Azure ExpressRoute
37 TopicsA Guide to Azure Data Transfer Pricing
Understanding Azure networking charges is essential for businesses aiming to manage their budgets effectively. Given the complexity of Azure networking pricing, which involves various influencing factors, the goal here is to bring a clearer understanding of the associated data transfer costs by breaking down the pricing models into the following use cases: VM to VM VM to Private Endpoint VM to Internal Standard Load Balancer (ILB) VM to Internet Hybrid connectivity Please note this is a first version, with a second version to follow that will include additional scenarios. Disclaimer: Pricing may change over time, check the public Azure pricing calculator for up-to-date pricing information. Actual pricing may vary depending on agreements, purchase dates, and currency exchange rates. Sign in to the Azure pricing calculator to see pricing based on your current program/offer with Microsoft. 1. VM to VM 1.1. VM to VM, same VNet Data transfer within the same virtual network (VNet) is free of charge. This means that traffic between VMs within the same VNet will not incur any additional costs. Doc. Data transfer across Availability Zones (AZ) is free. Doc. 1.2. VM to VM, across VNet peering Azure VNet peering enables seamless connectivity between two virtual networks, allowing resources in different VNets to communicate with each other as if they were within the same network. When data is transferred between VNets, charges apply for both ingress and egress data. Doc: VM to VM, across VNet peering, same region VM to VM, across Global VNet peering Azure regions are grouped into 3 Zones (distinct from Avaialbility Zones within a specific Azure region). The pricing for Global VNet Peering is based on that geographic structure. Data transfer between VNets in different zones incurs outbound and inbound data transfer rates for the respective zones. When data is transferred from a VNet in Zone 1 to a VNet in Zone 2, outbound data transfer rates for Zone 1 and inbound data transfer rates for Zone 2 will be applicable. Doc. 1.3. VM to VM, through Network Virtual Appliance (NVA) Data transfer through an NVA involves charges for both ingress and egress data, depending on the volume of data processed. When an NVA is in the path, such as for spoke VNet to spoke VNet connectivity via an NVA (firewall...) in the hub VNet, it incurs VM to VM pricing twice. The table above reflects only data transfer charges and does not include NVA/Azure Firewall processing costs. 2. VM to Private Endpoint (PE) Private Endpoint pricing includes charges for the provisioned resource and data transfer costs based on traffic direction. For instance, writing to a Storage Account through a Private Endpoint incurs outbound data charges, while reading incurs inbound data charges. Doc: 2.1. VM to PE, same VNet Since data transfer within a VNet is free, charges are only applied for data processing through the Private Endpoint. Cross-region traffic will incur additional costs if the Storage Account and the Private Endpoint are located in different regions. 2.2. VM to PE, across VNet peering Accessing Private Endpoints from a peered network incurs only Private Link Premium charges, with no peering fees. Doc. VM to PE, across VNet peering, same region VM to PE, across VNet peering, PE region != SA region 2.3. VM to PE, through NVA When an NVA is in the path, such as for spoke VNet to spoke VNet connectivity via a firewall in the hub VNet, it incurs VM to VM charges between the VM and the NVA. However, as per the PE pricing model, there are no charges between the NVA and the PE. The table above reflects only data transfer charges and does not include NVA/Azure Firewall processing costs. 3. VM to Internal Load Balancer (ILB) Azure Standard Load Balancer pricing is based on the number of load balancing rules as well as the volume of data processed. Doc: 3.1. VM to ILB, same VNet Data transfer within the same virtual network (VNet) is free. However, the data processed by the ILB is charged based on its volume and on the number load balancing rules implemented. Only the inbound traffic is processed by the ILB (and charged), the return traffic goes direct from the backend to the source VM (free of charge). 3.2. VM to ILB, across VNet peering In addition to the Load Balancer costs, data transfer charges between VNets apply for both ingress and egress. 3.3. VM to ILB, through NVA When an NVA is in the path, such as for spoke VNet to spoke VNet connectivity via a firewall in the hub VNet, it incurs VM to VM charges between the VM and the NVA and VM to ILB charges between the NVA and the ILB/backend resource. The table above reflects only data transfer charges and does not include NVA/Azure Firewall processing costs. 4. VM to internet 4.1. Data transfer and inter-region pricing model Bandwidth refers to data moving in and out of Azure data centers, as well as data moving between Azure data centers; other transfers are explicitly covered by the Content Delivery Network, ExpressRoute pricing, or Peering. Doc: 4.2. Routing Preference in Azure and internet egress pricing model When creating a public IP in Azure, Azure Routing Preference allows you to choose how your traffic routes between Azure and the Internet. You can select either the Microsoft Global Network or the public internet for routing your traffic. Doc: See how this choice can impact the performance and reliability of network traffic: By selecting a Routing Preference set to Microsoft network, ingress traffic enters the Microsoft network closest to the user, and egress traffic exits the network closest to the user, minimizing travel on the public internet (“Cold Potato” routing). On the contrary, setting the Routing Preference to internet, ingress traffic enters the Microsoft network closest to the hosted service region. Transit ISP networks are used to route traffic, travel on the Microsoft Global Network is minimized (“Hot Potato” routing). Bandwidth pricing for internet egress, Doc: 4.3. VM to internet, direct Data transferred out of Azure to the internet incurs charges, while data transferred into Azure is free of charge. Doc. It is important to note that default outbound access for VMs in Azure will be retired on September 30 2025, migration to an explicit outbound internet connectivity method is recommended. Doc. 4.4. VM to internet, with a public IP Here a standard