vs code
114 Topics🚀 AI Toolkit for VS Code — February 2026 Update
February brings a major milestone for AI Toolkit. Version 0.30.0 is packed with new capabilities that make agent development more discoverable, debuggable, and production-ready—from a brand-new Tool Catalog, to an end-to-end Agent Inspector, to treating evaluations as first-class tests. 🔧 New in v0.30.0 🧰 Tool Catalog: One place to discover and manage agent tools The new Tool Catalog is a centralized hub for discovering, configuring, and integrating tools into your AI agents. Instead of juggling scattered configs and definitions, you now get a unified experience for tool management: Browse, search, and filter tools from the public Foundry catalog and local stdio MCP servers Configure connection settings for each tool directly in VS Code Add tools to agents seamlessly via Agent Builder Manage the full tool lifecycle: add, update, or remove tools with confidence Why it matters: expanding your agent’s capabilities is now a few clicks away—and stays manageable as your agent grows. 🕵️ Agent Inspector: Debug agents like real software The new Agent Inspector turns agent debugging into a first-class experience inside VS Code. Just press F5 and launch your agent with full debugger support. Key highlights: One-click F5 debugging with breakpoints, variable inspection, and step-through execution Copilot auto-configuration that scaffolds agent code, endpoints, and debugging setup Production-ready code generated using the Hosted Agent SDK, ready for Microsoft Foundry Real-time visualization of streaming responses, tool calls, and multi-agent workflows Quick code navigation—double-click workflow nodes to jump straight to source Unified experience combining chat and workflow visualization in one view Why it matters: agents are no longer black boxes—you can see exactly what’s happening, when, and why. 🧪 Evaluation as Tests: Treat quality like code With Evaluation as Tests, agent quality checks now fit naturally into existing developer workflows. What’s new: Define evaluations as test cases using familiar pytest syntax and Eval Runner SDK annotations Run evaluations directly from VS Code Test Explorer, mixing and matching test cases Analyze results in a tabular view with Data Wrangler integration Submit evaluation definitions to run at scale in Microsoft Foundry Why it matters: evaluations are no longer ad-hoc scripts—they’re versioned, repeatable, and CI-friendly. 🔄 Improvements across the Toolkit 🧱 Agent Builder Agent Builder received a major usability refresh: Redesigned layout for better navigation and focus Quick switcher to move between agents effortlessly Support for authoring, running, and saving Foundry prompt agents Add tools to Foundry prompt agents directly from the Tool Catalog or built-in tools New Inspire Me feature to help you get started when drafting agent instructions Numerous performance and stability improvements 🤖 Model Catalog Added support for models using the OpenAI Response API, including gpt-5.2-codex General performance and reliability improvements 🧠 Build Agent with GitHub Copilot New Workflow entry point to quickly generate multi-agent workflows with Copilot Ability to orchestrate workflows by selecting prompt agents from Foundry 🔁 Conversion & Profiling Generate interactive playgrounds for history models Added Qualcomm GPU recipes Show resource usage for Phi Silica directly in Model Playground ✨ Wrapping up Version 0.30.0 is a big step forward for AI Toolkit. With better discoverability, real debugging, structured evaluation, and deeper Foundry integration, building AI agents in VS Code now feels much closer to building production software. As always, we’d love your feedback—keep it coming, and happy agent building! 🚀Agents League: Two Weeks, Three Tracks, One Challenge
We're inviting all developers to join Agents League, running February 16-27. It's a two-week challenge where you'll build AI agents using production-ready tools, learn from live coding sessions, and get feedback directly from Microsoft product teams. We've put together starter kits for each track to help you get up and running quickly that also includes requirements and guidelines. Whether you want to explore what GitHub Copilot can do beyond autocomplete, build reasoning agents on Microsoft Foundry, or create enterprise integrations for Microsoft 365 Copilot, we have a track for you. Important: Register first to be eligible for prizes and your digital badge. Without registration, you won't qualify for awards or receive a badge when you submit. What Is Agents League? It's a 2-week competition that combines learning with building: 📽️ Live coding battles – Watch Product teams, MVPs and community members tackle challenges in