vs code
94 TopicsChoosing the Right Model in GitHub Copilot: A Practical Guide for Developers
AI-assisted development has grown far beyond simple code suggestions. GitHub Copilot now supports multiple AI models, each optimized for different workflows, from quick edits to deep debugging to multi-step agentic tasks that generate or modify code across your entire repository. As developers, this flexibility is powerful… but only if we know how to choose the right model at the right time. In this guide, I’ll break down: Why model selection matters The four major categories of development tasks A simplified, developer-friendly model comparison table Enterprise considerations and practical tips This is written from the perspective of real-world customer conversations, GitHub Copilot demos, and enterprise adoption journeys Why Model Selection Matters GitHub Copilot isn’t tied to a single model. Instead, it offers a range of models, each with different strengths: Some are optimized for speed Others are optimized for reasoning depth Some are built for agentic workflows Choosing the right model can dramatically improve: The quality of the output The speed of your workflow The accuracy of Copilot’s reasoning The effectiveness of Agents and Plan Mode Your usage efficiency under enterprise quotas Model selection is now a core part of modern software development, just like choosing the right library, framework, or cloud service. The Four Task Categories (and which Model Fits) To simplify model selection, I group tasks into four categories. Each category aligns naturally with specific types of models. 1. Everyday Development Tasks Examples: Writing new functions Improving readability Generating tests Creating documentation Best fit: General-purpose coding models (e.g., GPT‑4.1, GPT‑5‑mini, Claude Sonnet) These models offer the best balance between speed and quality. 2. Fast, Lightweight Edits Examples: Quick explanations JSON/YAML transformations Small refactors Regex generation Short Q&A tasks Best fit: Lightweight models (e.g., Claude Haiku 4.5) These models give near-instant responses and keep you “in flow.” 3. Complex Debugging & Deep Reasoning Examples: Analyzing unfamiliar code Debugging tricky production issues Architecture decisions Multi-step reasoning Performance analysis Best fit: Deep reasoning models (e.g., GPT‑5, GPT‑5.1, GPT‑5.2, Claude Opus) These models handle large context, produce structured reasoning, and give the most reliable insights for complex engineering tasks. 4. Multi-step Agentic Development Examples: Repo-wide refactors Migrating a codebase Scaffolding entire features Implementing multi-file plans in Agent Mode Automated workflows (Plan → Execute → Modify) Best fit: Agent-capable models (e.g., GPT‑5.1‑Codex‑Max, GPT‑5.2‑Codex) These models are ideal when you need Copilot to execute multi-step tasks across your repository. GitHub Copilot Models - Developer Friendly Comparison The set of models you can choose from depends on your Copilot subscription, and the available options may evolve over time. Each model also has its own premium request multiplier, which reflects the compute resources it requires. If you're using a paid Copilot plan, the multiplier determines how many premium requests are deducted whenever that model is used. Model Category Example Models (Premium request Multiplier for paid plans) What they’re best at When to Use Them Fast Lightweight Models Claude Haiku 4.5, Gemini 3 Flash (0.33x) Grok Code Fast 1 (0.25x) Low latency, quick responses Small edits, Q&A, simple code tasks General-Purpose Coding Models GPT‑4.1, GPT‑5‑mini (0x) GPT-5-Codex, Claude Sonnet 4.5 (1x) Reliable day‑to‑day development Writing functions, small tests, documentation Deep Reasoning Models GPT-5.1 Codex Mini (0.33x) GPT‑5, GPT‑5.1, GPT-5.1 Codex, GPT‑5.2, Claude Sonnet 4.0, Gemini 2.5 Pro, Gemini 3 Pro (1x) Claude Opus 4.5 (3x) Complex reasoning and debugging Architecture work, deep bug diagnosis Agentic / Multi-step Models GPT‑5.1‑Codex‑Max, GPT‑5.2‑Codex (1x) Planning + execution workflows Repo-wide changes, feature scaffolding Enterprise Considerations For organizations using Copilot Enterprise or Business: Admins can control which models employees can use Model selection may be restricted due to security, regulation, or data governance You may see fewer available models depending on your organization’s Copilot policies Using "Auto" Model selection in GitHub Copilot GitHub Copilot’s Auto model selection automatically chooses the best available model for your prompts, reducing the mental load of picking a model and helping you avoid rate‑limiting. When enabled, Copilot prioritizes model availability and selects from a rotating set of eligible models such as GPT‑4.1, GPT‑5 mini, GPT‑5.2‑Codex, Claude Haiku 4.5, and Claude Sonnet 4.5 while respecting your subscription level and any administrator‑imposed restrictions. Auto also excludes models blocked by policies, models with premium multipliers greater than 1, and models unavailable in your plan. For paid plans, Auto