public IP is explicitly associated to a VM NIC, that incurs additional costs. Like in the previous scenario, data transferred out of Azure to the internet incurs charges, while data transferred into Azure is free of charge. Doc. 4.5. VM to internet, with NAT Gateway In addition to the previous costs, data transfer through a NAT Gateway involves charges for both the data processed and the NAT Gateway itself, Doc: 5. Hybrid connectivity Hybrid connectivity involves connecting on-premises networks to Azure VNets. The pricing model includes charges for data transfer between the on-premises network and Azure, as well as any additional costs for using Network Virtual Appliances (NVAs) or Azure Firewalls in the hub VNet. 5.1. H&S Hybrid connectivity without firewall inspection in the hub For an inbound flow, from the ExpressRoute Gateway to a spoke VNet, VNet peering charges are applied once on the spoke inbound. There are no charges on the hub outbound. For an outbound flow, from a spoke VNet to an ER branch, VNet peering charges are applied once, outbound of the spoke only. There are no charges on the hub inbound. Doc. The table above does not include ExpressRoute connectivity related costs. 5.2. H&S Hybrid connectivity with firewall inspection in the hub Since traffic transits and is inspected via a firewall in the hub VNet (Azure Firewall or 3P firewall NVA), the previous concepts do not apply. “Standard” inter-VNet VM-to-VM charges apply between the FW and the destination VM : inbound and outbound on both directions. Once outbound from the source VNet (Hub or Spoke), once inbound on the destination VNet (Spoke or Hub). The table above reflects only data transfer charges within Azure and does not include NVA/Azure Firewall processing costs nor the costs related to ExpressRoute connectivity. 5.3. H&S Hybrid connectivity via a 3rd party connectivity NVA (SDWAN or IPSec) Standard inter-VNet VM-to-VM charges apply between the NVA and the destination VM: inbound and outbound on both directions, both in the Hub VNet and in the Spoke VNet. 5.4. vWAN scenarios VNet peering is charged only from the point of view of the spoke – see examples and vWAN pricing components. Next steps with cost management To optimize cost management, Azure offers tools for monitoring and analyzing network charges. Azure Cost Management and Billing allows you to track and allocate costs across various services and resources, ensuring transparency and control over your expenses. By leveraging these tools, businesses can gain a deeper understanding of their network costs and make informed decisions to optimize their Azure spending.13KViews14likes2CommentsInspection Patterns in Hub-and-Spoke and vWAN Architectures
By shruthi_nair Mays_Algebary Inspection plays a vital role in network architecture, and each customer may have unique inspection requirements. This article explores common inspection scenarios in both Hub-and-Spoke and Virtual WAN (vWAN) topologies. We’ll walk through design approaches assuming a setup with two Hubs or Virtual Hubs (VHubs) connected to on-premises environments via ExpressRoute. The specific regions of the Hubs or VHubs are not critical, as the same design principles can be applied across regions. Scenario1: Hub-and-Spoke Inspection Patterns In the Hub-and-Spoke scenarios, the baseline architecture assumes the presence of two Hub VNets. Each Hub VNet is peered with its local spoke VNets as well as with the other Hub VNet (Hub2-VNet). Additionally, both Hub VNets are connected to both local and remote ExpressRoute circuits to ensure redundancy. Note: In Hub-and-Spoke scenarios, connectivity between virtual networks over ExpressRoute circuits across Hubs is intentionally disabled. This ensures that inter-Hub traffic uses VNet peering, which provides a more optimized path, rather than traversing the ExpressRoute circuit. In Scenario 1, we present two implementation approaches: a traditional method and an alternative leveraging Azure Virtual Network Manager (AVNM). Option1: Full Inspection A widely adopted design pattern is to inspect all traffic, both east-west and north-south, to meet security and compliance requirements. This can be implemented using a traditional Hub-and-Spoke topology with VNet Peering and User-Defined Routes (UDRs), or by leveraging AVNM with Connectivity Configurations and centralized UDR management. In the traditional approach: VNet Peering is used to connect each spoke to its local Hub, and to establish connectivity between the two Hubs. UDRs direct traffic to the firewall as the next hop, ensuring inspection before reaching its destination. These UDRs are applied at the Spoke VNets, the Gateway Subnet, and the Firewall Subnet (especially for inter-region scenarios), as shown in the below diagram. As your environment grows, managing individual UDRs and VNet Peerings manually can become complex. To simplify deployment and ongoing management at scale, you can use AVNM. With AVNM: Use the Hub-and-Spoke connectivity configuration to manage routing within a single Hub. Use the Mesh connectivity configuration to establish Inter-Hub connectivity between the two Hubs. AVNM also enables centralized creation, assignment, and management of UDRs, streamlining network configuration at scale. Connectivity Inspection Table Connectivity Scenario Inspected On-premises ↔ Azure ✅ Spoke ↔ Spoke ✅ Spoke ↔ Internet ✅ Option2: Selective Inspection Between Azure VNets In some scenarios, full traffic inspection is not required or desirable. This may be due to network segmentation based on trust zones, for example, traffic between trusted VNets may not require inspection. Other reasons include high-volume data replication, latency-sensitive applications, or the need to reduce inspection overhead and cost. In this design, VNets are grouped into trusted and untrusted zones. Trusted VNets can exist within the same Hub or across different Hubs. To bypass inspection between trusted VNets, you can connect them directly using VNet Peering or AVNM Mesh connectivity topology. It’s important to note that UDRs are still used and configured as described in the full inspection model (Option 1). However, when trusted VNets are directly connected, system routes (created by VNet Peering or Mesh connectivity) take precedence over custom UDRs. As a result, traffic between trusted VNets bypasses the firewall and flows directly. In contrast, traffic to or from untrusted