real-time on Microsoft Reactor 💻 Async challenges – Build at your own pace, on your schedule 💬 Discord community – Connect with other participants, join AMAs, and get help when you need it 🏆 Prizes – $500 per track winner, plus GitHub Copilot Pro subscriptions for top picks The Three Tracks 🎨 Creative Apps — Build with GitHub Copilot (Chat, CLI, or SDK) 🧠 Reasoning Agents — Build with Microsoft Foundry 💼 Enterprise Agents — Build with M365 Agents Toolkit (or Copilot Studio) More details on each track below, or jump straight to the starter kits. The Schedule Agents League starts on February 16th and runs through Feburary 27th. Within 2 weeks, we host live battles on Reactor and AMA sessions on Discord. Week 1: Live Battles (Feb 17-19) We're kicking off with live coding battles streamed on Microsoft Reactor. Watch experienced developers compete in real-time, explaining their approach and architectural decisions as they go. Tue Feb 17, 9 AM PT — 🎨 Creative Apps battle Wed Feb 18, 9 AM PT — 🧠 Reasoning Agents battle Thu Feb 19, 9 AM PT — 💼 Enterprise Agents battle All sessions are recorded, so you can watch on your own schedule. Week 2: Build + AMAs (Feb 24-26) This is your time to build and ask questions on Discord. The async format means you work when it suits you, evenings, weekends, whatever fits your schedule. We're also hosting AMAs on Discord where you can ask questions directly to Microsoft experts and product teams: Tue Feb 24, 9 AM PT — 🎨 Creative Apps AMA Wed Feb 25, 9 AM PT — 🧠 Reasoning Agents AMA Thu Feb 26, 9 AM PT — 💼 Enterprise Agents AMA Bring your questions, get help when you're stuck, and share what you're building with the community. Pick Your Track We've created a starter kit for each track with setup guides, project ideas, and example scenarios to help you get started quickly. 🎨 Creative Apps Tool: GitHub Copilot (Chat, CLI, or SDK) Build innovative, imaginative applications that showcase the potential of AI-assisted development. All application types are welcome, web apps, CLI tools, games, mobile apps, desktop applications, and more. The starter kit walks you through GitHub Copilot's different modes and provides prompting tips to get the best results. View the Creative Apps starter kit. 🧠 Reasoning Agents Tool: Microsoft Foundry (UI or SDK) and/or Microsoft Agent Framework Build a multi-agent system that leverages advanced reasoning capabilities to solve complex problems. This track focuses on agents that can plan, reason through multi-step problems, and collaborate. The starter kit includes architecture patterns, reasoning strategies (planner-executor, critic/verifier, self-reflection), and integration guides for tools and MCP servers. View the Reasoning Agents starter kit. 💼 Enterprise Agents Tool: M365 Agents Toolkit or Copilot Studio Create intelligent agents that extend Microsoft 365 Copilot to address real-world enterprise scenarios. Your agent must work on Microsoft 365 Copilot Chat. Bonus points for: MCP server integration, OAuth security, Adaptive Cards UI, connected agents (multi-agent architecture). View the Enterprise Agents starter kit. Prizes & Recognition To be eligible for prizes and your digital badge, you must register before submitting your project. Category Winners ($500 each): 🎨 Creative Apps winner 🧠 Reasoning Agents winner 💼 Enterprise Agents winner GitHub Copilot Pro subscriptions: Community Favorite (voted by participants on Discord) Product Team Picks (selected by Microsoft product teams) Everyone who registers and submits a project wins: A digital badge to showcase their participation. Beyond the prizes, every participant gets feedback from the teams who built these tools, a valuable opportunity to learn and improve your approach to AI agent development. How to Get Started Register first — This is required to be eligible for prizes and to receive your digital badge. Without registration, your submission won't qualify for awards or a badge. Pick a track — Choose one track. Explore the starter kits to help you decide. Watch the battles — See how experienced developers approach these challenges. Great for learning even if you're still deciding whether to compete. Build your project — You have until Feb 27. Work on your own schedule. Submit via GitHub — Open an issue using the project submission template. Join us on Discord — Get help, share your progress, and vote for your favorite projects on Discord. Links Register: https://aka.ms/agentsleague/register Starter Kits: https://github.com/microsoft/agentsleague/starter-kits Discord: https://aka.ms/agentsleague/discord Live Battles: https://aka.ms/agentsleague/battles Submit Project: Project submission templateChoosing the Right Model in GitHub Copilot: A Practical Guide for Developers
