youtube
29 TopicsHow to use Comments as Prompts in GitHub Copilot for Visual Studio
GitHub Copilot is a coding assistant powered by Artificial Intelligence (AI), which can run in various environments and help you be more efficient in your daily coding tasks. In this new short video, Bruno shows you how to use inline comments to generate code with GitHub Copilot.How to Install GitHub Copilot in Visual Studio
GitHub Copilot is a coding assistant powered by Artificial Intelligence (AI), which can run in various environments and help you be more efficient in your daily coding tasks. In this new series of content, we will show you how GitHub Copilot works in Visual Studio specifically and how it helps you being more productive.4.7KViews2likes0CommentsVS Code Live: Extending Agent Mode
VS Code Live is a monthly livestream showcasing the latest updates in Visual Studio Code, with hands-on demos from the VS Code team and key partners. On June 12 (8 AM PST), we’ll dive into the VS Code 1.101 release, with a special focus on Extending Agent Mode. In this session, we’ll explore how to unlock its full potential using MCP servers and custom extensions. You’ll hear from experts at GitHub, Figma, and Netlify, and see a live demo of the new PostgreSQL extension. Join us live to learn from the people shaping the future of VS Code and see what’s coming next.RAG Time: Ultimate Guide to Mastering RAG!
RAG Time is a brand-new AI learning series designed to help developers unlock the full potential of Retrieval-Augmented Generation (RAG). If you’ve been looking for a way to build smarter, more efficient AI systems—join us in RAG Time, every Wednesday 9AM PT from March 5 through April 2 on Microsoft Developer YouTube. What's in RAG Time? RAG Time is a five-part learning journey, with new videos and blog posts releasing every week in March. The series features: 🔥 Expert-led discussions breaking down RAG fundamentals and best practices 🎤 Exclusive leadership interviews with AI leaders ⚡ Hands-on demos & real-world case studies showing RAG in action 🎨 Creative doodle summaries making complex concepts easier to grasp and remember 🛠 Samples & resources in the RAG Time repository so you can start building today What You’ll Learn The series is structured into five learning journeys, each tackling a crucial aspect of RAG-powered AI: 📌 March 5th, 9AM PT - Journey 1: RAG and Knowledge Retrieval Fundamentals – Start with the basics! Learn how RAG, search indexing, and vector search work together to create smarter AI retrieval systems. 📌 March 12th, 9AM PT - Journey 2: Build the Ultimate Retrieval System for RAG – Go beyond the fundamentals with hybrid search, semantic ranking, and relevance tuning to refine how AI retrieves the most relevant information. 📌 March 19th, 9AM PT - Journey 3: Optimize Your Vector Index for Scale – Learn how to scale vector search efficiently, optimize storage, and implement advanced techniques like quantization and Matryoshka learning for large-scale AI applications. 📌 March 26th, 9AM PT - Journey 4: RAG for All Your Data: Multimodal and Beyond – Move beyond text-based retrieval! Discover how to integrate images, audio, and structured data into your RAG workflows and leverage multimodal pipelines for next-level AI capabilities. 📌 April 2nd, 9AM PT - Journey 5: Hero Use Cases for RAG – Explore real-world implementations, industry-leading examples, and best practices, while diving into Responsible AI considerations to ensure ethical and impactful solutions. Why You Should Watch If you're a developer, data scientist, or AI enthusiast, this series is built for you! Whether you’re just getting started or looking to master enterprise-grade retrieval systems, RAG Time delivers practical knowledge, hands-on resources, and expert insights to help you stay ahead. Journey starts here 🚀 Start your journey from the RAG Time repo: https://aka.ms/rag-time. You'll find all the information about the video series, samples, documentation and doodles in the repo! Share your experience and feedback on GitHub discussions.Hack Together: RAG Hack - Building RAG Applications with LangChain.js
In the rapidly evolving landscape of Artificial Intelligence and Natural Language Processing, the use of Retrieval Augmented Generation (RAG) has emerged as a powerful solution to enhance the accuracy and relevance of responses generated by language models. In this article, we will explore the talk given during the Hack Together: RAG Hack event, where Glaucia Lemos, a Cloud Advocate at Microsoft, and Yohan Lasorsa, a Senior Cloud Advocate at Microsoft, demonstrated how LangChain.js is revolutionizing the development of RAG applications, making it easier to create intelligent applications that combine large language models (LLMs) with your own data sources.