zones follows the UDRs, ensuring it is routed through the firewall for inspection. t Connectivity Inspection Table Connectivity Scenario Inspected On-premises ↔ Azure ✅ Spoke ↔ Internet ✅ Spoke ↔ Spoke (Same Zones) ❌ Spoke ↔ Spoke (Across Zones) ✅ Option3: No Inspection to On-premises In cases where a firewall at the on-premises or colocation site already inspects traffic from Azure, customers typically aim to avoid double inspection. To support this in the above design, traffic destined for on-premises is not routed through the firewall deployed in Azure. For the UDRs applied to the spoke VNets, ensure that "Propagate Gateway Routes" is set to true, allowing traffic to follow the ExpressRoute path directly without additional inspection in Azure. Connectivity Inspection Table Connectivity Scenario Inspected On-premises ↔ Azure ❌ Spoke ↔ Spoke ✅ Spoke ↔ Internet ✅ Option4: Internet Inspection Only While not generally recommended, some customers choose to inspect only internet-bound traffic and allow private traffic to flow without inspection. In such cases, spoke VNets can be directly connected using VNet Peering or AVNM Mesh connectivity. To ensure on-premises traffic avoids inspection, set "Propagate Gateway Routes" to true in the UDRs applied to spoke VNets. This allows traffic to follow the ExpressRoute path directly without being inspected in Azure. Scenario2: vWAN Inspection Options Now we will explore inspection options using a vWAN topology. Across all scenarios, the base architecture assumes two Virtual Hubs (VHubs), each connected to its respective local spoke VNets. vWAN provides default connectivity between the two VHubs, and each VHub is also connected to both local and remote ExpressRoute circuits for redundancy. It's important to note that this discussion focuses on inspection in vWAN using Routing Intent. As a result, bypassing inspection for traffic to on-premises is not supported in this model. Option1: Full Inspection As noted earlier, inspecting all traffic, both east-west and north-south, is a common practice to fulfill compliance and security needs. In this design, enabling Routing Intent provides the capability to inspect both, private and internet-bound traffic. Unlike the Hub-and-Spoke topology, this approach does not require any UDR configuration. Connectivity Inspection Table Connectivity Scenario Inspected On-premises ↔ Azure ✅ Spoke ↔ Spoke ✅ Spoke ↔ Internet ✅ Option2: Using Different Firewall Flavors for Traffic Inspection Using different firewall flavors inside VHub for traffic inspection Some customers require specific firewalls for different traffic flows, for example, using Azure Firewall for East-West traffic while relying on a third-party firewall for North-South inspection. In vWAN, it’s possible to deploy both Azure Firewall and a third-party network virtual appliance (NVA) within the same VHub. However, as of this writing, deploying two different third-party NVAs in the same VHub is not supported. This behavior may change in the future, so it’s recommended to monitor the known limitations section for updates. With this design, you can easily control which firewall handles East-West versus North-South traffic using Routing Intent, eliminating the need for UDRs. Using different firewall flavors inside VHub for traffic inspection Deploying third-party firewalls in spoke VNets when VHub limitations apply If the third-party firewall you want to use is not supported within the VHub, or if the managed firewall available in the VHub lacks certain required features compared to the version deployable in a regular VNet, you can deploy the third-party firewall in a spoke VNet instead, while using Azure Firewall in the VHub. In this design, the third-party firewall (deployed in a spoke VNet) handles internet-bound traffic, and Azure Firewall (in the VHub) inspects East-West traffic. This setup is achieved by peering the third-party firewall VNet to the VHub, as well as directly peering it with the spoke VNets. These spoke VNets are also connected to the VHub, as illustrated in the diagram below. UDRs are required in the spoke VNets to forward internet-bound traffic to the third-party firewall VNet. East-West traffic routing, however, is handled using the Routing Intent feature, directing traffic through Azure Firewall without the need for UDRs. Deploying third-party firewalls in spoke VNets when VHub limitations apply Note: Although it is not required to connect the third-party firewall VNet to the VHub for traffic flow, doing so is recommended for ease of management and on-premises reachability. Connectivity Inspection Table Connectivity Scenario Inspected On-premises ↔ Azure ✅ Inspected using Azure Firewall Spoke ↔ Spoke ✅ Inspected using Azure Firewall Spoke ↔ Internet ✅ Inspected using Third Party Firewall Option3: Selective Inspection Between Azure VNets Similar to the Hub-and-Spoke topology, there are scenarios where full traffic inspection is not ideal. This may be due to Azure VNets being segmented into trusted and untrusted zones, where inspection is unnecessary between trusted VNets. Other reasons include large data replication between specific VNets or latency-sensitive applications that require minimizing inspection delays and associated costs. In this design, trusted and untrusted VNets can reside within the same VHub or across different VHubs. Routing Intent remains enabled to inspect traffic between trusted and untrusted VNets, as well as internet-bound traffic. To bypass inspection between trusted VNets, you can connect them directly using VNet Peering or AVNM Mesh connectivity. Unlike the Hub-and-Spoke model, this design does not require UDR configuration. Because trusted VNets are directly connected, system routes from VNet peering take precedence over routes learned through the VHub. Traffic destined for untrusted zones will continue to follow the Routing Intent and be inspected accordingly. Connectivity Inspection Table Connectivity Scenario Inspected On-premises ↔ Azure ✅ Spoke ↔ Internet ✅ Spoke ↔ Spoke (Same Zones) ❌ Spoke ↔ Spoke (Across Zones) ✅ Option4: Internet Inspection Only While not generally recommended, some customers choose to inspect only internet-bound traffic and bypass inspection of private traffic. In this design, you only enable the Internet Inspection option within Routing Intent, so private traffic bypasses the firewall entirely. The VHub manages both intra-and inter-VHub routing directly. Internet Inspection Only Connectivity Inspection Table Connectivity Scenario Inspected On-premises ↔ Azure ❌ Spoke ↔ Internet ✅ Spoke ↔ Spoke ❌2.8KViews9likes3CommentsUnderstanding ExpressRoute private peering to address ExpressRoute resiliency