provides an additional benefit: a 10% discount on premium request multipliers when used in Copilot Chat. Overall, Auto offers a balanced, optimized experience by dynamically selecting a performant and cost‑efficient model without requiring developers to switch models manually. Read more about the 'Auto' Model selection here - About Copilot auto model selection - GitHub Docs Final Thoughts GitHub Copilot is becoming a core part of the developer workflows. Choosing the right model can dramatically improve your productivity, the accuracy of Copilot’s responses, your experience with multi-step agentic tasks, your ability to navigate complex codebases Whether you’re building features, debugging complex issues, or orchestrating repo-wide changes, picking the right model helps you get the best out of GitHub Copilot. References and Further Reading To explore each model further, visit the GitHub Copilot model comparison documentation or try switching models in Copilot Chat to see how they impact your workflow. AI model comparison - GitHub Docs Requests in GitHub Copilot - GitHub Docs About Copilot auto model selection - GitHub DocsDemystifying GitHub Copilot Security Controls: easing concerns for organizational adoption
At a recent developer conference, I delivered a session on Legacy Code Rescue using GitHub Copilot App Modernization. Throughout the day, conversations with developers revealed a clear divide: some have fully embraced Agentic AI in their daily coding, while others remain cautious. Often, this hesitation isn't due to reluctance but stems from organizational concerns around security and regulatory compliance. Having witnessed similar patterns during past technology shifts, I understand how these barriers can slow adoption. In this blog, I'll demystify the most common security concerns about GitHub Copilot and explain how its built-in features address them, empowering organizations to confidently modernize their development workflows. GitHub Copilot Model Training A common question I received at the conference was whether GitHub uses your code as training data for GitHub Copilot. I always direct customers to the GitHub Copilot Trust Center for clarity, but the answer is straightforward: “No. GitHub uses neither Copilot Business nor Enterprise data to train the GitHub model.” Notice this restriction also applies to third-party models as well (e.g. Anthropic, Google). GitHub Copilot Intellectual Property indemnification policy A frequent concern I hear is, since GitHub Copilot’s underlying models are trained on sources that include public code, it might simply “copy and paste” code from those sources. Let’s clarify how this actually works: Does GitHub Copilot “copy/paste”? “The AI models that create Copilot’s suggestions may be trained on public code, but do not contain any code. When they generate a suggestion, they are not “copying and pasting” from any codebase.” To provide an additional layer of protection, GitHub Copilot includes a “duplicate detection filter”. This feature helps prevent suggestions that closely match public code from being surfaced. (Note: This duplicate detection currently does not apply to the Copilot coding agent.) More importantly, customers are protected by an Intellectual Property indemnification policy. This means that if you receive an unmodified suggestion from GitHub Copilot and face a copyright claim as a result, Microsoft will defend you in court. GitHub Copilot Data Retention Another frequent question I hear concerns GitHub Copilot’s data retention policies. For organizations on GitHub Copilot Business and Enterprise plans, retention practices depend on how and where the service is accessed from: Access through IDE for Chat and Code Completions: Prompts and Suggestions: Not retained. User Engagement Data: Kept for two years. Feedback Data: Stored for as long as needed for its intended purpose. Other GitHub Copilot access and use: Prompts and Suggestions: Retained for 28 days. User Engagement Data: Kept for two years. Feedback Data: Stored for as long as needed for its intended purpose. For Copilot Coding Agent, session logs are retained for the life of the account in order to provide the service. Excluding content from GitHub Copilot To prevent GitHub Copilot from indexing sensitive files, you can configure content exclusions at the repository or organization level. In VS Code, use the .copilotignore file to exclude files client-side. Note that files listed in .gitignore are not indexed by default but may still be referenced if open or explicitly referenced (unless they’re excluded through .copilotignore or content exclusions). The life cycle of a GitHub Copilot code suggestion Here are the key protections at each stage of the life cycle of a GitHub Copilot code suggestion: In the IDE: Content exclusions prevent files, folders, or patterns from being included. GitHub proxy (pre-model safety): Prompts go through a GitHub proxy hosted in Microsoft Azure for pre-inference checks: screening for toxic or inappropriate language, relevance, and