agents
123 TopicsFrom Cloud to Chip: Building Smarter AI at the Edge with Windows AI PCs
As AI engineers, we’ve spent years optimizing models for the cloud, scaling inference, wrangling latency, and chasing compute across clusters. But the frontier is shifting. With the rise of Windows AI PCs and powerful local accelerators, the edge is no longer a constraint it’s now a canvas. Whether you're deploying vision models to industrial cameras, optimizing speech interfaces for offline assistants, or building privacy-preserving apps for healthcare, Edge AI is where real-world intelligence meets real-time performance. Why Edge AI, Why Now? Edge AI isn’t just about running models locally, it’s about rethinking the entire lifecycle: - Latency: Decisions in milliseconds, not round-trips to the cloud. - Privacy: Sensitive data stays on-device, enabling HIPAA/GDPR compliance. - Resilience: Offline-first apps that don’t break when the network does. - Cost: Reduced cloud compute and bandwidth overhead. With Windows AI PCs powered by Intel and Qualcomm NPUs and tools like ONNX Runtime, DirectML, and Olive, developers can now optimize and deploy models with unprecedented efficiency. What You’ll Learn in Edge AI for Beginners The Edge AI for Beginners curriculum is a hands-on, open-source guide designed for engineers ready to move from theory to deployment. Multi-Language Support This content is available in over 48 languages, so you can read and study in your native language. What You'll Master This course takes you from fundamental concepts to production-ready implementations, covering: Small Language Models (SLMs) optimized for edge deployment Hardware-aware optimization across diverse platforms Real-time inference with privacy-preserving capabilities Production deployment strategies for enterprise applications Why EdgeAI Matters Edge AI represents a paradigm shift that addresses critical modern challenges: Privacy & Security: Process sensitive data locally without cloud exposure Real-time Performance: Eliminate network latency for time-critical applications Cost Efficiency: Reduce bandwidth and cloud computing expenses Resilient Operations: Maintain functionality during network outages Regulatory Compliance: Meet data sovereignty requirements Edge AI Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making. Core Principles: On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs) Offline capability: Functions without persistent internet connectivity Low latency: Immediate responses suited for real-time systems Data sovereignty: Keeps sensitive data local, improving security and compliance Small Language Models (SLMs) SLMs like Phi-4, Mistral-7B, Qwen and Gemma are optimized versions of larger LLMs, trained or distilled for: Reduced memory footprint: Efficient use of limited edge device memory Lower compute demand: Optimized for CPU and edge GPU performance Faster startup times: Quick initialization for responsive applications They unlock powerful NLP capabilities while meeting the constraints of: Embedded systems: IoT devices and industrial controllers Mobile devices: Smartphones and tablets with offline capabilities IoT Devices: Sensors and smart devices with limited resources Edge servers: Local processing units with limited GPU resources Personal Computers: Desktop and laptop deployment scenarios Course Modules & Navigation Course duration. 10 hours of content Module Topic Focus Area Key Content Level Duration 📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs 📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs 🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs 🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs ⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs 🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs 🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs 💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs 🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs Each module includes Jupyter notebooks, code samples, and deployment walkthroughs, perfect for engineers who learn by doing. Developer Highlights - 🔧 Olive: Microsoft's optimization toolchain for quantization, pruning, and acceleration. - 🧩 ONNX Runtime: Cross-platform inference engine with support for CPU, GPU, and NPU. - 🎮 DirectML: GPU-accelerated ML API for Windows, ideal for gaming and real-time apps. - 🖥️ Windows AI PCs: Devices with built-in NPUs for low-power, high-performance inference. Local AI: Beyond the Edge Local AI isn’t just about inference, it’s about autonomy. Imagine agents that: - Learn from local context - Adapt to user behavior - Respect privacy by design With tools like Agent Framework, Azure AI Foundry and Windows Copilot Studio, and Foundry Local developers can orchestrate local agents that blend LLMs, sensors, and user preferences, all without cloud dependency. Try It Yourself Ready to get started? Clone the Edge AI for Beginners GitHub repo, run the notebooks, and deploy your first model to a Windows AI PC or IoT devices Whether you're building smart kiosks, offline assistants, or industrial monitors, this curriculum gives you the scaffolding to go from prototype to production.AI Upskilling Framework Level 3 Building
The Global AI Community is excited to bring you the latest updates on AI Upskilling Framework Level 3 Building, straight from Microsoft Ignite! This session dives deep into advanced concepts for building agentic workflows and showcases new announcements that will help developers accelerate their Agentic AI journey.Microsoft 365 & Power Platform product updates call
💡Microsoft 365 & Power Platform product updates call concentrates on the different use cases and features within the Microsoft 365 and in Power Platform. Call includes topics like Microsoft 365 Copilot, Copilot Studio, Microsoft Teams, Power Platform, Microsoft Graph, Microsoft Viva, Microsoft Search, Microsoft Lists, SharePoint, Power Automate, Power Apps and more. 👏 Weekly Tuesday call is for all community members to see Microsoft PMs, engineering and Cloud Advocates showcasing the art of possible with Microsoft 365 and Power Platform. 📅 On the 16th of December we'll have following agenda: News and updates from Microsoft Together mode group photo Fabian Williams – Copilot Studio × MCP: From Zero to Shipping a Real Event Agent Vesa Juvonen – Introduction to SharePoint Pages Agent in Microsoft 365 Copilot 📞 & 📺 Join the Microsoft Teams meeting live at https://aka.ms/community/ms-speakers-call-join 👋 See you in the call! 🎅🎄 Notice that this call is on a holiday break after 16th of December call and back on 13th of January 2026. 💡 Building something cool for Microsoft 365 or Power Platform? We are always looking for presenters - Volunteer for a community call demo at https://aka.ms/community/request/demo 📖 Resources: Previous community call recordings and demos from the Microsoft Community Learning YouTube channel at https://aka.ms/community/youtube Microsoft 365 & Power Platform samples from Microsoft and community - https://aka.ms/community/samples Microsoft 365 & Power Platform community details - https://aka.ms/community/home74Views0likes0CommentsMicrosoft Power Platform community call - December 2025