This article provides an overview of Microsoft ExpressRoute, including its various components such as the Circuit, the Gateway and the Connection, and different connectivity models like ExpressRoute Service Provider and ExpressRoute Direct. It also covers the resilience and failure scenarios related to ExpressRoute, including geo-redundancy, Availability Zones, and route advertisement limits. If you're looking to learn more about ExpressRoute and its implementation, this article is a great resource.11KViews7likes3CommentsNetwork Redundancy Between AVS, On-Premises, and Virtual Networks in a Multi-Region Design
By Mays_Algebary shruthi_nair Establishing redundant network connectivity is vital to ensuring the availability, reliability, and performance of workloads operating in hybrid and cloud environments. Proper planning and implementation of network redundancy are key to achieving high availability and sustaining operational continuity. This article focuses on network redundancy in multi-region architecture. For details on single-region design, refer to this blog. The diagram below illustrates a common network design pattern for multi-region deployments, using either a Hub-and-Spoke or Azure Virtual WAN (vWAN) topology, and serves as the baseline for establishing redundant connectivity throughout this article. In each region, the Hub or Virtual Hub (VHub) extends Azure connectivity to Azure VMware Solution (AVS) via an ExpressRoute circuit. The regional Hub/VHub is connected to on-premises environments by cross-connecting (bowtie) both local and remote ExpressRoute circuits, ensuring redundancy. The concept of weight, used to influence traffic routing preferences, will be discussed in the next section. The diagram below illustrates the traffic flow when both circuits are up and running. Design Considerations If a region loses its local ExpressRoute connection, AVS in that region will lose connectivity to the on-premises environment. However, VNets will still retain connectivity to on-premises via the remote region’s ExpressRoute circuit. The solutions discussed in this article aim to ensure redundancy for both AVS and VNets. Looking at the diagram above, you might wonder: why do we need to set weights at all, and why do the AVS-ER connections (1b/2b) use the same weight as the primary on-premises connections (1a/2a)? Weight is used to influence routing decisions and ensure optimal traffic flow. In this scenario, both ExpressRoute circuits, ER1-EastUS and ER2-WestUS, advertise the same prefixes to the Azure ExpressRoute gateway. As a result, traffic from the VNet to on-premises would be ECMPed across both circuits. To avoid suboptimal routing and ensure that traffic from the VNets prefers the local ExpressRoute circuit, a higher weight is assigned to the local path. It’s also critical that the ExpressRoute gateway connection to on-premises (1a/2a) and to AVS (1b/2b), is assigned the same weight. Otherwise, traffic from the VNet to AVS will follow a less efficient route as AVS routes are also learned over ER1-EastUS via Global Reach. For instance, VNets in EastUS will connect to AVS EUS through ER1-EastUS circuit via Global Reach (as shown by the blue dotted line), instead of using the direct local path (orange line). This suboptimal routing is illustrated in the below diagram. Now let us see what solutions we can have to achieve redundant connectivity. The following solutions will apply to both Hub-and-Spoke and vWAN topology unless noted otherwise. Note: The diagrams in the upcoming solutions will focus only on illustrating the failover traffic flow. Solution1: Network Redundancy via ExpressRoute in Different Peering Location In the solution, deploy an additional ExpressRoute circuit in a different peering location within the same metro area (e.g., ER2–PeeringLocation2), and enable Global Reach between this new circuit and the existing AVS ExpressRoute (e.g., AVS-ER1). If you intend to use this second circuit as a failover path, apply prepends to the on-premises prefixes advertised over it. Alternatively, if you want to use it as an active-active redundant path, do not prepend routes, in this case, both AVS and Azure VNets will ECMP to distribute traffic across both circuits (e.g., ER1–EastUS and ER–PeeringLocation2) when both are available. Note: Compared to the Standard Topology, this design removes both the ExpressRoute cross-connect (bowtie) and weight settings. When adding a second circuit in the same metro, there's no benefit in keeping them, otherwise traffic from the Azure VNet will prefer the local AVS circuit (AVS-ER1/AVS-ER2) to reach on-premises due to the higher weight, as on-premises routes are also learned over AVS circuit (AVS-ER1/AVS-ER2) via Global Reach. Also, when connecting the new circuit (e.g., ER–Peering Location2), remove all weight settings across the connections. Traffic will follow the optimal path based on BGP prepending on the new circuit, or load-balance (ECMP) if no prepend is applied. Note: Use public ASN to prepend the on-premises prefix as AVS circuit (e.g., AVS-ER) will strip the private ASN toward AVS. Solution Insights Ideal for mission-critical applications, providing predictable throughput and bandwidth for backup. It could be cost prohibitive depending on the bandwidth of the second circuit. Solution2: Network Redundancy via ExpressRoute Direct In this solution, ExpressRoute Direct is used to provision multiple circuits from a single port pair in each region, for example, ER2-WestUS and ER4-WestUS are created from the same port pair. This allows you to dedicate one circuit for local traffic and another for failover to a remote region. To ensure optimal routing, prepend the on-premises prefixes using public ASN on the newly created circuit (e.g., ER3-EastUS and ER4-WestUS). Remove all weight settings across the connections; traffic will follow the optimal path based on BGP prepending on the new circuit. For instance, if ER1-EastUS becomes unavailable, traffic from AVS and VNets in the EastUS region will automatically route through ER4-WestUS circuit, ensuring continuity. Note: Compared to the Standard Topology, this design connects