hacking attempts/jailbreak-style prompts before reaching the model. Model response: With the public code filter enabled, some suggestions are suppressed. The vulnerability protection feature blocks insecure coding patterns like hardcoded credentials or SQL injections in real time. Disable access to GitHub Copilot Free Due to the varying policies associated with GitHub Copilot Free, it is crucial for organizations to ensure it is disabled both in the IDE and on GitHub.com. Since not all IDEs currently offer a built-in option to disable Copilot Free, the most reliable method to prevent both accidental and intentional access is to implement firewall rule changes, as outlined in the official documentation. Agent Mode Allow List Accidental file system deletion by Agentic AI assistants can happen. With GitHub Copilot agent mode, the "Terminal auto approve” setting in VS Code can be used to prevent this. This setting can be managed centrally using a VS Code policy. MCP registry Organizations often want to restrict access to allow only trusted MCP servers. GitHub now offers an MCP registry feature for this purpose. This feature isn’t available in all IDEs and clients yet, but it's being developed. Compliance Certifications The GitHub Copilot Trust Center page lists GitHub Copilot's broad compliance credentials, surpassing many competitors in financial, security, privacy, cloud, and industry coverage. SOC 1 Type 2: Assurance over internal controls for financial reporting. SOC 2 Type 2: In-depth report covering Security, Availability, Processing Integrity, Confidentiality, and Privacy over time. SOC 3: General-use version of SOC 2 with broad executive-level assurance. ISO/IEC 27001:2013: Certification for a formal Information Security Management System (ISMS), based on risk management controls. CSA STAR Level 2: Includes a third-party attestation combining ISO 27001 or SOC 2 with additional cloud control matrix (CCM) requirements. TISAX: Trusted Information Security Assessment Exchange, covering automotive-sector security standards. In summary, while the adoption of AI tools like GitHub Copilot in software development can raise important questions around security, privacy, and compliance, it’s clear that existing safeguards in place help address these concerns. By understanding the safeguards, configurable controls, and robust compliance certifications offered, organizations and developers alike can feel more confident in embracing GitHub Copilot to accelerate innovation while maintaining trust and peace of mind.Microsoft Foundry for VS Code: January 2026 Update
Enhanced Workflow and Agent Experience The January 2026 update for Microsoft Foundry extension in VS Code brings a follow update to the capabilities we introduced during Ignite of last year. We’re excited to announce a set of powerful updates that make building and managing AI workflows in Azure AI Foundry even more seamless. These enhancements are designed to give developers greater flexibility, visibility, and control when working with multi-agent systems and workflows. Support for Multiple Workflows in the Visualizer Managing complex AI solutions often involves multiple workflows. With this update, the Workflow Visualizer now supports viewing and navigating multiple workflows in a single project. This makes it easier to design, debug, and optimize interconnected workflows without switching contexts. View and Test Prompt Agents in the Playground Prompt agents are a critical part of orchestrating intelligent behaviors. You can now view all prompt agents directly in the Playground and test them interactively. This feature helps you validate agent logic and iterate quickly, ensuring your prompts deliver the desired outcomes. Open Code files Transparency and customization are key for developers. We’ve introduced the ability to open sample code files for all agents, including: Prompt agents YAML-based workflows Hosted agents Foundry classic agents This gives you the ability to programmatically run agents, enabling adding these agents into your existing project. Separated Resource View for v1 and v2 Agents To reduce confusion and improve clarity, we’ve introduced a separated resource view for Foundry Classic resources and agents. This makes it simple to distinguish between legacy and new-generation agents, ensuring you always know which resources you’re working with. How to Get Started Download the extension here: Microsoft Foundry in VS Code Marketplace Get started with building agents and workflows with Microsoft Foundry in VS Code MS Learn Docs Feedback & Support These improvements are part of our ongoing commitment to deliver a developer-first experience in Microsoft Foundry. Whether you’re orchestrating multi-agent workflows or fine-tuning prompt logic, these features help you build smarter, faster, and with greater confidence. Try out the extensions and let us know what you think! File issues or feedback on our GitHub repo for Foundry extension. Your input helps us make continuous improvements.🚀 AI Toolkit for VS Code: January 2026 Update
