Cloud Security
1412 TopicsWelcome to the Microsoft Security Community!
Protect it all with Microsoft Security Eliminate gaps and get the simplified, comprehensive protection, expertise, and AI-powered solutions you need to innovate and grow in a changing world. The Microsoft Security Community is your gateway to connect, learn, and collaborate with peers, experts, and product teams. Gain access to technical discussions, webinars, and help shape Microsoft’s security products. Get there fast To stay up to date on upcoming opportunities and the latest Microsoft Security Community news, make sure to subscribe to our email list. Find the latest skilling content and on-demand videos – subscribe to the Microsoft Security Community YouTube channel. Catch the latest announcements and connect with us on LinkedIn – Microsoft Security Community and Microsoft Entra Community. Index Community Calls: January 2026 | February 2026 Upcoming Community Calls January 2026 Jan. 14 | 8:00am | 425 Show | Microsoft MCP Server for Enterprise: Transforming User, Security & Identity Tasks with AI See Microsoft’s MCP Server in action! Discover how AI-powered workflows simplify tasks and strengthen security. Packed with demos, this session shows how to operationalize AI across your organization. Jan. 15 | 8:00am | Microsoft Purview | Purview Data Security and Entra Global Secure Access Deep Dive Learn how Microsoft Global Secure Access (GSA) and Purview extend data loss prevention to the network, inspecting traffic to and from sanctioned and unsanctioned apps, including AI, and block sensitive data exfiltration in real time. The guidance in this session will provide actionable steps to security teams getting started with extending data security to the network layer to support compliance and zero trust strategies. Jan. 20 | 8:00am | Microsoft Defender for Cloud | What’s New in Microsoft Defender CSPM Cloud security posture management (CSPM) continues to evolve, and Microsoft Defender CSPM is leading the way with powerful enhancements introduced at Microsoft Ignite. This session will showcase the latest innovations designed to help security teams strengthen their posture and streamline operations. Jan. 21 | 8:00am | Microsoft Entra | Microsoft Agent Identity Platform Fundamentals In this session, we take a deep technical dive into the Microsoft Agent Identity Platform. You’ll learn how the platform’s core building blocks—Agent Identity Blueprints, Agent Identities, Agent Users, and the Agent Registry—work together to enable secure, scalable agent authentication and authorization. Jan. 22 | 8:00am | Azure Network Security | Advancing web application Protection with Azure WAF: Ruleset and Security Enhancements Explore the latest Azure WAF ruleset and security enhancements. Learn to fine-tune configurations, reduce false positives, gain threat visibility, and ensure consistent protection for web workloads—whether starting fresh or optimizing deployments. Jan. 22 | 8:00am | Security Copilot Skilling Series | Building Custom Agents: Unlocking Context, Automation, and Scale Microsoft Security Copilot already features a robust ecosystem of first-party and partner-built agents, but some scenarios require solutions tailored to your organization’s specific needs and context. In this session, you'll learn how the Security Copilot agent builder platform and MCP servers empower you to create tailored agents that provide context-aware reasoning and enterprise-scale solutions for your unique scenarios. RESCHEDULED for Jan. 27 | 9:00am | Microsoft Sentinel | AI-Powered Entity Analysis in Sentinel’s MCP Server Simplify entity risk assessment with Entity Analyzer. Eliminate complex playbooks; get unified, AI-driven analysis using Sentinel’s semantic understanding. Accelerate automation and enrich SOAR workflows with native Logic Apps integration. Jan. 28 | 8:00am | Security Copilot Skilling Series | Security Copilot in Purview Technical Deep Dive Discover how AI-powered alert triage agents for Data Loss Prevention (DLP) and Insider Risk Management (IRM) are transforming incident response and compliance workflows. Explore new Data Security Posture Management (DSPM) capabilities that deliver deeper insights and automation to strengthen your security posture. This session will showcase real-world scenarios and actionable strategies to help you protect sensitive data and simplify compliance. February 2026 Feb. 2 | 9:00am | Microsoft Sentinel | Accelerate your SIEM migration to Microsoft Sentinel Join us for an insightful webinar to discover how Microsoft Sentinel simplifies SIEM migration and enables true SOC transformation. Experience the new AI-powered SIEM migration tool that goes beyond syntax conversion—delivering advanced correlation, actionable insights, and accurate intent-based mapping for improved detection coverage and continuous optimization. Feb. 26 | 9:00am | Azure Network Security | Azure Firewall Integration with Microsoft Sentinel Learn how Azure Firewall integrates with Microsoft Sentinel to enhance threat visibility and streamline security investigations. This webinar will demonstrate how firewall logs and insights can be ingested into Sentinel to correlate network activity with broader security signals, enabling faster detection, deeper context, and more effective incident response. Looking for more? Join the Microsoft Customer Connection Program (MCCP)! As a MCCP member, you’ll gain early visibility into product roadmaps, participate in focus groups, and access private preview features before public release. You’ll have a direct channel to share feedback with engineering teams, influencing the direction of Microsoft Security products. The program also offers opportunities to collaborate and network with fellow security experts and Microsoft product teams. Join the MCCP that best fits your interests: www.aka.ms/joincommunity. Additional resources Microsoft Security Hub on Tech Community Virtual Ninja Training Courses Microsoft Security Documentation Azure Network Security GitHub Microsoft Defender for Cloud GitHub Microsoft Sentinel GitHub Microsoft Defender XDR GitHub Microsoft Defender for Cloud Apps GitHub Microsoft Defender for Identity GitHub Microsoft Purview GitHub12KViews4likes3CommentsGuarding Kubernetes Deployments: Runtime Gating for Vulnerable Images Now Generally Available
Cloud-native development has made containerization vital, but it has also brought about new risks. In dynamic Kubernetes environments, a single vulnerable container image can open the door to an attack. Organizations need proactive controls to prevent unsafe workloads from running. Although security professionals recognize these risks, traditional security checks typically occur after deployment, relying on scans and alerts that only identify issues once workloads are already running, leaving teams scrambling to respond. Kubernetes runtime gating within Microsoft Defender for Cloud effectively addresses these challenges. Now generally available, gated deployment for Kubernetes container images introduces a proactive, automated checkpoint at the moment of deployment. Getting Started: Setting Up Kubernetes Gated Deployment The process starts with enabling the required components for gated deployment. When Security Gating is enabled, the defender admission controller pod is deployed to the Kubernetes cluster. Organizations can create rules for gated deployment which will define the criteria that container images must meet to be permitted to the cluster. With the admission controller and policies in place, the system is ready to evaluate deployment requests against the defined rules. How Kubernetes Gated Deployment Works Vulnerability Scanning Defender for Cloud performs agentless vulnerability scanning on container images stored in the registry. Scan results are saved as security artifacts in the registry, detailing each image’s vulnerabilities. Security artifacts are signed with Microsoft signature to verify authenticity. Deployment Evaluation During deployment, the admission controller reads both the stored security policies and vulnerability assessment artifacts. Each container image is evaluated against the organization’s defined policies. Enforcement Modes Audit Mode: Deployments are allowed, but any policy violations are logged for review. This helps teams refine policies without disrupting workflows. Deny Mode: Non-compliant images are blocked from deployment, ensuring only secure containers reach production. Practical Guidance: Using Gating to Advance DevSecOps Leveraging gated deployment requires thoughtful coordination between several teams, with security professionals working closely alongside platform, DevOps, and application teams to define policies, enforce risk thresholds, and ensure compliance throughout the deployment process. To maximize the effectiveness of gated deployment, organizations should take a strategic approach to policy enforcement. Work with platform teams to define risk thresholds and deploy in audit mode during rollout - then move to deny mode when ready. Continuously tune policies based on audit logs and incident findings to adapt to new threats and business requirements. Educate DevOps and application teams on policy requirements and violation remediation, fostering a culture of shared responsibility. Consider best practices