AI-assisted development has grown far beyond simple code suggestions. GitHub Copilot now supports multiple AI models, each optimized for different workflows, from quick edits to deep debugging to multi-step agentic tasks that generate or modify code across your entire repository. As developers, this flexibility is powerful… but only if we know how to choose the right model at the right time. In this guide, I’ll break down: Why model selection matters The four major categories of development tasks A simplified, developer-friendly model comparison table Enterprise considerations and practical tips This is written from the perspective of real-world customer conversations, GitHub Copilot demos, and enterprise adoption journeys Why Model Selection Matters GitHub Copilot isn’t tied to a single model. Instead, it offers a range of models, each with different strengths: Some are optimized for speed Others are optimized for reasoning depth Some are built for agentic workflows Choosing the right model can dramatically improve: The quality of the output The speed of your workflow The accuracy of Copilot’s reasoning The effectiveness of Agents and Plan Mode Your usage efficiency under enterprise quotas Model selection is now a core part of modern software development, just like choosing the right library, framework, or cloud service. The Four Task Categories (and which Model Fits) To simplify model selection, I group tasks into four categories. Each category aligns naturally with specific types of models. 1. Everyday Development Tasks Examples: Writing new functions Improving readability Generating tests Creating documentation Best fit: General-purpose coding models (e.g., GPT‑4.1, GPT‑5‑mini, Claude Sonnet) These models offer the best balance between speed and quality. 2. Fast, Lightweight Edits Examples: Quick explanations JSON/YAML transformations Small refactors Regex generation Short Q&A tasks Best fit: Lightweight models (e.g., Claude Haiku 4.5) These models give near-instant responses and keep you “in flow.” 3. Complex Debugging & Deep Reasoning Examples: Analyzing unfamiliar code Debugging tricky production issues Architecture decisions Multi-step reasoning Performance analysis Best fit: Deep reasoning models (e.g., GPT‑5, GPT‑5.1, GPT‑5.2, Claude Opus) These models handle large context, produce structured reasoning, and give the most reliable insights for complex engineering tasks. 4. Multi-step Agentic Development Examples: Repo-wide refactors Migrating a codebase Scaffolding entire features Implementing multi-file plans in Agent Mode Automated workflows (Plan → Execute → Modify) Best fit: Agent-capable models (e.g., GPT‑5.1‑Codex‑Max, GPT‑5.2‑Codex) These models are ideal when you need Copilot to execute multi-step tasks across your repository. GitHub Copilot Models - Developer Friendly Comparison The set of models you can choose from depends on your Copilot subscription, and the available options may evolve over time. Each model also has its own premium request multiplier, which reflects the compute resources it requires. If you're using a paid Copilot plan, the multiplier determines how many premium requests are deducted whenever that model is used. Model Category Example Models (Premium request Multiplier for paid plans) What they’re best at When to Use Them Fast Lightweight Models Claude Haiku 4.5, Gemini 3 Flash (0.33x) Grok Code Fast 1 (0.25x) Low latency, quick responses Small edits, Q&A, simple code tasks General-Purpose Coding Models GPT‑4.1, GPT‑5‑mini (0x) GPT-5-Codex, Claude Sonnet 4.5 (1x) Reliable day‑to‑day development Writing functions, small tests, documentation Deep Reasoning Models GPT-5.1 Codex Mini (0.33x) GPT‑5, GPT‑5.1, GPT-5.1 Codex, GPT‑5.2, Claude Sonnet 4.0, Gemini 2.5 Pro, Gemini 3 Pro (1x) Claude Opus 4.5 (3x) Complex reasoning and debugging Architecture work, deep bug diagnosis Agentic / Multi-step Models GPT‑5.1‑Codex‑Max, GPT‑5.2‑Codex (1x) Planning + execution workflows Repo-wide changes, feature scaffolding Enterprise Considerations For organizations using Copilot Enterprise or Business: Admins can control which models employees can use Model selection may be restricted due to security, regulation, or data governance You may see fewer available models depending on your organization’s Copilot policies Using "Auto" Model selection in GitHub Copilot GitHub Copilot’s Auto model selection automatically chooses the best available model for your prompts, reducing the mental load of picking a model and helping you avoid rate‑limiting. When enabled, Copilot prioritizes model availability and selects from a rotating set of eligible models such as GPT‑4.1, GPT‑5 mini, GPT‑5.2‑Codex, Claude Haiku 4.5, and Claude Sonnet 4.5 while respecting