Happy New Year! 🎆 We are kicking off 2026 with a major set of updates designed to streamline how you build, test, and deploy AI agents. This month, we’ve focused on aligning with the latest GitHub Copilot standards, introducing powerful new debugging tools, and enhancing our support for enterprise-grade models via Microsoft Foundry. 💡 From Copilot Instructions to Agent Skills The biggest architectural shift following the latest VS Code Copilot standards, in v0.28.1 is the transition from Copilot Instructions to Copilot Skills. This transition has equipped GitHub Copilot specialized skills on developing AI agents using Microsoft Foundry and Agent Framework in a cost-efficient way. In AI Toolkit, we have migrated our Copilot Tools from the Custom Instructions to Agent Skills. This change allows for a more capable integration within GitHub Copilot Chat. 🔄 Enhanced AIAgentExpert: Our custom agent now has a deeper understanding of workflow code generation and evaluation planning/execution. 🧹Automatic Migration: When you upgrade to v0.28.1, the toolkit will automatically clean up your old instructions to ensure a seamless transition to the new skills-based framework. 🏗️ Major Enhancements to Agent Development Our v0.28.0 milestone release brought significant improvements to how agents are authored and authenticated. 🔒 Anthropic & Entra Auth Support We’ve expanded the Agent Builder and Playground to support Anthropic models using Entra Auth types. This provides enterprise developers with a more secure way to leverage Claude models within the Agent Framework while maintaining strict authentication standards. 🏢 Foundry-First Development We are prioritizing the Microsoft Foundry ecosystem to provide a more robust development experience: Foundry v2: Code generation for agents now defaults to Foundry v2. ⚡ Eval Tool: You can now generate evaluation code directly within the toolkit to create and run evaluations in Microsoft Foundry. 📊 Model Catalog: We’ve optimized the Model Catalog to prioritize Foundry models and improved general loading performance. 🏎️ 💻 Performance and Local Models For developers building on Windows, we continue to optimize the local model experience: Profiling for Windows ML: Version 0.28.0 introduces profiling features for Windows ML-based local models, allowing you to monitor performance and resource utilization directly within VS Code. Platform Optimization: To keep the interface clean, we’ve removed the Windows AI API tab from the Model Catalog when running on Linux and macOS platforms. 🐛 Squashing Bugs & Polishing the Experience Codespaces Fix: Resolved a crash occurring when selecting images in the Playground while using GitHub Codespaces. Resource Management: Fixed a delay where newly added models wouldn't immediately appear in the "My Resources" view. Claude Compatibility: Fixed an issue where non-empty content was required for Claude models when used via the AI Toolkit in GitHub Copilot. 🚀 Getting Started Ready to experience the future of AI development? Here's how to get started: 📥 Download: Install the AI Toolkit from the Visual Studio Code Marketplace 📖 Learn: Explore our comprehensive AI Toolkit Documentation 🔍 Discover: Check out the complete changelog for v0.24.0 We'd love to hear from you! Whether it's a feature request, bug report, or feedback on your experience, join the conversation and contribute directly on our GitHub repository. Happy Coding! 💻✨From Cloud to Chip: Building Smarter AI at the Edge with Windows AI PCs
As AI engineers, we’ve spent years optimizing models for the cloud, scaling inference, wrangling latency, and chasing compute across clusters. But the frontier is shifting. With the rise of Windows AI PCs and powerful local accelerators, the edge is no longer a constraint it’s now a canvas. Whether you're deploying vision models to industrial cameras, optimizing speech interfaces for offline assistants, or building privacy-preserving apps for healthcare, Edge AI is where real-world intelligence meets real-time performance. Why Edge AI, Why Now? Edge AI isn’t just about running models locally, it’s about rethinking the entire lifecycle: - Latency: Decisions in milliseconds, not round-trips to the cloud. - Privacy: Sensitive data stays on-device, enabling HIPAA/GDPR compliance. - Resilience: Offline-first apps that don’t break when the network does. - Cost: Reduced cloud compute and bandwidth overhead. With Windows AI PCs powered by Intel and Qualcomm NPUs and tools like ONNX Runtime, DirectML, and Olive, developers can now optimize and deploy models with unprecedented efficiency. What You’ll Learn in Edge AI for Beginners The Edge AI for Beginners curriculum is a hands-on, open-source guide designed for engineers ready to move from theory to deployment. Multi-Language Support This content is available in over 48 languages, so you can read and study in your native language. What You'll Master This course takes you from fundamental concepts to production-ready implementations, covering: Small