for rule design. Use Cases and Real-World Examples Gated deployment is designed to meet the diverse needs of modern enterprises. Here are several use cases that illustrate its' effectiveness in protecting workloads and streamlining cloud operations: Ensuring Compliance in Regulated Industries: Organizations in sectors like finance, healthcare, and government often have strict compliance mandates (e.g. no use of software with known critical vulnerabilities). Gated deployment provides an automated way to enforce these mandates. For example, a bank can define rules to block any container image that has a critical vulnerability or that lacks the required security scan metadata. The admission controller will automatically prevent non-compliant deployments, ensuring the production environment is continuously compliant with the bank’s security policy. This not only reduces the risk of costly security incidents but also creates an audit trail of compliance – every blocked deployment is logged, which can be shown to auditors as proof that proactive controls are in place. In short, gated deployment helps organizations maintain compliance as they deploy cloud-native applications. Reducing Risk in Multi-Team DevOps Environments: In large enterprises with multiple development teams pushing code to shared Kubernetes clusters, it can be challenging to enforce consistent security standards. Gated deployment acts as a safety net across all teams. Imagine a scenario with dozens of microservices and dev teams: even if one team attempts to deploy an outdated base image with known vulnerabilities, the gating feature will catch it. This is especially useful in multi-cloud setups – e.g., your company runs some workloads on Azure Kubernetes Service (AKS) and others on Elastic Kubernetes Service (EKS). With gated deployment in Defender for Cloud, you can apply the same security rules to both, and the system will uniformly block non-compliant images on Azure or Amazon Web Services (AWS) clusters alike. This consistency simplifies governance. It also fosters a DevSecOps culture: developers get immediate feedback if their deployment is flagged, which raises awareness of security requirements. Over time, teams learn to integrate security earlier (shifting left) to avoid tripping the gate. Yet, because you can start in audit mode, there is an educational grace period – developers see warnings in logs about policy violations before those violations cause deployment failures. This leads to collaborative remediation rather than abrupt disruption. Protecting Against Known Threats in Production: Zero-day vulnerabilities in popular containers (like database images or open-source services) are regularly discovered. Organizations often scramble to patch or update once a new CVE is announced. Gated deployment can serve as an automatic shield against known issues. For instance, if a critical CVE in Nginx is published, any container image still carrying that vulnerability would be denied at deployment until it is patched. If an attacker attempts to deploy a backdoored container image in your environment, the admission rules can stop it if it does not meet the security criteria. In this way, gating provides a form of runtime admission control that complements runtime threat detection: rather than detecting malicious activity after a container is running, it tries to prevent potentially unsafe containers from ever running at all. Streamlining Cloud Deployment Workflows with Security Built-In: Enterprises embracing cloud-native development want to move fast but safely. Gated deployment lets security teams define guardrails, and then developers can operate within those guardrails without constant oversight. For example, a company can set a policy “all images must be scanned and free of critical vulnerabilities before deployment.” Once that rule is in place, developers simply get an error if they try to deploy something out-of-bounds – they know to go back and fix it and then redeploy. This removes the need for manual ticketing or approvals for each deployment; the system itself enforces the policy. That increases operational efficiency and ensures a consistent baseline of security across all services. Gated deployment operationalizes the concept of “secure by default” for Kubernetes workloads: every deployment is vetted, with no extra steps required by end-users beyond what they normally do. oyment. Part of a Broader Security Strategy Kubernetes gated deployment is a key piece of Microsoft’s larger vision for container security and secure supply chain at large. While runtime gating is a powerful tool on its own, its' value multiplies when seen as part of Microsoft Defender for Cloud’s holistic container security offering. It complements and enhances the other security layers that are available for containerized applications, covering the full lifecycle of container workloads from development to runtime. Let’s put gated deployment in context of this broader story: During development and build phases, Defender for Cloud offers tools like CI/CD pipeline scanning (for example, a CLI that scans images during the build process). Agentless discovery, inventory and continuous monitoring of cloud resources to detect misconfigurations, contextual risk assessment, enhanced risk hunting and more. Continuous agentless vulnerability scanning takes place at both the registry and runtime level. Runtime Gating prevents those known issues from ever running and logs all non-compliant attempts at deployment. Threat Detection surfaces anomalies or malicious activities by monitoring Kubernetes audit logs and live workloads. Using integration with Defender XDR, organizations can further investigate these threats or implement response actions. Conclusion: Raising the Bar for Multi-Cloud Container Security With Kubernetes Gating now generally available in Defender for Cloud, technical leaders and security teams can audit or block vulnerable containers across any cloud platform. Integrating automated controls and best practices improves compliance and reduces risk within cloud-native environments. This strengthens Kubernetes clusters by preventing unsafe deployments, ensuring ongoing compliance, and supporting innovation without sacrificing security. Runtime gating helps teams balance rapid delivery with robust protection. Additional Resources to Learn More: Release Notes Overview of Gated Deployment Enable Gated Deployment Troubleshooting FAQ Test Gated Deployment in Your Own Environment Reviewers: Maya Herskovic, Principal Product Manager Dolev Tsuberi, Senior Software EngineerAccelerate Your Security Copilot Readiness with Our Global Technical Workshop Series
The Security Copilot Technical Customer Readiness team is delivering free, virtual hands-on workshops year-round, available across multiple time zones to fit global schedules. These sessions are designed specifically for technical practitioners who want to deepen their AI for Security expertise with Microsoft Entra, Intune, Microsoft Purview, and Microsoft Threat Protection. What You’ll Learn Our workshop series combines scenario-based instruction, live demos, hands-on exercises, and expert Q&A to help you operationalize Security Copilot across your security stack. These sessions are all moderated by experts from Microsoft’s engineering teams and are aligned with the latest Security Copilot capabilities. Who Should Attend These workshops are ideal for: Security Architects & Engineers SOC Analysts Identity & Access Management Engineers Endpoint & Device Admins Compliance & Risk Practitioners Partner Technical Consultants Customer technical teams adopting AI powered defense Every session delivers 100% technical content, designed to accelerate real-world Security Copilot adoption. Register now for these upcoming Security Copilot Virtual Workshops Start building Security Copilot skills—choose the product area and time zone that works best for you. Please take note of pre-requisites for each workshop in the registration page Security Copilot Virtual Workshop: Copilot in Intune January 14, 2026 8:00-9:00 AM (PST) - register here January 15, 2026 2:00 – 3:30 PM (AEDT) - register here Note this is an Asia Pacific optimized delivery. Time conversion: 4:00-5:30 PM NZDT; 11:00-12:30 AM GMT +8; 8:30-10:00 AM IST; Jan. 14 7:00-8:30 PM PST Security Copilot Virtual Workshop: Copilot in Purview January 21, 2026 8:00 – 9:30 AM (PST) - register here January 22, 2026 2:00 – 3:30 AEDT - register here Note this is an Asia Pacific optimized delivery. Time conversion: 4:00-5:30 PM NZDT; 11:00-12:30 AM GMT +8; 8:30-10:00 AM IST; Jan. 14 7:00-8:30 PM PST Security Copilot Virtual Workshop: Copilot in Defender Sign in and click 'follow' above this blog to be notified on new delivery dates, or bookmark this page and check back in. Security Copilot Virtual Workshop: Copilot in Entra Sign in and click 'follow' above this blog to be notified on new delivery dates, or bookmark this page and check back in. ______________ Learn and Engage with the Microsoft Security Community Log in and follow this Microsoft Security Community Blog and post/ interact in the Microsoft Security Community discussion spaces. Follow = Click the heart in the upper right when you're logged in 🤍 Join the Microsoft Security Community and be notified of upcoming events, product feedback surveys, and more. Get early access to Microsoft Security products and provide feedback to engineers by joining the Microsoft Customer Connection Community. Learn about the Microsoft MVP Program. Join the Microsoft Security Community LinkedIn and the Microsoft Entra Community LinkedIn326Views3likes0CommentsArtificial Intelligence & Security