the newly created ExpressRoute circuits (e.g., ER3-EastUS/ER4-WestUS) to the remote region of ExpressRoute gateway (black dotted lines) instead of having the bowtie to the primary circuits (e.g., ER1-EastUS/ER2-WestUS). Solution Insights Easy to implement if you have ExpressRoute Direct. ExpressRoute Direct supports over- provisioning where you can create logical ExpressRoute circuits on top of your existing ExpressRoute Direct resource of 10-Gbps or 100-Gbps up to the subscribed Bandwidth of 20 Gbps or 200 Gbps. For example, you can create two 10-Gbps ExpressRoute circuits within a single 10-Gbps ExpressRoute Direct resource (port pair). Ideal for mission-critical applications, providing predictable throughput and bandwidth for backup. Solution3: Network Redundancy via ExpressRoute Metro Metro ExpressRoute is a new configuration that enables dual-homed connectivity to two different peering locations within the same city. This setup enhances resiliency by allowing traffic to continue flowing even if one peering location goes down, using the same circuit. Solution Insights Higher Resiliency: Provides increased reliability with a single circuit. Limited regional availability: Currently available in select regions, with more being added over time. Cost-effective: Offers redundancy without significantly increasing costs. Solution4: Deploy VPN as a Backup to ExpressRoute This solution mirrors solution 1 for a single region but extends it to multiple regions. In this approach, a VPN serves as the backup path for each region in the event of an ExpressRoute failure. In a Hub-and-Spoke topology, a backup path to and from AVS can be established by deploying Azure Route Server (ARS) in the hub VNet. ARS enables seamless transit routing between ExpressRoute and the VPN gateway. In vWAN topology, ARS is not required; the vHub's built-in routing service automatically provides transitive routing between the VPN gateway and ExpressRoute. In this design, you should not cross-connect ExpressRoute circuits (e.g., ER1-EastUS and ER2-WestUS) to the ExpressRoute gateways in the Hub VNets (e.g., Hub-EUS or Hub-WUS). Doing so will lead to routing issues, where the Hub VNet only programs the on-premises routes learned via ExpressRoute. For instance, in the EastUS region, if the primary circuit (ER1-EastUS) goes down, Hub-EUS will receive on-premises routes from both the VPN tunnel and the remote ER2-WestUS circuit. However, it will prefer and program only the ExpressRoute-learned routes from ER2-WestUS circuit. Since ExpressRoute gateways do not support route transitivity between circuits, AVS connected via AVS-ER will not receive the on-premises prefixes, resulting in routing failures. Note: In vWAN topology, to ensure optimal route convergence when failing back to ExpressRoute, you should prepend the prefixes advertised from on-premises over the VPN. Without route prepending, VNets may continue to use the VPN as the primary path to on-premises. If prepend is not an option, you can trigger the failover manually by bouncing the VPN tunnel. Solution Insights Cost-effective and straightforward to deploy. Increased Latency: The VPN tunnel over the internet adds latency due to encryption overhead. Bandwidth Considerations: Multiple VPN tunnels might be needed to achieve bandwidth comparable to a high-capacity ExpressRoute circuit (e.g., over 1G). For details on VPN gateway SKU and tunnel throughput, refer to this link. As you can't cross connect ExpressRoute circuits, VNets will utilize the VPN for failover instead of leveraging remote region ExpressRoute circuit. Solution5: Network Redundancy-Multiple On-Premises (split-prefix) In many scenarios, customers advertise the same prefix from multiple on-premises locations to Azure. However, if the customer can split prefixes across different on-premises sites, it simplifies the implementation of failover strategy using existing ExpressRoute circuits. In this design, each on-premises advertises region-specific prefixes (e.g., 10.10.0.0/16 for EastUS and 10.70.0.0/16 for WestUS), along with a common supernet (e.g., 10.0.0.0/8). Under normal conditions, AVS and VNets in each region use longest prefix match to route traffic efficiently to the appropriate on-premises location. For instance, if ER1-EastUS becomes unavailable, AVS and VNets in EastUS will automatically fail over to ER2-WestUS, routing traffic via the supernet prefix to maintain connectivity. Solution Insights Cost-effective: no additional deployment, using existing ExpressRoute circuits. Advertising specific prefixes over each region might need additional planning. Ideal for mission-critical applications, providing predictable throughput and bandwidth for backup. Solution6: Prioritize Network Redundancy for One Region Over Another If you're operating under budget constraints and can prioritize one region (such as hosting critical workloads in a single location) and want to continue using your existing ExpressRoute setup, this solution could be an ideal fit. In this design, assume AVS in EastUS (AVS-EUS) hosts the critical workloads. To ensure high availability, AVS-ER1 is configured with Global Reach connections to both the local ExpressRoute circuit (ER1-EastUS) and the remote circuit (ER2-WestUS). Make sure to prepend the on-premises prefixes advertised to ER2-WestUS using public ASN to ensure optimal routing (no ECMP) from AVS-EUS over both circuits (ER1-EastUS and ER2-WestUS). On the other hand, AVS in WestUS (AVS-WUS) is connected via Global Reach only to its local region ExpressRoute circuit (ER2-WestUS). If that circuit becomes unavailable, you can establish an on-demand Global Reach connection to ER1-EastUS, either manually or through automation (e.g., a triggered script). This approach introduces temporary downtime until the Global Reach link is established. You might be thinking, why not set up Global Reach between the AVS-WUS circuit and remote region circuits (like connecting AVS-ER2 to ER1-EastUS), just like we did for AVS-EUS? Because it would lead to suboptimal routing. Due to AS path prepending on ER2-WestUS, if both ER1-EastUS and ER2-WestUS are linked to AVS-ER2, traffic would favor the remote ER1-EastUS circuit since it presents a shorter AS path. As a result, traffic would bypass the local ER2-WestUS circuit, causing inefficient routing. That is why for AVS-WUS, it's better to use on-demand Global Reach to ER1-EastUS as a backup path, enabled manually or via automation, only when ER2-WestUS becomes unavailable. Note: VNets will failover via local AVS circuit. E.g., HUB-EUS will route to on-prem through AVS-ER1 and ER2-WestUS via Global Reach Secondary (purple line). Solution Insights Cost-effective Workloads hosted in AVS within the non-critical region will experience downtime if the local region ExpressRoute circuit becomes unavailable, until the on-demand Global Reach connection is established. Conclusion Each solution has its own advantages and considerations, such as cost-effectiveness, ease of implementation, and increased resiliency. By carefully planning and implementing these solutions, organizations can ensure operational continuity and optimal traffic routing in multi-region deployments.2.5KViews6likes0CommentsNetwork Redundancy from On-Premises to Azure VMware and VNETs in a Single-Region Design