Language Models (SLMs) optimized for edge deployment Hardware-aware optimization across diverse platforms Real-time inference with privacy-preserving capabilities Production deployment strategies for enterprise applications Why EdgeAI Matters Edge AI represents a paradigm shift that addresses critical modern challenges: Privacy & Security: Process sensitive data locally without cloud exposure Real-time Performance: Eliminate network latency for time-critical applications Cost Efficiency: Reduce bandwidth and cloud computing expenses Resilient Operations: Maintain functionality during network outages Regulatory Compliance: Meet data sovereignty requirements Edge AI Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making. Core Principles: On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs) Offline capability: Functions without persistent internet connectivity Low latency: Immediate responses suited for real-time systems Data sovereignty: Keeps sensitive data local, improving security and compliance Small Language Models (SLMs) SLMs like Phi-4, Mistral-7B, Qwen and Gemma are optimized versions of larger LLMs, trained or distilled for: Reduced memory footprint: Efficient use of limited edge device memory Lower compute demand: Optimized for CPU and edge GPU performance Faster startup times: Quick initialization for responsive applications They unlock powerful NLP capabilities while meeting the constraints of: Embedded systems: IoT devices and industrial controllers Mobile devices: Smartphones and tablets with offline capabilities IoT Devices: Sensors and smart devices with limited resources Edge servers: Local processing units with limited GPU resources Personal Computers: Desktop and laptop deployment scenarios Course Modules & Navigation Course duration. 10 hours of content Module Topic Focus Area Key Content Level Duration 📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs 📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs 🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs 🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs ⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs 🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs 🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs 💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs 🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs Each module includes Jupyter notebooks, code samples, and deployment walkthroughs, perfect for engineers who learn by doing. Developer Highlights - 🔧 Olive: Microsoft's optimization toolchain for quantization, pruning, and acceleration. - 🧩 ONNX Runtime: Cross-platform inference engine with support for CPU, GPU, and NPU. - 🎮 DirectML: GPU-accelerated ML API for Windows, ideal for gaming and real-time apps. - 🖥️ Windows AI PCs: Devices with built-in NPUs for low-power, high-performance inference. Local AI: Beyond the Edge Local AI isn’t just about inference, it’s about autonomy. Imagine agents that: - Learn from local context - Adapt to user behavior - Respect privacy by design With tools like Agent Framework, Azure AI Foundry and Windows Copilot Studio, and Foundry Local developers can orchestrate local agents that blend LLMs, sensors, and user preferences, all without cloud dependency. Try It Yourself Ready to get started? Clone the Edge AI for Beginners GitHub repo, run the notebooks, and deploy your first model to a Windows AI PC or IoT devices Whether you're building smart kiosks, offline assistants, or industrial monitors, this curriculum gives you the scaffolding to go from prototype to production.AI Upskilling Framework Level 3 Building
The Global AI Community is excited to bring you the latest updates on AI Upskilling Framework Level 3 Building, straight from Microsoft Ignite! This session dives deep into advanced concepts for building agentic workflows and showcases new announcements that will help developers accelerate their Agentic AI journey.AI Dev Days 2025: Your Gateway to the Future of AI Development
What’s in Store? Day 1 – 10 December: Video Link Building AI Applications with Azure, GitHub, and Foundry Explore cutting-edge topics like: Agentic DevOps Azure SRE Agent Microsoft Foundry MCP Models for AI innovation Day 2 – 11 December Agenda: Video Link Using AI to Boost Developer Productivity Get hands-on with: Agent HQ VS Code & Visual Studio 2026 GitHub Copilot Coding Agent App Modernisation Strategies Why Join? Hands-on Labs: Apply the latest product features immediately. Highlights from Microsoft Ignite & GitHub Universe 2025: Stay ahead of the curve. Global Reach: Local-language workshops for LATAM and EMEA coming soon. You’ll recognise plenty of familiar faces in the lineup – don’t miss the chance to connect and learn from the best! 👉 Register now and share widely across your networks – there’s truly something for everyone! https://aka.ms/ai-dev-daysUpcoming Live Stream: Building AI Agents with the AI Toolkit & Microsoft Foundry