Understanding Artificial Intelligence Artificial intelligence (AI) is a computational system that perform human‑intelligence tasks, learning, reasoning, problem‑solving, perception, and language understanding by leveraging algorithmic and statistical methods to analyse data and make informed decisions. Artificial Intelligence (AI) can also be abbreviated as is the simulation of human intelligence through machines programmed to learn, reason, and act. It blends statistics, machine learning, and robotics to deliver following outcomes: Prediction: The application of statistical modelling and machine learning techniques to anticipate future outcomes, such as detecting fraudulent transactions. Automation: The utilisation of robotics and artificial intelligence to streamline and execute routine processes, exemplified by automated invoice processing. Augmentation: The enhancement of human decision-making and operational capabilities through AI-driven tools, for instance, AI-assisted sales enablement. Artificial Intelligence: Core Capabilities and Market Outlook Key capabilities of AI include: Data-driven decision-making: Analysing large datasets to generate actionable insights and optimise outcomes. Anomaly detection: Identifying irregular patterns or deviations in data for risk mitigation and quality assurance. Visual interpretation: Processing and understanding visual inputs such as images and videos for applications like computer vision. Natural language understanding: Comprehending and interpreting human language to enable accurate information extraction and contextual responses. Conversational engagement: Facilitating human-like interactions through chatbots, virtual assistants, and dialogue systems. With the exponential growth of data, ML learning models and computing power. AI is advancing much faster and as According to industry analyst reports breakthroughs in deep learning and neural network architectures have enabled highly sophisticated applications across diverse sectors, including healthcare, finance, manufacturing, and retail. The global AI market is on a trajectory of significant expansion, projected to increase nearly 5X by 2030, from $391 billion in 2025 to $1.81 trillion. This growth corresponds to a compound annual growth rate (CAGR) of 35.9% during the forecast period. These projections are estimates and subject to change as per rapid growth and advancement in the AI Era. AI and Cloud Synergy AI, and cloud computing form a powerful technological mixture. Digital assistants are offering scalable, cloud-powered intelligence. Cloud platforms such as Azure provide pre-trained models and services, enabling businesses to deploy AI solutions efficiently. Core AI Workloads Capabilities Machine Learning Machine learning (ML) underpins most AI systems by enabling models to learn from historical and real-time data to make predictions, classifications, and recommendations. These models adapt over time as they are exposed to new data, improving accuracy and robustness. Example use cases: Credit risk scoring in banking, demand forecasting in retail, and predictive maintenance in manufacturing. Anomaly Detection Anomaly detection techniques identify deviations from expected patterns in data, systems, or processes. This capability is critical for risk management and operational resilience, as it enables early detection of fraud, security breaches, or equipment failures. Example use cases: Fraud detection in financial transactions, network intrusion monitoring in cybersecurity, and quality control in industrial production. Natural Language Processing (NLP) NLP focuses on enabling machines to understand, interpret, and generate human language in both text and speech formats. This capability powers a wide range of applications that require contextual comprehension and semantic accuracy. Example use cases: Sentiment analysis for customer feedback, document summarisation for legal and compliance teams, and multilingual translation for global operations. Principles of Responsible AI To ensure ethical and trustworthy AI, organisations must embrace: Reliability & Safety Privacy & Security Inclusiveness Fairness Transparency Accountability These principles are embedded in frameworks like the Responsible-AI-Standard and reinforced by governance models such as Microsoft AI Governance Framework. Responsible AI Principles and Approach | Microsoft AI AI and Security AI introduces both opportunities and risks. A responsible approach to AI security involves three dimensions: Risk Mitigation: It Is addressing threats from immature or malicious AI applications. Security Applications: These are used to enhance AI security and public safety. Governance Systems: Establishing frameworks to manage AI risks and ensure safe development. Security Risks and Opportunities Due to AI Transformation AI’s transformative nature brings new challenges: Cybersecurity: This brings the opportunities and advancement to track, detect and act against Vulnerabilities in infrastructure and learning models. Data Security: This helps the tool and solutions such as Microsoft Purview to prevent data security by performing assessments, creating Data loss prevention policies applying sensitivity labels. Information Security: The biggest risk is securing the information and due to the AI era of transformation securing IS using various AI security frameworks. These concerns are echoed in The Crucial Role of Data Security Posture Management in the AI Era, which highlights insider threats, generative AI risks, and the need for robust data governance. AI in Security Applications AI’s capabilities in data analysis and decision-making enable innovative security solutions: Network Protection: applications include use of AI algorithms for intrusion detection, malware detection, security situational awareness, and threat early warning, etc. Data Management: applications refer to the use of AI technologies to achieve data protection objectives such as hierarchical classification, leak prevention, and leak traceability. Intelligent Security: applications refer to the use of AI technology to upgrade the security field from passive defence toward the intelligent direction, developing of active judgment and timely early warning. Financial Risk Control: applications use AI technology to improve the efficiency and accuracy of credit assessment, risk management, etc., and assisting governments in the regulation of financial transactions. AI Security Management Effective AI security requires: Regulations & Policies: Establish and safety management laws specifically designed to for governance by regulatory authorities and management policies for key application domains of AI and prominent security risks. Standards & Specifications: Industry-wide benchmarks, along with international and domestic standards can be used to support AI safety. Technological Methods: Early detection with Modern set of tools such as Defender for AI can be used to support to detect and mitigate and remediate AI threats. Security Assessments: Organization should use proper tools and platforms for evaluating AI risks and perform assessments regularly using automated tools approach Conclusion AI is transforming how organizations operate, innovate, and secure their environments. As AI capabilities evolve, integrating security and governance considerations from the outset remains critical. By combining responsible AI principles, effective governance, and appropriate security measures, organizations can work toward deploying AI technologies in a manner that supports both innovation and trust. Industry projections suggest continued growth in AI‑related security investments over the coming years, reflecting increased focus on managing AI risks alongside its benefits. These estimates are subject to change and should be interpreted in the context of evolving technologies and regulatory developments. Disclaimer References to Microsoft products and frameworks are for informational purposes only and do not imply endorsement, guarantee, or contractual commitment. Market projections referenced are based on publicly available industry analyses and are subject to change.Microsoft Defender for Cloud Customer Newsletter