By shruthi_nair Mays_Algebary Establishing redundant network connectivity is vital to ensuring the availability, reliability, and performance of workloads operating in hybrid and cloud environments. Proper planning and implementation of network redundancy are key to achieving high availability and sustaining operational continuity. This guide presents common architectural patterns for building redundant connectivity between on-premises datacenters, Azure Virtual Networks (VNets), and Azure VMware Solution (AVS) within a single-region deployment. AVS allows organizations to run VMware-based workloads directly on Azure infrastructure, offering a streamlined path for migrating existing VMware environments to the cloud without the need for significant re-architecture or modification. Connectivity Between AVS, On-Premises, and Virtual Networks The diagram below illustrates a common network design pattern using either a Hub-and-Spoke or Virtual WAN (vWAN) topology, deployed within a single Azure region. ExpressRoute is used to establish connectivity between on-premises environments and VNets. The same ExpressRoute circuit is extended to connect AVS to the on-premises infrastructure through ExpressRoute Global Reach. Consideration: This design presents a single point of failure. If the ExpressRoute circuit (ER1-EastUS) experiences an outage, connectivity between the on-premises environment, VNets, and AVS will be disrupted. Let’s examine some solutions to establish redundant connectivity in case the ER1-EastUS experiences an outage. Solution1: Network Redundancy via VPN In this solution, one or more VPN tunnels are deployed as a backup to ExpressRoute. If ExpressRoute becomes unavailable, the VPN provides an alternative connectivity path from the on-premises environment to VNets and AVS. In a Hub-and-Spoke topology, a backup path to and from AVS can be established by deploying Azure Route Server (ARS) in the hub VNet. ARS enables seamless transit routing between ExpressRoute and the VPN gateway. In vWAN topology, ARS is not required. The vHub's built-in routing service automatically provides transitive routing between the VPN gateway and ExpressRoute. Note: In vWAN topology, to ensure optimal route convergence when failing back to ExpressRoute, you should prepend the prefixes advertised from on-premises over the VPN. Without route prepending, VNets may continue to use the VPN as the primary path to on-premises. If prepend is not an option, you can trigger the failover manually by bouncing the VPN tunnel. Solution Insights: Cost-effective and straightforward to deploy. Latency: The VPN tunnel introduces additional latency due to its reliance on the public internet and the overhead associated with encryption. Bandwidth Considerations: Multiple VPN tunnels might be needed to achieve bandwidth comparable to a high-capacity ExpressRoute circuit (e.g., over 10G). For details on VPN gateway SKU and tunnel throughput, refer to this link. Solution2: Network Redundancy via SD-WAN In this solution, SDWAN tunnels are deployed as a backup to ExpressRoute. If ExpressRoute becomes unavailable, SDWAN provides an alternative connectivity path from the on-premises environment to VNets and AVS. In a Hub-and-Spoke topology, a backup path to and from AVS can be established by deploying ARS in the hub VNet. ARS enables seamless transit routing between ExpressRoute and the SDWAN appliance. In vWAN topology, ARS is not required. The vHub's built-in routing service automatically provides transitive routing between the SDWAN and ExpressRoute. Note: In vWAN topology, to ensure optimal convergence from the VNets when failing back to ExpressRoute, prepend the prefixes advertised from on-premises over the SDWAN to make sure it's longer that ExpressRoute learned routes. If you don't prepend, VNets will continue to use SDWAN path to on-prem as primary path. In this design using Azure vWAN, the SD-WAN can be deployed either within the vHub or in a spoke VNet connected to the vHub the same principle applies in both cases. Solution Insights: If you have an existing SDWANs no additional deployment is needed. Bandwidth Considerations: Vendor specific. Management consideration: Third party dependency and need to manage the HA deployment, except for SD-WAN SaaS solution. Solution3: Network Redundancy via ExpressRoute in Different Peering Locations Deploy an additional ExpressRoute circuit at a different peering location and enable Global Reach between ER2-peeringlocation2 and AVS-ER. To use this circuit as a backup path, prepend the on-premises prefixes on the second circuit; otherwise, AVS or VNet will perform Equal-Cost Multi-Path (ECMP) routing across both circuits to on-prem. Note: Use public ASN to prepend the on-premises prefix as AVS-ER will strip the private ASN toward AVS. Refer to this link for more details. Solution Insights: Ideal for mission-critical applications, providing predictable throughput and bandwidth for backup. Could be cost prohibitive depending on the bandwidth of the second circuit. Solution4: Network Redundancy via Metro ExpressRoute Metro ExpressRoute is the new ExpressRoute configuration. This configuration allows you to benefit from a dual-homed setup that facilitates diverse connections to two distinct ExpressRoute peering locations within a city. This configuration offers enhanced resiliency if one peering location experiences an outage. Solution Insights Higher Resiliency: Provides increased reliability with a single circuit. Limited regional availability: Availability is restricted to specific regions within the metro area. Cost-effective Conclusion: The choice of failover connectivity should be guided by the specific latency and bandwidth requirements of your workloads. Ultimately, achieving high availability and ensuring continuous operations depend on careful planning and effective implementation of network redundancy strategies.2.5KViews5likes0CommentsExpressRoute Gateway Migration Playbook