We’re at a moment where generative AI is shifting from single-prompt interactions to agents that can process visuals, store memory, and act. And the best way to understand that shift is to build something yourself! That’s exactly what we’re doing in my upcoming live stream on Building AI Agents with the AI Toolkit & Microsoft Foundry — a hands-on walkthrough of the full lab experience from Microsoft Ignite 2025! This session is designed for developers, makers, and anyone curious about how multimodal agents get from idea to working prototype. What we'll explore During the stream, I’ll walk through the core concepts and build steps from the lab, including: Setting Up Your Environment in Microsoft Foundry You’ll see how to create and configure your project, connect to models, and prepare your workspace using the AI Toolkit in VS Code. This lab makes it approachable, even if you’re new to Foundry or agent workflows. Testing Multimodal Inputs We’ll explore how the agent processes text and images, how the model interprets such input, and how that insight becomes part of its reasoning loop. During the stream, I’ll show you what strong visual prompts look like, where people usually get stuck, and how to shape the output you want. Designing an Agent System Prompt We’ll look at how to structure agent behavior and how a well-crafted system prompt becomes the foundation for consistent responses and accurate multimodal reasoning. This includes grounding, action definitions, and the type of instructions that help an agent combine text, vision, and reasoning capabilities. Iterating With the AI Toolkit This is where things get fun. We’ll use the AI Toolkit’s playground and debugging tools to observe the agent’s thought process, test different instructions, and evaluate its planning behavior. You’ll see why tools like trace view, structured output, and function definitions make iteration faster and more predictable. Expanding Beyond the Lab To close, we’ll talk through what it looks like to extend the agent: Adding new skills Changing how it plans Connecting it to additional data Turning the prototype into an application My goal is for you to take away a repeatable workflow, one you can reuse whether you’re building a creative tool, a developer agent, or something entirely new. The Bigger Picture Multimodal agents are becoming the new interface layer for apps: they can interpret images, understand context, take actions, and guide users through workflows that feel natural. If you understand how to prototype them, you understand how AI-powered products will be built in the next few years. This stream is for anyone who wants to experiment, learn by doing, and make sense of where AI tooling is headed. Date: Wednesday December 3, 2025 Time: 10AM – 11AM Pacific Link: https://aka.ms/AITGHC/Dec3/b View on DemandOn‑Device AI with Windows AI Foundry and Foundry Local
From “waiting” to “instant”- without sending data away AI is everywhere, but speed, privacy, and reliability are critical. Users expect instant answers without compromise. On-device AI makes that possible: fast, private and available, even when the network isn’t - empowering apps to deliver seamless experiences. Imagine an intelligent assistant that works in seconds, without sending a text to the cloud. This approach brings speed and data control to the places that need it most; while still letting you tap into cloud power when it makes sense. Windows AI Foundry: A Local Home for Models Windows AI Foundry is a developer toolkit that makes it simple to run AI models directly on Windows devices. It uses ONNX Runtime under the hood and can leverage CPU, GPU (via DirectML), or NPU acceleration, without requiring you to manage those details. The principle is straightforward: Keep the model and the data on the same device. Inference becomes faster, and data stays local by default unless you explicitly choose to use the cloud. Foundry Local Foundry Local is the engine that powers this experience. Think of it as local AI runtime - fast, private, and easy to integrate into an app. Why Adopt On‑Device AI? Faster, more responsive apps: Local inference often reduces perceived latency and improves user experience. Privacy‑first by design: Keep sensitive data on the device; avoid cloud round trips unless the user opts in. Offline capability: An app can provide AI features even without a network connection. Cost control: Reduce cloud compute and data costs for common, high‑volume tasks. This approach is especially useful in regulated industries, field‑work tools, and any app where users expect quick, on‑device responses. Hybrid Pattern for Real Apps On-device AI doesn’t replace the cloud, it complements it. Here’s how: Standalone On‑Device: Quick, private actions like document summarization, local search, and offline assistants. Cloud‑Enhanced (Optional): Large-context models, up-to-date knowledge, or heavy multimodal workloads. Design an app to keep data local by default and surface cloud options transparently with user consent and clear disclosures. Windows AI Foundry supports hybrid workflows: Use Foundry Local for real-time inference. Sync