What's new in Defender for Cloud? Now in public preview, DCSPM (Defender for Cloud Security Posture Management) extends its capabilities to cover serverless workloads in both Azure and AWS, like Azure Web Apps and AWS Lambda. For more information, see our public documentation. Defender for Cloud’s integration with Endor Labs is now GA Focus on exploitable open-source vulnerabilities across the application lifecycle with Defender for Cloud and Endor Lab integration. This feature is now generally available! For more details, please refer to this documentation. Blogs of the month In December, our team published the following blog posts: Defender for AI Alerts Demystifying AI Security Posture Management Breaking down security silos: Defender for Cloud expands into the Defender portal Part 3: Unified Security Intelligence – Orchestrating Gen AI Threat Detection with Microsoft Sentinel Defender for Cloud in the field Watch the latest Defender for Cloud in the Field YouTube episode here: Malware Automated Remediation New Secure score in Defender for Cloud GitHub Community Check out Module 27 in the Defender for Cloud lab on GitHub. This module covers gating mechanisms to enforce security policies and prevent deployment of insecure container images. Click here for MDC Github lab module 27 Customer journeys Discover how other organizations successfully use Microsoft Defender for Cloud to protect their cloud workloads. This month we are featuring Ford Motor Company. Ford Motor Company, an American multinational automobile manufacturer, and its innovative and evolving technology footprint and infrastructure needed equally sophisticated security. With Defender and other Microsoft products like Purview, Sentinel and Entra, Ford was able to modernize and deploy end-to-end protection, with Zero-trust architecture, and reduce vulnerabilities across the enterprise. Additionally, Ford’s SOC continues to respond with speed and precision with the help of Defender XDR. Join our community! JANUARY 20 (8:00 AM- 9:00 AM PT) What's new in Microsoft Defender CSPM We offer several customer connection programs within our private communities. By signing up, you can help us shape our products through activities such as reviewing product roadmaps, participating in co-design, previewing features, and staying up-to-date with announcements. Sign up at aka.ms/JoinCCP. We greatly value your input on the types of content that enhance your understanding of our security products. Your insights are crucial in guiding the development of our future public content. We aim to deliver material that not only educates but also resonates with your daily security challenges. Whether it’s through in-depth live webinars, real-world case studies, comprehensive best practice guides through blogs, or the latest product updates, we want to ensure our content meets your needs. Please submit your feedback on which of these formats do you find most beneficial and are there any specific topics you’re interested in https://aka.ms/PublicContentFeedback. Note: If you want to stay current with Defender for Cloud and receive updates in your inbox, please consider subscribing to our monthly newsletter: https://aka.ms/MDCNewsSubscribe356Views0likes2CommentsFrom “No” to “Now”: A 7-Layer Strategy for Enterprise AI Safety
The “block” posture on Generative AI has failed. In a global enterprise, banning these tools doesn't stop usage; it simply pushes intellectual property into unmanaged channels and creates a massive visibility gap in corporate telemetry. The priority has now shifted from stopping AI to hardening the environment so that innovation can run at velocity without compromising data sovereignty. Traditional security perimeters are ineffective against the “slow bleed” of AI leakage - where data moves through prompts, clipboards, and autonomous agents rather than bulk file transfers. To secure this environment, a 7-layer defense-in-depth model is required to treat the conversation itself as the new perimeter. 1. Identity: The Only Verifiable Perimeter Identity is the primary control plane. Access to AI services must be treated with the same rigor as administrative access to core infrastructure. The strategy centers on enforcing device-bound Conditional Access, where access is strictly contingent on device health. To solve the "Account Leak" problem, the deployment of Tenant Restrictions v2 (TRv2) is essential to prevent users from signing into personal tenants using corporate-managed devices. For enhanced coverage, Universal Tenant Restrictions (UTR) via Global Secure Access (GSA) allows for consistent enforcement at the cloud edge. While TRv2 authentication-plane is GA, data-plane protection is GA for the Microsoft 365 admin center and remains in preview for other workloads such as SharePoint and Teams. 2. Eliminating the Visibility Gap (Shadow AI) You can’t secure what you can't see. Microsoft Defender for Cloud Apps (MDCA) serves to discover and govern the enterprise AI footprint, while Purview DSPM for AI (formerly AI Hub) monitors Copilot and third-party interactions. By categorizing tools using MDCA risk scores and compliance attributes, organizations can apply automated sanctioning decisions and enforce session controls for high-risk endpoints. 3. Data Hygiene: Hardening the “Work IQ” AI acts as a mirror of internal permissions. In a "flat" environment, AI acts like a search engine for your over-shared data. Hardening the foundation requires automated sensitivity labeling in Purview Information Protection. Identifying PII and proprietary code before assigning AI licenses ensures that labels travel with the data, preventing labeled content from being exfiltrated via prompts or unauthorized sharing. 4. Session Governance: Solving the “Clipboard Leak” The most common leak in 2025 is not a file upload; it’s a simple copy-paste action or a USB transfer. Deploying Conditional Access App Control (CAAC) via MDCA session policies allows sanctioned apps to function while specifically blocking cut/copy/paste. This is complemented by Endpoint DLP, which extends governance to the physical device level, preventing sensitive data from being moved to unmanaged USB storage or printers during an AI-assisted workflow. Purview Information Protection with IRM rounds this out by enforcing encryption and usage rights on the files themselves. When a user tries to print a "Do Not Print" document, Purview triggers an alert that flows into Microsoft Sentinel. This gives the SOC visibility into actual policy violations instead of them having to hunt through generic activity logs. 5. The “Agentic” Era: Agent 365 & Sharing Controls Now that we're moving from "Chat" to "Agents", Agent 365 and Entra Agent ID provide the necessary identity and control plane for autonomous entities. A quick tip: in large-scale tenants, default settings often present a governance risk. A critical first step is navigating to the Microsoft 365 admin center (Copilot > Agents) to disable the default “Anyone in organization” sharing option. Restricting agent creation and sharing to a validated security group is essential to prevent unvetted agent sprawl and ensure that only compliant agents are discoverable. 6. The Human Layer: “Safe Harbors” over Bans Security fails when it creates more friction than the risk it seeks to mitigate. Instead of an outright ban, investment in AI skilling-teaching users context minimization (redacting specifics before interacting with a model) - is the better path. Providing a sanctioned, enterprise-grade "Safe Harbor" like M365 Copilot offers a superior tool that naturally cuts down the use of Shadow AI. 7. Continuous Ops: Monitoring & Regulatory Audit Security is not a “set and forget” project, particularly with the EU AI Act on the horizon. Correlating AI interactions and DLP alerts in Microsoft Sentinel using Purview Audit (specifically the CopilotInteraction logs) data allows for real-time responses. Automated SOAR playbooks can then trigger protective actions - such as revoking an Agent ID - if an entity attempts to access sensitive HR or financial data. Final Thoughts Securing AI at scale is an architectural shift. By layering Identity, Session Governance, and Agentic Identity, AI moves from being a fragmented risk to a governed tool that actually works for the modern workplace.254Views0likes0CommentsUpdating SDK for Java used by Defender for Server/CSPM in AWS
Hi, I have a customer who is Defender for Cloud/CSPM in AWS. Last week, Cloud AWS Health Dashboard lit up with a recommendation around the use of AWS SDK for Java 1.x in their organization. This version will reach end of support on December 31, 2025. The recommendation is to migrate to AWS SDK for Java 2.x. The issue is present in all of AWS workload accounts. They found that a large amount of these alerts is caused by the Defender CSPM service, running remotely, and using AWS SDK for Java 1.x. Customer attaching a couple of sample events that were gathered from the CloudTrail logs. Please note that in both cases: assumed-role: DefenderForCloud-Ciem sourceIP: 20.237.136.191 (MS Azure range) userAgent: aws-sdk-java/1.12.742 Linux/6.6.112.1-2.azl3 OpenJDK_64-Bit_Server_VM/21.0.9+10-LTS java/21.0.9 kotlin/1.6.20 vendor/Microsoft cfg/retry-mode/legacy cfg/auth-source#unknown Can someone provide guidance about this? How to find out if DfC is going to leverage AWS SDK for Java 2.x after Dec 31, 2025? Thanks, Terru34Views0likes0CommentsSecurity as the core primitive - Securing AI agents and apps