your subscription level and any administrator‑imposed restrictions. Auto also excludes models blocked by policies, models with premium multipliers greater than 1, and models unavailable in your plan. For paid plans, Auto provides an additional benefit: a 10% discount on premium request multipliers when used in Copilot Chat. Overall, Auto offers a balanced, optimized experience by dynamically selecting a performant and cost‑efficient model without requiring developers to switch models manually. Read more about the 'Auto' Model selection here - About Copilot auto model selection - GitHub Docs Final Thoughts GitHub Copilot is becoming a core part of the developer workflows. Choosing the right model can dramatically improve your productivity, the accuracy of Copilot’s responses, your experience with multi-step agentic tasks, your ability to navigate complex codebases Whether you’re building features, debugging complex issues, or orchestrating repo-wide changes, picking the right model helps you get the best out of GitHub Copilot. References and Further Reading To explore each model further, visit the GitHub Copilot model comparison documentation or try switching models in Copilot Chat to see how they impact your workflow. AI model comparison - GitHub Docs Requests in GitHub Copilot - GitHub Docs About Copilot auto model selection - GitHub DocsDemystifying GitHub Copilot Security Controls: easing concerns for organizational adoption
At a recent developer conference, I delivered a session on Legacy Code Rescue using GitHub Copilot App Modernization. Throughout the day, conversations with developers revealed a clear divide: some have fully embraced Agentic AI in their daily coding, while others remain cautious. Often, this hesitation isn't due to reluctance but stems from organizational concerns around security and regulatory compliance. Having witnessed similar patterns during past technology shifts, I understand how these barriers can slow adoption. In this blog, I'll demystify the most common security concerns about GitHub Copilot and explain how its built-in features address them, empowering organizations to confidently modernize their development workflows. GitHub Copilot Model Training A common question I received at the conference was whether GitHub uses your code as training data for GitHub Copilot. I always direct customers to the GitHub Copilot Trust Center for clarity, but the answer is straightforward: “No. GitHub uses neither Copilot Business nor Enterprise data to train the GitHub model.” Notice this restriction also applies to third-party models as well (e.g. Anthropic, Google). GitHub Copilot Intellectual Property indemnification policy A frequent concern I hear is, since GitHub Copilot’s underlying models are trained on sources that include public code, it might simply “copy and paste” code from those sources. Let’s clarify how this actually works: Does GitHub Copilot “copy/paste”? “The AI models that create Copilot’s suggestions may be trained on public code, but do not contain any code. When they generate a suggestion, they are not “copying and pasting” from any codebase.” To provide an additional layer of protection, GitHub Copilot includes a “duplicate detection filter”. This feature helps prevent suggestions that closely match public code from being surfaced. (Note: This duplicate detection currently does not apply to the Copilot coding agent.) More importantly, customers are protected by an Intellectual Property indemnification policy. This means that if you receive an unmodified suggestion from GitHub Copilot and face a copyright claim as a result, Microsoft will defend you in court. GitHub Copilot Data Retention Another frequent question I hear concerns GitHub Copilot’s data retention policies. For organizations on GitHub Copilot Business and Enterprise plans, retention practices depend on how and where the service is accessed from: Access through IDE for Chat and Code Completions: Prompts and Suggestions: Not retained. User Engagement Data: Kept for two years. Feedback Data: Stored for as long as needed for its intended purpose. Other GitHub Copilot access and use: Prompts and Suggestions: Retained for 28 days. User Engagement Data: Kept for two years. Feedback Data: Stored for as long as needed for its intended purpose. For Copilot Coding Agent, session logs are retained for the life of the account in order to provide the service. Excluding content from GitHub Copilot To prevent GitHub Copilot from indexing sensitive files, you can configure content exclusions at the repository or organization level. In VS Code, use the .copilotignore file to exclude files client-side. Note that files listed in .gitignore are not indexed by default but may still be