with Azure AI services for model updates, telemetry, and advanced analytics. Implement fallback strategies for resource-intensive scenarios. Application Workflow Code Example using Foundry Local: 1. Only On-Device: Tries Foundry Local first, falls back to ONNX if foundry_runtime.check_foundry_available(): # Use on-device Foundry Local models try: answer = foundry_runtime.run_inference(question, context) return answer, source="Foundry Local (On-Device)" except Exception as e: logger.warning(f"Foundry failed: {e}, trying ONNX...") if onnx_model.is_loaded(): # Fallback to local BERT ONNX model try: answer = bert_model.get_answer(question, context) return answer, source="BERT ONNX (On-Device)" except Exception as e: logger.warning(f"ONNX failed: {e}") return "Error: No local AI available" 2. Hybrid approach: On-device first, cloud as last resort def get_answer(question, context): """ Priority order: 1. Foundry Local (best: advanced + private) 2. ONNX Runtime (good: fast + private) 3. Cloud API (fallback: requires internet, less private) # in case of Hybrid approach, based on real-time scenario """ if foundry_runtime.check_foundry_available(): # Use on-device Foundry Local models try: answer = foundry_runtime.run_inference(question, context) return answer, source="Foundry Local (On-Device)" except Exception as e: logger.warning(f"Foundry failed: {e}, trying ONNX...") if onnx_model.is_loaded(): # Fallback to local BERT ONNX model try: answer = bert_model.get_answer(question, context) return answer, source="BERT ONNX (On-Device)" except Exception as e: logger.warning(f"ONNX failed: {e}, trying cloud...") # Last resort: Cloud API (requires internet) if network_available(): try: import requests response = requests.post( '{BASE_URL_AI_CHAT_COMPLETION}', headers={'Authorization': f'Bearer {API_KEY}'}, json={ 'model': '{MODEL_NAME}', 'messages': [{ 'role': 'user', 'content': f'Context: {context}\n\nQuestion: {question}' }] }, timeout=10 ) answer = response.json()['choices'][0]['message']['content'] return answer, source="Cloud API (Online)" except Exception as e: return "Error: No AI runtime available", source="Failed" else: return "Error: No internet and no local AI available", source="Offline" Demo Project Output: Foundry Local answering context-based questions offline : The Foundry Local engine ran the Phi-4-mini model offline and retrieved context-based data. : The Foundry Local engine ran the Phi-4-mini model offline and mentioned that there is no answer. Practical Use Cases Privacy-First Reading Assistant: Summarize documents locally without sending text to the cloud. Healthcare Apps: Analyze medical data on-device for compliance. Financial Tools: Risk scoring without exposing sensitive financial data. IoT & Edge Devices: Real-time anomaly detection without network dependency. Conclusion On-device AI isn’t just a trend - it’s a shift toward smarter, faster, and more secure applications. With Windows AI Foundry and Foundry Local, developers can deliver experiences that respect user specific data, reduce latency, and work even when connectivity fails. By combining local inference with optional cloud enhancements, you get the best of both worlds: instant performance and scalable intelligence. Whether you’re creating document summarizers, offline assistants, or compliance-ready solutions, this approach ensures your apps stay responsive, reliable, and user-centric. References Get started with Foundry Local - Foundry Local | Microsoft Learn What is Windows AI Foundry? | Microsoft Learn https://devblogs.microsoft.com/foundry/unlock-instant-on-device-ai-with-foundry-local/Azure Skilling at Microsoft Ignite 2025
The energy at Microsoft Ignite was unmistakable. Developers, architects, and technical decision-makers converged in San Francisco to explore the latest innovations in cloud technology, AI applications, and data platforms. Beyond the keynotes and product announcements was something even more valuable: an integrated skilling ecosystem designed to transform how you build with Azure. This year Azure Skilling at Microsoft Ignite 2025 brought together distinct learning experiences, over 150+ hands-on labs, and multiple pathways to industry-recognized credentials—all designed to help you master skills that matter most in today's AI-driven cloud landscape. Just Launched at Ignite Microsoft Ignite 2025 offered an exceptional array of learning opportunities, each designed to meet developers anywhere on the skilling journey. Whether you joined us in-person or on-demand in the virtual experience, multiple touchpoints are available to deepen your Azure expertise. Ignite 2025 is in the books, but you can still engage with the latest Microsoft skilling opportunities, including: The Azure Skills Challenge provides a gamified learning experience that lets you compete while completing task-based achievements across Azure's most critical technologies. These challenges aren't just about badges and bragging rights—they're carefully designed to help you advance technical skills and prepare for