💡 Power Platform monthly community call focuses on different extensibility options for builders, makers and developers within the Power Platform. Typically demos are from our awesome community members who showcase the art of possible within the Power Platform capabilities. 👏 Looking to catch up on the latest news and updates, including cool community demos, this call is for you! 📅 On 17th of December we'll have following agenda: Power Platform Updates & Events Latest on Power Platform samples Supercharge Your Date Logic: The Ultimate Working Day Calculator for Power Automate – Ian Tweedie (Capgemini) Animated Navigation in PowerBI – James Mounsey-Moran (Trustmarque) Building a copilot for Dataverse DevOps – Shashank Bhide (Kerv Digital) 📅 Download recurrent invite from https://aka.ms/powerplatformcommunitycall 📞 & 📺 Join the Microsoft Teams meeting live at https://aka.ms/PowerPlatformMonthlyCall 👋 See you in the call! 📖 Resources: Previous community call recordings and demos from the Microsoft 365 & Power Platform community YouTube channel at https://aka.ms/community/videos Microsoft 365 & Power Platform samples from Microsoft and community - https://aka.ms/community/samples Microsoft 365 & Power Platform community details - https://aka.ms/community/home 💡 You want to do a demo in this call? - Please fill in the following form and we'll get you scheduled - https://aka.ms/community/request/demo81Views0likes0CommentsExploring the Future of AI Agents with Microsoft Foundry
Why Agentic AI Matters AI agents are no longer a distant vision—they’re here and transforming how businesses operate. According to industry analysts: Over 1 billion AI agents are expected to be in use by 2028. 80% of organisations plan to integrate agents within the next 2–3 years. By 2026, 40% of enterprise apps will include task-specific AI agents. Why this surge? Agents address critical challenges such as inefficiencies in manual processes, human error, lack of visibility, and scalability issues. They enable autonomous decision-making, with projections suggesting that by 2028, half of day-to-day work decisions will be made autonomously. From Chatbots to Intelligent Agents As Mary Joe highlighted, early chatbots relied on rigid rules and regular expressions, often leading to frustrating user experiences. The introduction of large language models (LLMs) changed the game, making interactions more natural. But true autonomy, where systems act on our behalf, required more than conversational AI. Agentic AI combines: Reasoning and planning capabilities. Tools and APIs for real-world actions. Memory for learning and improving over time. This evolution moves us beyond simple input-output interactions to intelligent systems that can execute workflows, validate data, and deliver outcomes. Microsoft Foundry: Your Platform for Building Agents Microsoft Foundry offers a Platform-as-a-Service (PaaS) approach for creating AI agents, striking a balance between control and ease of use. Key components include: Model Catalogue: Access models from OpenAI, Anthropic, Mistral, and more. Foundry Agent Service: Build and customise agents with integrated tools. Foundry IQ: Knowledge grounding for accurate responses. Control Plane: Ensures safety, trust, and observability in production. Whether you need full control (Infrastructure-as-a-Service) or simplicity (Software-as-a-Service via Copilot Studio), Foundry provides flexibility for diverse scenarios. What Makes an AI Solution Agentic? Unlike traditional AI apps that perform narrow tasks (e.g., extracting text from receipts), agentic solutions: Analyse inputs using LLMs and system instructions. Integrate tools for actions like file search, code execution, or API calls. Retain memory for contextual learning. Operate autonomously across workflows. Real-World Use Cases Agentic AI unlocks new possibilities across industries: Expense Management: Automate claims and approvals. Employee Onboarding: Personalised learning paths and skills navigation. Customer Support: Intelligent assistants for FAQs and troubleshooting. Data Analytics: Interactive insights and reporting with Fabric agents. Multi-agent systems can coordinate complex tasks, with specialised agents handling subtasks under a central orchestrator. Getting Started with Microsoft Foundry Creating your first agent is simple: Sign in at https://ai.azure.com and create a Foundry project. Select a model (e.g., GPT-4.1 mini) and configure deployment options. Customise instructions to define your agent’s persona and tasks. Add tools like file search or code interpreter for extended functionality. Test and iterate using the agent playground, then export code to Visual Studio Code for deployment. For detailed guidance, explore the https://learn.microsoft.com/training. Follow the skilling plan for this series Plans | Microsoft Learn Get started with AI Agents https://aka.ms/ai-agents-fundamentals Join the Community Stay connected and keep learning: Discord: Engage with developers building agents. https://aka.ms/foundry/discord GitHub Discussions: Share ideas and troubleshoot. https://aka.ms/foundrydevs Office Hours: Get direct support from product teams. Final Thoughts Agentic AI is reshaping the way we work, enabling systems to act, learn, and collaborate. With Microsoft Foundry, developers have the tools to build secure, scalable, and intelligent agents today not tomorrow. Join the sessions at https://aka.ms/AzureSkilling-Ignite/25Automation for a real estate brokerage
I manage a real estate brokerage and am looking for help in how to utilize Microsoft teams better. I would like to have it automate processes for my associates. Example, they are looking to list a property, it will guide them to a tutorial and provide all of the documents that i uploaded. Another example, they want to request a lockbox or signs, it will ask them the relevant information and then put it in my queue. Any help would be appreciated!1.5KViews0likes2Comments