automatic Migration: When you upgrade to v0.28.1, the toolkit will automatically clean up your old instructions to ensure a seamless transition to the new skills-based framework. 🏗️ Major Enhancements to Agent Development Our v0.28.0 milestone release brought significant improvements to how agents are authored and authenticated. 🔒 Anthropic & Entra Auth Support We’ve expanded the Agent Builder and Playground to support Anthropic models using Entra Auth types. This provides enterprise developers with a more secure way to leverage Claude models within the Agent Framework while maintaining strict authentication standards. 🏢 Foundry-First Development We are prioritizing the Microsoft Foundry ecosystem to provide a more robust development experience: Foundry v2: Code generation for agents now defaults to Foundry v2. ⚡ Eval Tool: You can now generate evaluation code directly within the toolkit to create and run evaluations in Microsoft Foundry. 📊 Model Catalog: We’ve optimized the Model Catalog to prioritize Foundry models and improved general loading performance. 🏎️ 💻 Performance and Local Models For developers building on Windows, we continue to optimize the local model experience: Profiling for Windows ML: Version 0.28.0 introduces profiling features for Windows ML-based local models, allowing you to monitor performance and resource utilization directly within VS Code. Platform Optimization: To keep the interface clean, we’ve removed the Windows AI API tab from the Model Catalog when running on Linux and macOS platforms. 🐛 Squashing Bugs & Polishing the Experience Codespaces Fix: Resolved a crash occurring when selecting images in the Playground while using GitHub Codespaces. Resource Management: Fixed a delay where newly added models wouldn't immediately appear in the "My Resources" view. Claude Compatibility: Fixed an issue where non-empty content was required for Claude models when used via the AI Toolkit in GitHub Copilot. 🚀 Getting Started Ready to experience the future of AI development? Here's how to get started: 📥 Download: Install the AI Toolkit from the Visual Studio Code Marketplace 📖 Learn: Explore our comprehensive AI Toolkit Documentation 🔍 Discover: Check out the complete changelog for v0.24.0 We'd love to hear from you! Whether it's a feature request, bug report, or feedback on your experience, join the conversation and contribute directly on our GitHub repository. Happy Coding! 💻✨Microsoft Frontier Program expands to individual Microsoft subscribers
The Frontier program that gives commercial Microsoft 365 Copilot customers early access to exciting, cutting-edge capabilities is now coming to individuals who have a Microsoft 365 Personal or Family subscription.10KViews7likes11Comments