Microsoft role-based certifications. The competitive element adds urgency and motivation, turning learning into an engaging race against the clock and your peers. For those seeking structured guidance, Plans on Learn offer curated sets of content designed to help you achieve specific learning outcomes. These carefully assembled learning journeys include built-in milestones, progress tracking, and optional email reminders to keep you on track. Each plan represents 12-15 hours of focused learning, taking you from concept to capability in areas like AI application development, data platform modernization, or infrastructure optimization. The Microsoft Reactor Azure Skilling Series, running December 3-11, brings skilling to life through engaging video content, mixing regular programming with special Ignite-specific episodes. This series will deliver technical readiness and programming guidance in a livestream presentation that's more digestible than traditional documentation. Whether you're catching episodes live with interactive Q&A or watching on-demand later, you’ll get world-class instruction that makes complex topics approachable. Beyond Ignite: Your Continuous Learning Journey Here's the critical insight that separates Ignite attendees who transform their careers from those who simply collect swag: the real learning begins after the event ends. Microsoft Ignite is your launchpad, not your destination. Every module you start, every lab you complete, and every challenge you tackle connects to a comprehensive learning ecosystem on Microsoft Learn that's available 24/7, 365 days a year. Think of Ignite as your intensive immersion experience—the moment when you gain context, build momentum, and identify the skills that will have the biggest impact on your work. What you do in the weeks and months following determines whether that momentum compounds into career-defining expertise or dissipates into business as usual. For those targeting career advancement through formal credentials, Microsoft Certifications, Applied Skills and AI Skills Navigator, provide globally recognized validation of your expertise. Applied Skills focus on scenario-based competencies, demonstrating that you can build and deploy solutions, not simply answer theoretical questions. Certifications cover role-based scenarios for developers, data engineers, AI engineers, and solution architects. The assessment experiences include performance-based testing in dedicated Azure tenants where you complete real configuration and development tasks. And finally, the NEW AI Skills Navigator is an agentic learning space, bringing together AI-powered skilling experiences and credentials in a single, unified experience with Microsoft, LinkedIn Learning and GitHub – all in one spot Why This Matters: The Competitive Context The cloud skills race is intensifying. While our competitors offer robust training and content, Microsoft's differentiation comes not from having more content—though our 1.4 million module completions last fiscal year and 35,000+ certifications awarded speak to scale—but from integration of services to orchestrate workflows. Only Microsoft offers a truly unified ecosystem where GitHub Copilot accelerates your development, Azure AI services power your applications, and Azure platform services deploy and scale your solutions—all backed by integrated skilling content that teaches you to maximize this connected experience. When you continue your learning journey after Ignite, you're not just accumulating technical knowledge. You're developing fluency in an integrated development environment that no competitor can replicate. You're learning to leverage AI-powered development tools, cloud-native architectures, and enterprise-grade security in ways that compound each other's value. This unified expertise is what transforms individual developers into force-multipliers for their organizations. Start Now, Build Momentum, Never Stop Microsoft Ignite 2025 offered the chance to compress months of learning into days of intensive, hands-on experience, but you can still take part through the on-demand videos, the Global Ignite Skills Challenge, visiting the GitHub repos for the /Ignite25 labs, the Reactor Azure Skilling Series, and the curated Plans on Learn provide multiple entry points regardless of your current skill level or preferred learning style. But remember: the developers who extract the most value from Ignite are those who treat the event as the beginning, not the culmination, of their learning journey. They join hackathons, contribute to GitHub repositories, and engage with the Azure community on Discord and technical forums. The question isn't whether you'll learn something valuable from Microsoft Ignite 2025-that's guaranteed. The question is whether you'll convert that learning into sustained momentum that compounds over months and years into career-defining expertise. The ecosystem is here. The content is ready. Your skilling journey doesn't end when Ignite does—it accelerates.3.6KViews0likes0Comments