This week at Microsoft Ignite, we shared our vision for Microsoft security -- In the agentic era, security must be ambient and autonomous, like the AI it protects. It must be woven into and around everything we build—from silicon to OS, to agents, apps, data, platforms, and clouds—and throughout everything we do. In this blog, we are going to dive deeper into many of the new innovations we are introducing this week to secure AI agents and apps. As I spend time with our customers and partners, there are four consistent themes that have emerged as core security challenges to secure AI workloads. These are: preventing agent sprawl and access to resources, protecting against data oversharing and data leaks, defending against new AI threats and vulnerabilities, and adhering to evolving regulations. Addressing these challenges holistically requires a coordinated effort across IT, developers, and security leaders, not just within security teams and to enable this, we are introducing several new innovations: Microsoft Agent 365 for IT, Foundry Control Plane in Microsoft Foundry for developers, and the Security Dashboard for AI for security leaders. In addition, we are releasing several new purpose-built capabilities to protect and govern AI apps and agents across Microsoft Defender, Microsoft Entra, and Microsoft Purview. Observability at every layer of the stack To facilitate the organization-wide effort that it takes to secure and govern AI agents and apps – IT, developers, and security leaders need observability (security, management, and monitoring) at every level. IT teams need to enable the development and deployment of any agent in their environment. To ensure the responsible and secure deployment of agents into an organization, IT needs a unified agent registry, the ability to assign an identity to every agent, manage the agent’s access to data and resources, and manage the agent’s entire lifecycle. In addition, IT needs to be able to assign access to common productivity and collaboration tools, such as email and file storage, and be able to observe their entire agent estate for risks such as over-permissioned agents. Development teams need to build and test agents, apply security and compliance controls by default, and ensure AI models are evaluated for safety guardrails and security vulnerabilities. Post deployment, development teams must observe agents to ensure they are staying on task, accessing applications and data sources appropriately, and operating within their cost and performance expectations. Security & compliance teams must ensure overall security of their AI estate, including their AI infrastructure, platforms, data, apps, and agents. They need comprehensive visibility into all their security risks- including agent sprawl and resource access, data oversharing and leaks, AI threats and vulnerabilities, and complying with global regulations. They want to address these risks by extending their existing security investments that they are already invested in and familiar with, rather than using siloed or bolt-on tools. These teams can be most effective in delivering trustworthy AI to their organizations if security is natively integrated into the tools and platforms that they use every day, and if those tools and platforms share consistent security primitives such as agent identities from Entra; data security and compliance controls from Purview; and security posture, detections, and protections from Defender. With the new capabilities being released today, we are delivering observability at every layer of the AI stack, meeting IT, developers, and security teams where they are in the tools they already use to innovate with confidence. For IT Teams - Introducing Microsoft Agent 365, the control plane for agents, now in preview The best infrastructure for managing your agents is the one you already use to manage your users. With Agent 365, organizations can extend familiar tools and policies to confidently deploy and secure agents, without reinventing the wheel. By using the same trusted Microsoft 365 infrastructure, productivity apps, and protections, organizations can now apply consistent and familiar governance and security controls that are purpose-built to protect against agent-specific threats and risks. gement and governance of agents across organizations Microsoft Agent 365 delivers a unified agent Registry, Access Control, Visualization, Interoperability, and Security capabilities for your organization. These capabilities work together to help organizations manage agents and drive business value. The Registry powered by the Entra provides a complete and unified inventory of all the agents deployed and used in your organization including both Microsoft and third-party agents. Access Control allows you to limit the access privileges of your agents to only the resources that they need and protect their access to resources in real time. Visualization gives organizations the ability to see what matters most and gain insights through a unified dashboard, advanced analytics, and role-based reporting. Interop allows agents to access organizational data through Work IQ for added context, and to integrate with Microsoft 365 apps such as Outlook, Word, and Excel so they can create and collaborate alongside users. Security enables the proactive detection of vulnerabilities and misconfigurations, protects against common attacks such as prompt injections, prevents agents from processing or leaking sensitive data, and gives organizations the ability to audit agent interactions, assess compliance readiness and policy violations, and recommend controls for evolving regulatory requirements. Microsoft Agent 365 also includes the Agent 365 SDK, part of Microsoft Agent Framework, which empowers developers and ISVs to build agents on their own AI stack. The SDK enables agents to automatically inherit Microsoft's security and governance protections, such as identity controls, data security policies, and compliance capabilities, without the need for custom integration. For more details on Agent 365, read the blog here. For Developers - Introducing Microsoft Foundry Control Plane to observe, secure and manage agents, now in preview Developers are moving fast to bring agents into production, but operating them at scale introduces new challenges and responsibilities. Agents can access tools, take actions, and make decisions in real time, which means development teams must ensure that every agent behaves safely, securely, and consistently. Today, developers need to work across multiple disparate tools to get a holistic picture of the cybersecurity and safety risks that their agents may have. Once they understand the risk, they then need a unified and simplified way to monitor and manage their entire agent fleet and apply controls and guardrails as needed. Microsoft Foundry provides a unified platform for developers to build, evaluate and deploy AI apps and agents in a responsible way. Today we are excited to announce that Foundry Control Plane is available in preview. This enables developers to observe, secure, and manage their agent fleets with built-in security, and centralized governance controls. With this unified approach, developers can now identify risks and correlate disparate signals across their models, agents, and tools; enforce consistent policies and quality gates; and continuously monitor task adherence and runtime risks. Foundry Control Plane is deeply integrated with Microsoft’s security portfolio to provide a ‘secure by design’ foundation for developers. With Microsoft Entra, developers can ensure an agent identity (Agent ID) and access controls are built into every agent, mitigating the risk of unmanaged agents and over permissioned resources. With Microsoft Defender built in, developers gain contextualized alerts and posture recommendations for agents directly within the Foundry Control Plane. This integration proactively prevents configuration and access risks, while also defending agents from runtime threats in real time. Microsoft Purview’s native integration into Foundry Control Plane makes it easy to enable data security and compliance for every Foundry-built application or agent. This allows Purview to discover data security and compliance risks and apply policies to prevent user prompts and AI responses from safety and policy violations. In addition, agent interactions can be logged and searched for compliance and legal audits. This integration of the shared security capabilities, including identity and access, data security and compliance, and threat protection and posture ensures that security is not an afterthought; it’s embedded at every stage of the agent lifecycle, enabling you to start secure and stay secure. For more details, read the blog. For Security Teams - Introducing Security Dashboard for AI - unified risk visibility for CISOs and AI risk leaders, coming soon AI proliferation in the enterprise, combined with the emergence of AI governance committees and evolving AI regulations, leaves CISOs and AI risk leaders needing a clear view of their AI risks, such as data leaks, model vulnerabilities, misconfigurations, and unethical agent actions across their entire AI estate, spanning AI platforms, apps, and agents. 90% of security professionals, including CISOs, report that their responsibilities have expanded to include data governance and AI oversight within the past year. 1 At the same time, 86% of risk managers say disconnected data and systems lead to duplicated efforts and gaps in risk coverage. 