Objective The objective of this document is to help with transitioning the ExpressRoute gateway from a non-zone-redundant SKU to a zone-redundant SKU. This upgrade enhances the reliability and availability of the gateway by ensuring that it is resilient to zone failures. Additionally, the public IP associated with the gateway will be upgraded from a Basic SKU to a Standard SKU. This upgrade provides improved performance, security features, and availability guarantees. The entire migration should be conducted in accordance with IT Service Management (ITSM) guidelines, ensuring that all best practices and standards are followed. Change management protocols should be strictly adhered to, including obtaining necessary approvals, documenting the change, and communicating with stakeholders. Pre-migration and post-migration testing should be performed to validate the success of the migration and to ensure that there are no disruptions to services. The migration should be scheduled within a planned maintenance window to minimize impact on users and services. This window should be carefully selected to ensure that it aligns with business requirements and minimizes downtime. Throughout the process, detailed monitoring and logging should be in place to track progress and quickly address any issues that may arise. Single-zone ExpressRoute Gateway: Zone-redundant ExpressRoute Gateway: Background ExpressRoute Gateway Standard SKU is a non-zone-redundant and lower the resiliency for the service. Basic SKU public IP is retiring in the end of September 2025. After this date the support for this SKU will be ceased which will potentially impact the ExpressRoute Gateway support. ExpressRoute Gateway Public IP is used internally for control plane communication. Migration Scenarios This document is equally relevant to all of the following scenarios: ExpressRoute Gateway Standard/High/Ultraperformance to ErGw1Az/ ErGw2Az/ ErGw3Az SKU ExpressRoute Gateway Standard/High/Ultraperformance to Standard/High/Ultraperformance (Multi-Zone) SKU Single-zone and multi-zone regions Zone redundant SKU (ErGw1Az/ErGw2Az/ErGw3Az) deployed in single zone. Prerequisites Stakeholder Approvals: Ensure ITSM approvals are in place. This is to ensure that changes to IT systems are properly reviewed and authorized before implementation. Change Request (CR): Submit and secure approval for a Change Request to guarantee that all modifications to IT systems are thoroughly reviewed, authorized, and implemented in a controlled manner. Maintenance Window: When scheduling a maintenance window for production work, consider the following to minimize disruption and ensure efficiency: Key Considerations Minimizing Disruption: Schedule during low activity periods, often outside standard business hours or on weekends. Ensuring Adequate Staffing: Ensure necessary staff and resources are available, including technical support. Aligning with Production Cycles: Coordinate with departments to align with production cycles. Best Practices Preventive and Predictive Maintenance: Focus on regular inspections, part replacements, and system upgrades. Effective Communication: Inform stakeholders in advance about the maintenance schedule. Proper Planning: Use historical data and insights to identify the best time slots for maintenance. Backup Plan: Document rollback or roll-forward procedures in case of failure. Following are some important considerations: Minimizing Disruption: A backup plan minimizes disruptions during planned maintenance, especially for VMs that may shut down or reboot. Ensuring Data Integrity: It protects against data loss or corruption by backing up critical data beforehand. Facilitating Quick Recovery: It allows for quick recovery if issues arise, maintaining business continuity and minimizing downtime. Current Configuration backup: Backup configuration for ExpressRoute Gateway, ExpressRoute Gateway Connection and Routing table associated with Gateway (if any) properties. Here are the Powershell commands that can be used to backup ExpressRoute Gateway Configuration. Review Gateway migration article About migrating to an availability zone-enabled ExpressRoute virtual network gateway - Azure ExpressRoute | Microsoft Learn Be ready to open a Microsoft Support Ticket (Optional/Proactive): In certain corner case scenarios where migration encounters a blocker, be ready with the necessary details to open a Microsoft support ticket. In the ticket, provide the maintenance plan to the support engineer and ensure they are fully informed about your environment-specific configuration. Pre-Migration Testing Connectivity Tests: Run network reachability tests to validate current state. Some of the sample tests could be as following: ICMP test from on-premises virtual machine to Azure virtual machine to test basic connectivity. Ping on-premises Virtual machine to an Azure virtual machine. $ ping <Azure-Virtual-Machine-IP> Application access test: Access your workload application from on-premises to a service running in Azure. This depends on the customer application. For example, if it is a web application, access the web server from a browser on a laptop or an on-premises machine. Latency and throughput tests: You can used ACT to test latency and throughput. Please refer to this link for installation details. Troubleshoot network link performance: Azure ExpressRoute | Microsoft Learn $ Get-LinkPerformance -RemoteHost 10.0.0.1 -TestSeconds 10 To test Jitter and packet loss you can use following tools. PSPing: psping -l 1024 -n 100 <Azure_VM_IP>:443 PathPing: pathping <Azure VM IP> Capture the results from above test to compare them after the migration. “iperf” is another tool widely used for throughput and latency testing. A web-based latency tool works fine as well: https://www.azurespeed.com/ Test the whole ExpressRoute Gateway migration process in lower environment (Optional): In other words, migrate an ExpressRoute Gateway in non-production environment. Advanced Notification