referenced if open or explicitly referenced (unless they’re excluded through .copilotignore or content exclusions). The life cycle of a GitHub Copilot code suggestion Here are the key protections at each stage of the life cycle of a GitHub Copilot code suggestion: In the IDE: Content exclusions prevent files, folders, or patterns from being included. GitHub proxy (pre-model safety): Prompts go through a GitHub proxy hosted in Microsoft Azure for pre-inference checks: screening for toxic or inappropriate language, relevance, and hacking attempts/jailbreak-style prompts before reaching the model. Model response: With the public code filter enabled, some suggestions are suppressed. The vulnerability protection feature blocks insecure coding patterns like hardcoded credentials or SQL injections in real time. Disable access to GitHub Copilot Free Due to the varying policies associated with GitHub Copilot Free, it is crucial for organizations to ensure it is disabled both in the IDE and on GitHub.com. Since not all IDEs currently offer a built-in option to disable Copilot Free, the most reliable method to prevent both accidental and intentional access is to implement firewall rule changes, as outlined in the official documentation. Agent Mode Allow List Accidental file system deletion by Agentic AI assistants can happen. With GitHub Copilot agent mode, the "Terminal auto approve” setting in VS Code can be used to prevent this. This setting can be managed centrally using a VS Code policy. MCP registry Organizations often want to restrict access to allow only trusted MCP servers. GitHub now offers an MCP registry feature for this purpose. This feature isn’t available in all IDEs and clients yet, but it's being developed. Compliance Certifications The GitHub Copilot Trust Center page lists GitHub Copilot's broad compliance credentials, surpassing many competitors in financial, security, privacy, cloud, and industry coverage. SOC 1 Type 2: Assurance over internal controls for financial reporting. SOC 2 Type 2: In-depth report covering Security, Availability, Processing Integrity, Confidentiality, and Privacy over time. SOC 3: General-use version of SOC 2 with broad executive-level assurance. ISO/IEC 27001:2013: Certification for a formal Information Security Management System (ISMS), based on risk management controls. CSA STAR Level 2: Includes a third-party attestation combining ISO 27001 or SOC 2 with additional cloud control matrix (CCM) requirements. TISAX: Trusted Information Security Assessment Exchange, covering automotive-sector security standards. In summary, while the adoption of AI tools like GitHub Copilot in software development can raise important questions around security, privacy, and compliance, it’s clear that existing safeguards in place help address these concerns. By understanding the safeguards, configurable controls, and robust compliance certifications offered, organizations and developers alike can feel more confident in embracing GitHub Copilot to accelerate innovation while maintaining trust and peace of mind.Microsoft Foundry for VS Code: January 2026 Update
Enhanced Workflow and Agent Experience The January 2026 update for Microsoft Foundry extension in VS Code brings a follow update to the capabilities we introduced during Ignite of last year. We’re excited to announce a set of powerful updates that make building and managing AI workflows in Azure AI Foundry even more seamless. These enhancements are designed to give developers greater flexibility, visibility, and control when working with multi-agent systems and workflows. Support for Multiple Workflows in the Visualizer Managing complex AI solutions often involves multiple workflows. With this update, the Workflow Visualizer now supports viewing and navigating multiple workflows in a single project. This makes it easier to design, debug, and optimize interconnected workflows without switching contexts. View and Test Prompt Agents in the Playground Prompt agents are a critical part of orchestrating intelligent behaviors. You can now view all prompt agents directly in the Playground and test them interactively. This feature helps you validate agent logic and iterate quickly, ensuring your prompts deliver the desired outcomes. Open Code files Transparency and customization are key for developers. We’ve introduced the ability to open sample code files for all agents, including: Prompt agents YAML-based workflows Hosted agents Foundry classic agents This gives you the ability to programmatically run agents, enabling adding these agents into your existing project. Separated Resource View for v1 and v2 Agents To reduce confusion and improve clarity, we’ve introduced a separated resource view for Foundry