2 To address these needs, we are excited to introduce the Security Dashboard for AI. This serves as a unified dashboard that aggregates posture and real-time risk signals from Microsoft Defender, Microsoft Entra, and Microsoft Purview. This unified dashboard allows CISOs and AI risk leaders to discover agents and AI apps, track AI posture and drift, and correlate risk signals to investigate and act across their entire AI ecosystem. For example, you can see your full AI inventory and get visibility into a quarantined agent, flagged for high data risk due to oversharing sensitive information in Purview. The dashboard then correlates that signal with identity insights from Entra and threat protection alerts from Defender to provide a complete picture of exposure. From there, you can delegate tasks to the appropriate teams to enforce policies and remediate issues quickly. With the Security Dashboard for AI, CISOs and risk leaders gain a clear, consolidated view of AI risks across agents, apps, and platforms—eliminating fragmented visibility, disconnected posture insights, and governance gaps as AI adoption scales. Best of all, there’s nothing new to buy. If you’re already using Microsoft security products to secure AI, you’re already a Security Dashboard for AI customer. Figure 5: Security Dashboard for AI provides CISOs and AI risk leaders with a unified view of their AI risk by bringing together their AI inventory, AI risk, and security recommendations to strengthen overall posture Together, these innovations deliver observability and security across IT, development, and security teams, powered by Microsoft’s shared security capabilities. With Microsoft Agent 365, IT teams can manage and secure agents alongside users. Foundry Control Plane gives developers unified governance and lifecycle controls for agent fleets. Security Dashboard for AI provides CISOs and AI risk leaders with a consolidated view of AI risks across platforms, apps, and agents. Added innovation to secure and govern your AI workloads In addition to the IT, developer, and security leader-focused innovations outlined above, we continue to accelerate our pace of innovation in Microsoft Entra, Microsoft Purview, and Microsoft Defender to address the most pressing needs for securing and governing your AI workloads. These needs are: Manage agent sprawl and resource access e.g. managing agent identity, access to resources, and permissions lifecycle at scale Prevent data oversharing and leaks e.g. protecting sensitive information shared in prompts, responses, and agent interactions Defend against shadow AI, new threats, and vulnerabilities e.g. managing unsanctioned applications, preventing prompt injection attacks, and detecting AI supply chain vulnerabilities Enable AI governance for regulatory compliance e.g. ensuring AI development, operations, and usage comply with evolving global regulations and frameworks Manage agent sprawl and resource access 76% of business leaders expect employees to manage agents within the next 2–3 years. 3 Widespread adoption of agents is driving the need for visibility and control, which includes the need for a unified registry, agent identities, lifecycle governance, and secure access to resources. Today, Microsoft Entra provides robust identity protection and secure access for applications and users. However, organizations lack a unified way to manage, govern, and protect agents in the same way they manage their users. Organizations need a purpose-built identity and access framework for agents. Introducing Microsoft Entra Agent ID, now in preview Microsoft Entra Agent ID offers enterprise-grade capabilities that enable organizations to prevent agent sprawl and protect agent identities and their access to resources. These new purpose-built capabilities enable organizations to: Register and manage agents: Get a complete inventory of the agent fleet and ensure all new agents are created with an identity built-in and are automatically protected by organization policies to accelerate adoption. Govern agent identities and lifecycle: Keep the agent fleet under control with lifecycle management and IT-defined guardrails for both agents and people who create and manage them. Protect agent access to resources: Reduce risk of breaches, block risky agents, and prevent agent access to malicious resources with conditional access and traffic inspection. Agents built in Microsoft Copilot Studio, Microsoft Foundry, and Security Copilot get an Entra Agent ID built-in at creation. Developers can also adopt Entra Agent ID for agents they build through Microsoft Agent Framework, Microsoft Agent 365 SDK, or Microsoft Entra Agent ID SDK. Read the Microsoft Entra blog to learn more. Prevent data oversharing and leaks Data security is more complex than ever. Information Security Media Group (ISMG) reports that 80% of leaders cite leakage of sensitive data as their top concern. 4 In addition to data security and compliance risks of generative AI (GenAI) apps, agents introduces new data risks such as unsupervised data access, highlighting the need to protect all types of corporate data, whether it is accessed by employees or agents. To mitigate these risks, we are introducing new Microsoft Purview data security and compliance capabilities for Microsoft 365 Copilot and for agents and AI apps built with Copilot Studio and Microsoft Foundry, providing unified protection, visibility, and control for users, AI Apps, and Agents. New Microsoft Purview controls safeguard Microsoft 365 Copilot with real-time protection and bulk remediation of oversharing risks Microsoft Purview and Microsoft 365 Copilot deliver a fully integrated solution for protecting sensitive data in AI workflows. Based on ongoing customer feedback, we’re introducing new capabilities to deliver real-time protection for sensitive data in M365 Copilot and accelerated remediation of oversharing risks: Data risk assessments: Previously, admins could monitor oversharing risks such as SharePoint sites with unprotected sensitive data. Now, they can perform item-level investigations and bulk remediation for overshared files in SharePoint and OneDrive to quickly reduce oversharing exposure. Data Loss Prevention (DLP) for M365 Copilot: DLP previously excluded files with sensitivity labels from Copilot processing. Now in preview, DLP also prevents prompts that include sensitive data from being processed in M365 Copilot, Copilot Chat, and Copilot agents, and prevents Copilot from using sensitive data in prompts for web grounding. Priority cleanup for M365 Copilot assets: Many organizations have org-wide policies to retain or delete data. Priority cleanup, now generally available, lets admins delete assets that are frequently processed by Copilot, such as meeting transcripts and recordings, on an independent schedule from the org-wide policies while maintaining regulatory compliance. On-demand classification for meeting transcripts: Purview can now detect sensitive information in meeting transcripts on-demand. This enables data security admins to apply DLP policies and enforce Priority cleanup based on the sensitive information detected. & bulk remediation Read the full Data Security blog to learn more. Introducing new Microsoft Purview data security capabilities for agents and apps built with Copilot Studio and Microsoft Foundry, now in preview Microsoft Purview now extends the same data security and compliance for users and Copilots to agents and apps. These new capabilities are: Enhanced Data Security Posture Management: A centralized DSPM dashboard that provides observability, risk assessment, and guided remediation across users, AI apps, and agents. Insider Risk Management (IRM) for Agents: Uniquely designed for agents, using dedicated behavioral analytics, Purview dynamically assigns risk levels to agents based on their risky handing of sensitive data and enables admins to apply conditional policies based on that risk level. Sensitive data protection with Azure AI Search: Azure AI Search enables fast, AI-driven retrieval across large document collections, essential for building AI Apps. When apps or agents use Azure AI Search to index or retrieve data, Purview sensitivity labels are preserved in the search index, ensuring that any sensitive information remains protected under the organization’s data security & compliance policies. For more information on preventing data oversharing and data leaks - Learn how Purview protects and governs agents in the Data Security and Compliance for Agents blog. Defend against shadow AI, new threats, and vulnerabilities AI workloads are subject to new AI-specific threats like prompt injections attacks, model poisoning, and data exfiltration of AI generated content. Although security admins and SOC analysts have similar tasks when securing agents, the attack methods and surfaces differ significantly. To help customers defend against these novel attacks, we are introducing new capabilities in Microsoft Defender that deliver end-to-end protection, from security posture management to runtime defense. Introducing Security Posture Management for agents, now in preview As organizations adopt AI agents to automate critical workflows, they become high-value targets and potential points of compromise, creating a critical need to ensure agents are hardened, compliant, and resilient by preventing misconfigurations and safeguarding against adversarial manipulation. Security Posture Management for agents in Microsoft Defender now provides an agent inventory for security teams across Microsoft Foundry and Copilot Studio agents. Here, analysts can assess the overall security posture of an agent, easily implement