Send an email to the relevant stakeholders and impacted users/teams a few weeks in advance. Send a final notification to the same group a day before. Stop IOs on hybrid private endpoint Using private endpoints in Azure over a hybrid connection with ExpressRoute provides a secure, reliable, and high-performance connection to Azure services. By leveraging ExpressRoute's private peering and connectivity models, you can ensure that your traffic remains within the Microsoft global network, avoiding public internet exposure. This setup is ideal for scenarios requiring high security, consistent performance, and seamless integration between on-premises and Azure environments Private endpoints (PEs) in a virtual network connected over ExpressRoute private peering might experience connectivity outage during migration. To avoid this, stop all IOs over hybrid private endpoints. Validate you have enough IP for migration Our guidance is to proceed with migration, a /27 prefix or longer is required in the GatewaySubnet. The migration feature checks for enough address space during validation phase. In a scenario where there aren’t enough IP addresses available to create zone-redundant ExpressRoute Gateway, the Gateway migration script will add additional prefix to the subnet. As a user you don’t have to take any action. The migration feature will tell you if it needs more IPs. Migration Steps Migration using Azure portal Step 1: Test connectivity from On-premises to Azure via ExpressRoute Gateway. Refer Step-7 Step 2: Verify that the Microsoft Azure support engineer is on standby. Step 3: Send an email to notify users about the start of the planned connectivity outage. Step 4: Stop or minimize IOs over ExpressRoute circuit (Downtime). Minimizing the IOs will reduce the impact. Step 5: Follow the document below to migrate the ExpressRoute gateway using Azure Portal Migrate to an availability zone-enabled ExpressRoute virtual network gateway in Azure portal - Azure ExpressRoute | Microsoft Learn Step 6: Restart IOs over ExpressRoute Circuit Step 7: Validate and Test Post Migration connectivity. Verify BGP Peering: Get-AzExpressRouteCircuitPeering -ResourceGroupName <RG> -CircuitName <CircuitName> Route Propagation Check: Get-AzExpressRouteCircuitRouteTable -ResourceGroupName <RG> -ExpressRouteCircuitName <CircuitName> -PeeringType AzurePrivatePeering Connectivity Tests: Run network reachability tests to validate current state. Some of the sample tests could be as following: ICMP test from on-premises virtual machine to Azure virtual machine to test basic connectivity. Ping on-premises Virtual machine to an Azure virtual machine. $ ping <Azure-Virtual-Machine-IP> Application access test: Access your workload application from on-premises to a service running in Azure. This depends on the customer application. For example, if it is a web application, access the web server from a browser on a laptop or an on-premises machine. Latency and throughput tests: You can used ACT to test latency and throughput. Please refer to this link for installation details. Troubleshoot network link performance: Azure ExpressRoute | Microsoft Learn $ Get-LinkPerformance -RemoteHost 10.0.0.1 -TestSeconds 10 To test Jitter and packet loss you can use following tools. PSPing: psping -l 1024 -n 100 <Azure_VM_IP>:443 PathPing: pathping <Azure VM IP> Compare the new results with the one captured before the outage. Validate that the migration is successful. ExpressRoute Gateway is migrated to the new SKU. Migration using powershell Step 1: Test connectivity from On-premises to Azure via ExpressRoute Gateway. Refer Step-7 Step 2: Verify that the Microsoft Azure support engineer is on standby. Refer Step 3: Send an email to notify users about the start of the planned connectivity outage. Step 4: Stop or minimize IOs over ExpressRoute circuit (Downtime). Minimizing the IOs will reduce the impact. Step 5: Follow the document below to migrate the ExpressRoute gateway using Powershell. Migrate to an availability zone-enabled ExpressRoute virtual network gateway using PowerShell - Azure ExpressRoute | Microsoft Learn Step 6: Restart IOs over ExpressRoute Circuit Step 7: Validate and Test Post Migration connectivity. Verify BGP Peering: Get-AzExpressRouteCircuitPeering -ResourceGroupName <RG> -CircuitName <CircuitName> Route Propagation Check: Get-AzExpressRouteCircuitRouteTable -ResourceGroupName <RG> -ExpressRouteCircuitName <CircuitName> -PeeringType AzurePrivatePeering Connectivity Tests: Run network reachability tests to validate current state. Some of the sample tests could be as following: ICMP test from on-premises virtual machine to Azure virtual machine to test basic connectivity. Ping on-premises Virtual machine to an Azure virtual machine. $ ping <Azure-Virtual-Machine-IP> Application access test: Access your workload application from on-premises to a service running in Azure. This depends on the customer application. For example, if it is a web application, access the web server from a browser on a laptop or an on-premises machine. Latency and throughput tests: You can used ACT to test latency and throughput. Please refer to this link for installation details. Troubleshoot network link performance: Azure ExpressRoute | Microsoft Learn $ Get-LinkPerformance -RemoteHost 10.0.0.1 -TestSeconds 10 To test Jitter and packet loss you can use following tools. PSPing: psping -l 1024 -n 100 <Azure_VM_IP>:443 PathPing: pathping <Azure VM IP> Compare the new results with the one captured before the outage. Validate that the migration is successful. ExpressRoute Gateway is migrated to the new SKU. Rollback Plan If any issue arises during migration take help of Microsoft support engineer to: Restore Previous Gateway: Use the backed-up configuration to either get back the original gateways or create a new one, based on guidance from support engineer. Validate Connectivity: Perform on-premises to Azure connectivity testing as mentioned in step 7 above. Post-Migration Steps Update Change Request: Document and close the CR. Update CMDB: Reflect the new gateway details in the Configuration Management Database. Stakeholder Sign-off: Ensure all teams validate and approve the changes. Contact Information Network Team: Azure Support: Azure Support Portal References Azure ExpressRoute Gateway Migration Documentation Install Azure PowerShell with PowerShellGet | Microsoft Learn2.9KViews4likes1Comment