As AI continues to transform industries, the ability to fine-tune models and customize them for specific use cases has become more critical than ever. Fine-tuning can enable companies to align models with their unique business goals, ensuring that AI solutions deliver results with greater precision
However, organizations face several hurdles in their model customization journey:
- Lack of end-to-end tooling: Organizations struggle with fine-tuning foundation models due to complex processes, and the absence of tracking and evaluation tools for modifications.
- Data scarcity and quality: Limited access to large, high-quality datasets, along with privacy issues and high costs, complicate model training and fine-tuning.
- Shortage of fine-tuning expertise and pre-trained models: Many companies lack specialized knowledge and access to refined models for fine-tuning.
- Insufficient experimentation tools: A lack of tools for ongoing experimentation in production limits optimization of key variables like model diversity and operational efficiency.
To address these challenges, Azure AI Foundry is pleased to announce new collaborations with Weights & Biases, Scale AI, Gretel and Statsig to streamline the process of model fine-tuning and experimentation through advanced tools, synthetic data and specialized expertise.
Weights & Biases integration with Azure OpenAI Service: Making end-to-end fine-tuning accessible with tooling
The integration of Weights & Biases with Azure OpenAI Service offers a comprehensive end-to-end solution for enterprises aiming to fine-tune foundation models such as GPT-4, GPT-4o, and GPT-4o mini. This collaboration provides a seamless connection between Azure OpenAI Service and Weights and Biases Models which offers powerful capabilities for experiment tracking, visualization, model management, and collaboration. With the integration, users can also utilize Weights and Biases Weave to evaluate, monitor, and iterate on the performance of their fine-tuned models powered AI applications in real-time. Azure's scalable infrastructure allows organizations to handle the computational demands of fine-tuning, while Weights and Biases offers robust capabilities for fine-tuning experimentation and evaluation of LLM-powered applications. Whether optimizing GPT-4o for complex reasoning tasks or using the lightweight GPT-4o mini for real-time applications, the integration simplifies the customization of models to meet enterprise-specific needs.
This collaboration addresses the growing demand for tailored AI models in industries such as retail and finance, where fine-tuning can significantly improve customer service chatbots or complex financial analysis. Azure Open AI Service and Weights & Biases integration is now available in public preview. For further details on Azure OpenAI Service and Weights & Biases integration including real-world use-cases and a demo, refer to the blog here.
Scale AI and Azure Collaboration: Confidently Implement Agentic GenAI Solutions in Production
Scale AI collaborates with Azure AI Foundry to offer advanced fine-tuning and model customization for enterprise use cases. It enhances the performance of Azure AI Foundry models by providing high-quality data transformation, fine-tuning and customization services, end-to-end solution development and specialized Generative AI expertise. This collaboration helps improve the performance of AI-driven applications and Azure AI services such as Azure AI Agent in Azure AI Foundry, while reducing production time and driving business impact.
"Scale is excited to partner with Azure to help our customers transform their proprietary data into real business value with end-to-end GenAI Solutions, including model fine-tuning and customization in Azure." Vijay Karunamurthy, Field CTO, Scale AI
Checkout a demo in BRK116 session showcasing how Scale AI’s fine-tuned models can improve agents in Azure AI Foundry and Copilot Studio. In the coming months, Scale AI will offer fine-tuning services for Azure AI Agents in Azure AI Foundry. For more details, please refer to this blog and start transforming your AI initiatives by exploring Scale AI on the Azure Marketplace.
Gretel and Azure OpenAI Service Collaboration: Revolutionizing data pipeline for custom AI models
Azure AI Foundry is collaborating with Gretel, a pioneer in synthetic data and privacy technology, to remove data bottlenecks and bring advanced AI development capabilities to our customers. Gretel's platform enables Azure users to generate high-quality datasets for ML and AI through multiple approaches - from prompts and seed examples to differential privacy-preserved synthetic data. This technology helps organizations overcome key challenges in AI development including data availability, privacy requirements, and high development costs with support for structured, unstructured, and hybrid text data formats.
Through this collaboration, customers can seamlessly generate datasets tailored to their specific use cases and industry needs using Gretel, then use them directly in Azure OpenAI Service for fine-tuning. This integration greatly reduces both costs and time compared to traditional data labeling methods, while maintaining strong privacy and compliance standards.
The collaboration enables new use cases for Azure AI Foundry customers who can now easily use synthetic data generated by Gretel for training and fine-tuning models. Some of the new use cases include cost-effective improvements for Small Language Models (SLMs), improved reasoning abilities of Large Language Models (LLMs), and scalable data generation from limited real-world examples. This value is already being realized by leading enterprises.
“EY is leveraging the privacy-protected synthetic data to fine-tune Azure OpenAI Service models in the financial domain," said John Thompson, Global Client Technology AI Lead at EY. "Using this technology with differential privacy guarantees, we generate highly accurate synthetic datasets—within 1% of real data accuracy—that safeguard sensitive financial information and prevent PII exposure. This approach ensures model safety through privacy attack simulations and robust data quality reporting. With this integration, we can safely fine-tune models for our specific financial use cases while upholding the highest compliance and regulatory standards.”
The Gretel integration with Azure OpenAI Service is available now through Gretel SDK. Explore this blog describing a finance industry case study and checkout details in technical documentation for fine-tuning Azure OpenAI Service models with synthetic data from Gretel. Visit this page to learn more
Statsig and Azure Collaboration: Enabling Experimentation in AI Applications
Statsig is a platform for feature management and experimentation that helps teams manage releases, run powerful experiments, and measure the performance of their products. Statsig and Azure AI Foundry are collaborating to enable customers to easily configure and run experiments (A/B tests) in Azure AI-powered applications, using Statsig SDKs in Python, NodeJS and .NET. With these Statsig SDKs, customers can manage the configuration of their AI applications, manage the release of new configurations, run A/B tests to optimize model and application performance, and automatically collect metrics at the model and application level. Please check out this page to learn more about the collaboration and get detailed documentation here.
Conclusion
The new collaborations between Azure and Weights & Biases, Scale AI, Gretel and Statsig represent a significant step forward in simplifying the process of AI model customization. These collaborations aim to address the common pain points associated with fine-tuning models, including lack of end-to-end tooling, data scarcity and privacy concerns, lack of expertise and experimentation tooling. Through these collaborations, Azure AI Foundry will empower organizations to fine-tune and customize models more efficiently, ultimately enabling faster, more accurate AI deployments. Whether it’s through better model tracking, access to synthetic data, or scalable data preparation services, these collaborations will help businesses unlock the full potential of AI.