security recommendations, and identify vulnerabilities such as misconfigurations and excessive permissions, all aligned to the MITRE ATT&CK framework. Additionally, the new agent attack path analysis visualizes how an agent’s weak security posture can create broader organizational risk, so you can quickly limit exposure and prevent lateral movement. Introducing Threat Protection for agents, now in preview Attack techniques and attack surfaces for agents are fundamentally different from other assets in your environment. That’s why Defender is delivering purpose-built protections and detections to help defend against them. Defender is introducing runtime protection for Copilot Studio agents that automatically block prompt injection attacks in real time. In addition, we are announcing agent-specific threat detections for Copilot Studio and Microsoft Foundry agents coming soon. Defender automatically correlates these alerts with Microsoft’s industry-leading threat intelligence and cross-domain security signals to deliver richer, contextualized alerts and security incident views for the SOC analyst. Defender’s risk and threat signals are natively integrated into the new Microsoft Foundry Control Plane, giving development teams full observability and the ability to act directly from within their familiar environment. Finally, security analysts will be able to hunt across all agent telemetry in the Advanced Hunting experience in Defender, and the new Agent 365 SDK extends Defender’s visibility and hunting capabilities to third-party agents, starting with Genspark and Kasisto, giving security teams even more coverage across their AI landscape. To learn more about how you can harden the security posture of your agents and defend against threats, read the Microsoft Defender blog. Enable AI governance for regulatory compliance Global AI regulations like the EU AI Act and NIST AI RMF are evolving rapidly; yet, according to ISMG, 55% of leaders report lacking clarity on current and future AI regulatory requirements. 5 As enterprises adopt AI, they must ensure that their AI innovation aligns with global regulations and standards to avoid costly compliance gaps. Introducing new Microsoft Purview Compliance Manager capabilities to stay ahead of evolving AI regulations, now in preview Today, Purview Compliance Manager provides over 300 pre-built assessments for common industry, regional, and global standards and regulations. However, the pace of change for new AI regulations requires controls to be continuously re-evaluated and updated so that organizations can adapt to ongoing changes in regulations and stay compliant. To address this need, Compliance Manager now includes AI-powered regulatory templates. AI-powered regulatory templates enable real-time ingestion and analysis of global regulatory documents, allowing compliance teams to quickly adapt to changes as they happen. As regulations evolve, the updated regulatory documents can be uploaded to Compliance Manager, and the new requirements are automatically mapped to applicable recommended actions to implement controls across Microsoft Defender, Microsoft Entra, Microsoft Purview, Microsoft 365, and Microsoft Foundry. Automated actions by Compliance Manager further streamline governance, reduce manual workload, and strengthen regulatory accountability. Introducing expanded Microsoft Purview compliance capabilities for agents and AI apps now in preview Microsoft Purview now extends its compliance capabilities across agent-generated interactions, ensuring responsible use and regulatory alignment as AI becomes deeply embedded across business processes. New capabilities include expanded coverage for: Audit: Surface agent interactions, lifecycle events, and data usage with Purview Audit. Unified audit logs across user and agent activities, paired with traceability for every agent using an Entra Agent ID, support investigation, anomaly detection, and regulatory reporting. Communication Compliance: Detect prompts sent to agents and agent-generated responses containing inappropriate, unethical, or risky language, including attempts to manipulate agents into bypassing policies, generating risky content, or producing noncompliant outputs. When issues arise, data security admins get full context, including the prompt, the agent’s output, and relevant metadata, so they can investigate and take corrective action Data Lifecycle Management: Apply retention and deletion policies to agent-generated content and communication flows to automate lifecycle controls and reduce regulatory risk. Read about Microsoft Purview data security for agents to learn more. Finally, we are extending our data security, threat protection, and identity access capabilities to third-party apps and agents via the network. Advancing Microsoft Entra Internet Access Secure Web + AI Gateway - extend runtime protections to the network, now in preview Microsoft Entra Internet Access, part of the Microsoft Entra Suite, has new capabilities to secure access to and usage of GenAI at the network level, marking a transition from Secure Web Gateway to Secure Web and AI Gateway. Enterprises can accelerate GenAI adoption while maintaining compliance and reducing risk, empowering employees to experiment with new AI tools safely. The new capabilities include: Prompt injection protection which blocks malicious prompts in real time by extending Azure AI Prompt Shields to the network layer. Network file filtering which extends Microsoft Purview to inspect files in transit and prevents regulated or confidential data from being uploaded to unsanctioned AI services. Shadow AI Detection that provides visibility into unsanctioned AI applications through Cloud Application Analytics and Defender for Cloud Apps risk scoring, empowering security teams to monitor usage trends, apply Conditional Access, or block high-risk apps instantly. Unsanctioned MCP server blocking prevents access to MCP servers from unauthorized agents. With these controls, you can accelerate GenAI adoption while maintaining compliance and reducing risk, so employees can experiment with new AI tools safely. Read the Microsoft Entra blog to learn more. As AI transforms the enterprise, security must evolve to meet new challenges—spanning agent sprawl, data protection, emerging threats, and regulatory compliance. Our approach is to empower IT, developers, and security leaders with purpose-built innovations like Agent 365, Foundry Control Plane, and the Security Dashboard for AI. These solutions bring observability, governance, and protection to every layer of the AI stack, leveraging familiar tools and integrated controls across Microsoft Defender, Microsoft Entra, and Microsoft Purview. The future of security is ambient, autonomous, and deeply woven into the fabric of how we build, deploy, and govern AI systems. Explore additional resources Learn more about Security for AI solutions on our webpage Learn more about Microsoft Agent 365 Learn more about Microsoft Entra Agent ID Get started with Microsoft 365 Copilot Get started with Microsoft Copilot Studio Get started with Microsoft Foundry Get started with Microsoft Defender for Cloud Get started with Microsoft Entra Get started with Microsoft Purview Get started with Microsoft Purview Compliance Manager Sign up for a free Microsoft 365 E5 Security Trial and Microsoft Purview Trial 1 Bedrock Security, 2025 Data Security Confidence Index, published Mar 17, 2025. 2 AuditBoard & Ascend2, Connected Risk Report 2024; as cited by MIT Sloan Management Review, Spring 2025. 3 KPMG AI Quarterly Pulse Survey | Q3 2025. September 2025. n= 130 U.S.-based C-suite and business leaders representing organizations with annual revenue of $1 billion or more 4 First Annual Generative AI study: Business Rewards vs. Security Risks, , Q3 2023, ISMG, N=400 5 First Annual Generative AI study: Business Rewards vs. Security Risks, Q3 2023, ISMG, N=400Security Guidance Series: CAF 4.0 Threat Hunting From Detection to Anticipation