Classic resources and agents. This makes it simple to distinguish between legacy and new-generation agents, ensuring you always know which resources you’re working with. How to Get Started Download the extension here: Microsoft Foundry in VS Code Marketplace Get started with building agents and workflows with Microsoft Foundry in VS Code MS Learn Docs Feedback & Support These improvements are part of our ongoing commitment to deliver a developer-first experience in Microsoft Foundry. Whether you’re orchestrating multi-agent workflows or fine-tuning prompt logic, these features help you build smarter, faster, and with greater confidence. Try out the extensions and let us know what you think! File issues or feedback on our GitHub repo for Foundry extension. Your input helps us make continuous improvements.🚀 AI Toolkit for VS Code: January 2026 Update
Happy New Year! 🎆 We are kicking off 2026 with a major set of updates designed to streamline how you build, test, and deploy AI agents. This month, we’ve focused on aligning with the latest GitHub Copilot standards, introducing powerful new debugging tools, and enhancing our support for enterprise-grade models via Microsoft Foundry. 💡 From Copilot Instructions to Agent Skills The biggest architectural shift following the latest VS Code Copilot standards, in v0.28.1 is the transition from Copilot Instructions to Copilot Skills. This transition has equipped GitHub Copilot specialized skills on developing AI agents using Microsoft Foundry and Agent Framework in a cost-efficient way. In AI Toolkit, we have migrated our Copilot Tools from the Custom Instructions to Agent Skills. This change allows for a more capable integration within GitHub Copilot Chat. 🔄 Enhanced AIAgentExpert: Our custom agent now has a deeper understanding of workflow code generation and evaluation planning/execution. 🧹Automatic Migration: When you upgrade to v0.28.1, the toolkit will automatically clean up your old instructions to ensure a seamless transition to the new skills-based framework. 🏗️ Major Enhancements to Agent Development Our v0.28.0 milestone release brought significant improvements to how agents are authored and authenticated. 🔒 Anthropic & Entra Auth Support We’ve expanded the Agent Builder and Playground to support Anthropic models using Entra Auth types. This provides enterprise developers with a more secure way to leverage Claude models within the Agent Framework while maintaining strict authentication standards. 🏢 Foundry-First Development We are prioritizing the Microsoft Foundry ecosystem to provide a more robust development experience: Foundry v2: Code generation for agents now defaults to Foundry v2. ⚡ Eval Tool: You can now generate evaluation code directly within the toolkit to create and run evaluations in Microsoft Foundry. 📊 Model Catalog: We’ve optimized the Model Catalog to prioritize Foundry models and improved general loading performance. 🏎️ 💻 Performance and Local Models For developers building on Windows, we continue to optimize the local model experience: Profiling for Windows ML: Version 0.28.0 introduces profiling features for Windows ML-based local models, allowing you to monitor performance and resource utilization directly within VS Code. Platform Optimization: To keep the interface clean, we’ve removed the Windows AI API tab from the Model Catalog when running on Linux and macOS platforms. 🐛 Squashing Bugs & Polishing the Experience Codespaces Fix: Resolved a crash occurring when selecting images in the Playground while using GitHub Codespaces. Resource Management: Fixed a delay where newly added models wouldn't immediately appear in the "My Resources" view. Claude Compatibility: Fixed an issue where non-empty content was required for Claude models when used via the AI Toolkit in GitHub Copilot. 🚀 Getting Started Ready to experience the future of AI development? Here's how to get started: 📥 Download: Install the AI Toolkit from the Visual Studio Code Marketplace 📖 Learn: Explore our comprehensive AI Toolkit Documentation 🔍 Discover: Check out the complete changelog for v0.24.0 We'd love to hear from you! Whether it's a feature request, bug report, or feedback on your experience, join the conversation and contribute directly on our GitHub repository. Happy Coding! 💻✨From Cloud to Chip: Building Smarter AI at the Edge with Windows AI PCs