The CAF 4.0 update reframes C2 (Threat Hunting) as a cornerstone of proactive cyber resilience. According to the NCSC CAF 4.0, this principle is no longer about occasional investigations or manual log reviews; it now demands structured, frequent, and intelligence-led threat hunting that evolves in line with organizational risk. The expectation is that UK public sector organizations will not just respond to alerts but will actively search for hidden or emerging threats that evade standard detection technologies, documenting their findings and using them to strengthen controls and response. In practice, this represents a shift from detection to anticipation. Threat hunting under CAF 4.0 should be hypothesis-driven, focusing on attacker tactics, techniques, and procedures (TTPs) rather than isolated indicators of compromise (IoCs). Organizations must build confidence that their hunting processes are repeatable, measurable, and continuously improving, leveraging automation and threat intelligence to expand coverage and consistency. Microsoft E3 Microsoft E3 equips organizations with the baseline capabilities to begin threat investigation, forming the starting point for Partially Achieved maturity under CAF 4.0 C2. At this level, hunting is ad hoc and event-driven, but it establishes the foundation for structured processes. How E3 contributes to the following objectives in C2: Reactive detection for initial hunts: Defender for Endpoint Plan 1 surfaces alerts on phishing, malware, and suspicious endpoint activity. Analysts can use these alerts to triage incidents and document steps taken, creating the first iteration of a hunting methodology. Identity correlation and manual investigation: Entra ID P1 provides Conditional Access and MFA enforcement, while audit telemetry in the Security & Compliance Centre supports manual reviews of identity anomalies. These capabilities allow organizations to link endpoint and identity signals during investigations. Learning from incidents: By recording findings from reactive hunts and feeding lessons into risk decisions, organizations begin to build repeatable processes, even if hunts are not yet hypothesis-driven or frequent enough to match risk. What’s missing for Achieved: Under E3, hunts remain reactive, lack documented hypotheses, and do not routinely convert findings into automated detections. Achieving full maturity typically requires regular, TTP-focused hunts, automation, and integration with advanced analytics, capabilities found in higher-tier solutions. Microsoft E5 Microsoft E5 elevates threat hunting from reactive investigation to a structured, intelligence-driven discipline, a defining feature of Achieved maturity under CAF 4.0, C2. Distinctive E5 capabilities for C2: Hypothesis-driven hunts at scale: Defender Advanced Hunting (KQL) enables analysts to test hypotheses across correlated telemetry from endpoints, identities, email, and SaaS applications. This supports hunts focused on adversary TTPs, not just atomic IoCs, as CAF requires. Turning hunts into detections: Custom hunting queries can be converted into alert rules, operationalizing findings into automated detection and reducing reliance on manual triage. Threat intelligence integration: Microsoft Threat Intelligence feeds real-time actor tradecraft and sector-specific campaigns into the hunting workflow, ensuring hunts anticipate emerging threats rather than react to incidents. Identity and lateral movement focus: Defender for Identity surfaces Kerberos abuse, credential replay, and lateral movement patterns, enabling hunts that span beyond endpoints and email. Documented and repeatable process: E5 supports recording hunt queries and outcomes via APIs and portals, creating evidence for audits and driving continuous improvement, a CAF expectation. By embedding hypothesis-driven hunts, automation, and intelligence into business-as-usual operations, E5 helps public sector organizations meet CAF C2’s requirement for regular, documented hunts that proactively reduce risk, and evolve with the threat landscape. Sentinel Microsoft Sentinel takes threat hunting beyond the Microsoft ecosystem, unifying telemetry from endpoints, firewalls, OT systems, and third-party SaaS into a single cloud-native SIEM and SOAR platform. This consolidation helps enable hunts that span the entire attack surface, a critical step toward achieving maturity under CAF 4.0 C2. Key capabilities for control C2: Attacker-centric analysis: MITRE ATT&CK-aligned analytics and KQL-based hunting allow teams to identify stealthy behaviours, simulate breach paths, and validate detection coverage. Threat intelligence integration: Sentinel enriches hunts with national and sector-specific intelligence (e.g. NCSC advisories), ensuring hunts target the most relevant TTPs. Automation and repeatability: SOAR playbooks convert post-hunt findings into automated workflows for containment, investigation, and documentation, meeting CAF’s requirement for structured, continuously improving hunts. Evidence-driven improvement: Recorded hunts and automated reporting create a feedback loop that strengthens posture and demonstrates compliance. By combining telemetry, intelligence, and automation, Sentinel helps organizations embed threat hunting as a routine, scalable process, turning insights into detections and ensuring hunts evolve with the threat landscape. The video below shows how E3, E5 and Sentinel power real C2 threat hunts. Bringing it all Together By progressing from E3’s reactive investigation to E5’s intelligence-led correlation and Sentinel’s automated hunting and orchestration, organizations can develop an end-to-end capability that not only detects but anticipates and helps prevent disruption to essential public services across the UK. This is the operational reality of Achieved under CAF 4.0 C2 (Threat Hunting) - a structured, data-driven, and intelligence-informed approach that transforms threat hunting from an isolated task into an ongoing discipline of proactive defence. To demonstrate what effective, CAF-aligned threat hunting looks like, the following one-slider and demo walk through how Microsoft’s security tools support structured, repeatable hunts that match organizational risk. These examples help translate C2’s expectations into practical, operational activity. CAF 4.0 challenges public-sector defenders to move beyond detection and embrace anticipation. How mature is your organization’s ability to uncover the threats that have not yet been seen? In this final post of the series, the message is clear - true cyber resilience moves beyond reactivity towards a predictive approach.Secure and govern AI apps and agents with Microsoft Purview
The Microsoft Purview family is here to help you secure and govern data across third party IaaS and Saas, multi-platform data environment, while helping you meet compliance requirements you may be subject to. Purview brings simplicity with a comprehensive set of solutions built on a platform of shared capabilities, that helps keep your most important asset, data, safe. With the introduction of AI technology, Purview also expanded its data coverage to include discovering, protecting, and governing the interactions of AI apps and agents, such as Microsoft Copilots like Microsoft 365 Copilot and Security Copilot, Enterprise built AI apps like Chat GPT enterprise, and other consumer AI apps like DeepSeek, accessed through the browser. To help you view, investigate interactions with all those AI apps, and to create and manage policies to secure and govern them in one centralized place, we have launched Purview Data Security Posture Management (DSPM) for AI. You can learn more about DSPM for AI here with short video walkthroughs: Learn how Microsoft Purview Data Security Posture Management (DSPM) for AI provides data security and compliance protections for Copilots and other generative AI apps | Microsoft Learn Purview capabilities for AI apps and agents To understand our current set of capabilities within Purview to discover, protect, and govern various AI apps and agents, please refer to our Learn doc here: Microsoft Purview data security and compliance protections for Microsoft 365 Copilot and other generative AI apps | Microsoft Learn Here is a quick reference guide for the capabilities available today: Note that currently, DLP for Copilot and adhering to sensitivity label are currently designed to protect content in Microsoft 365. Thus, Security Copilot and Copilot in Fabric, along with Copilot studio custom agents that do not use Microsoft 365 as a content source, do not have these features available. Please see list of AI sites supported by Microsoft Purview DSPM for AI here Conclusion Microsoft Purview can help you discover, protect, and govern the prompts and responses from AI applications in Microsoft Copilot experiences, Enterprise AI apps, and other AI apps through its data security and data compliance solutions, while allowing you to view, investigate, and manage interactions in one centralized place in DSPM for AI. Follow up reading Check out the deployment guides for DSPM for AI How to deploy DSPM for AI - https://aka.ms/DSPMforAI/deploy How to use DSPM for AI data risk assessment to address oversharing - https://aka.ms/dspmforai/oversharing Address oversharing concerns with Microsoft 365 blueprint - aka.ms/Copilot/Oversharing Explore the Purview SDK Microsoft Purview SDK Public Preview | Microsoft Community Hub (blog) Microsoft Purview documentation - purview-sdk | Microsoft Learn Build secure and compliant AI applications with Microsoft Purview (video) References for DSPM for AI Microsoft Purview data security and compliance protections for Microsoft 365 Copilot and other generative AI apps | Microsoft Learn Considerations for deploying Microsoft Purview AI Hub and data security and compliance protections for Microsoft 365 Copilot and Microsoft Copilot | Microsoft Learn Block Users From Sharing Sensitive Information to Unmanaged AI Apps Via Edge on Managed Devices (preview) | Microsoft Learn as part of Scenario 7 of Create and deploy a data loss prevention policy | Microsoft Learn Commonly used properties in Copilot audit logs - Audit logs for Copilot and AI activities | Microsoft Learn Supported AI sites by Microsoft Purview for data security and compliance protections | Microsoft Learn Where Copilot usage data is stored and how you can audit it - Microsoft 365 Copilot data protection and auditing architecture | Microsoft Learn Downloadable whitepaper: Data Security for AI Adoption | Microsoft Explore the roadmap for DSPM for AI Public roadmap for DSPM for AI - Microsoft 365 Roadmap | Microsoft 365PMPur