As AI engineers, we’ve spent years optimizing models for the cloud, scaling inference, wrangling latency, and chasing compute across clusters. But the frontier is shifting. With the rise of Windows AI PCs and powerful local accelerators, the edge is no longer a constraint it’s now a canvas. Whether you're deploying vision models to industrial cameras, optimizing speech interfaces for offline assistants, or building privacy-preserving apps for healthcare, Edge AI is where real-world intelligence meets real-time performance. Why Edge AI, Why Now? Edge AI isn’t just about running models locally, it’s about rethinking the entire lifecycle: - Latency: Decisions in milliseconds, not round-trips to the cloud. - Privacy: Sensitive data stays on-device, enabling HIPAA/GDPR compliance. - Resilience: Offline-first apps that don’t break when the network does. - Cost: Reduced cloud compute and bandwidth overhead. With Windows AI PCs powered by Intel and Qualcomm NPUs and tools like ONNX Runtime, DirectML, and Olive, developers can now optimize and deploy models with unprecedented efficiency. What You’ll Learn in Edge AI for Beginners The Edge AI for Beginners curriculum is a hands-on, open-source guide designed for engineers ready to move from theory to deployment. Multi-Language Support This content is available in over 48 languages, so you can read and study in your native language. What You'll Master This course takes you from fundamental concepts to production-ready implementations, covering: Small Language Models (SLMs) optimized for edge deployment Hardware-aware optimization across diverse platforms Real-time inference with privacy-preserving capabilities Production deployment strategies for enterprise applications Why EdgeAI Matters Edge AI represents a paradigm shift that addresses critical modern challenges: Privacy & Security: Process sensitive data locally without cloud exposure Real-time Performance: Eliminate network latency for time-critical applications Cost Efficiency: Reduce bandwidth and cloud computing expenses Resilient Operations: Maintain functionality during network outages Regulatory Compliance: Meet data sovereignty requirements Edge AI Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making. Core Principles: On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs) Offline capability: Functions without persistent internet connectivity Low latency: Immediate responses suited for real-time systems Data sovereignty: Keeps sensitive data local, improving security and compliance Small Language Models (SLMs) SLMs like Phi-4, Mistral-7B, Qwen and Gemma are optimized versions of larger LLMs, trained or distilled for: Reduced memory footprint: Efficient use of limited edge device memory Lower compute demand: Optimized for CPU and edge GPU performance Faster startup times: Quick initialization for responsive applications They unlock powerful NLP capabilities while meeting the constraints of: Embedded systems: IoT devices and industrial controllers Mobile devices: Smartphones and tablets with offline capabilities IoT Devices: Sensors and smart devices with limited resources Edge servers: Local processing units with limited GPU resources Personal Computers: Desktop and laptop deployment scenarios Course Modules & Navigation Course duration. 10 hours of content Module Topic Focus Area Key Content Level Duration 📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs 📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs 🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs 🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs ⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs 🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs 🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs 💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs 🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs Each module includes Jupyter notebooks, code samples, and deployment walkthroughs, perfect for engineers who learn by doing. Developer Highlights - 🔧 Olive: Microsoft's optimization toolchain for quantization, pruning, and acceleration. - 🧩 ONNX Runtime: Cross-platform inference engine with support for CPU, GPU, and NPU. - 🎮 DirectML: GPU-accelerated ML API for Windows, ideal for gaming and real-time apps. - 🖥️ Windows AI PCs: Devices with built-in NPUs for low-power, high-performance inference. Local AI: Beyond the Edge Local AI isn’t just about inference, it’s about autonomy. Imagine agents that: - Learn from local context - Adapt to user behavior - Respect privacy by design With tools like Agent Framework, Azure AI Foundry and Windows Copilot Studio, and Foundry Local developers can orchestrate local agents that blend LLMs, sensors, and user preferences, all without cloud dependency. Try It Yourself Ready to get started? Clone the Edge AI for Beginners GitHub repo, run the notebooks, and deploy your first model to a Windows AI PC or IoT devices Whether you're building smart kiosks, offline assistants, or industrial monitors, this curriculum gives you the scaffolding to go from prototype to production.AI Upskilling Framework Level 3 Building
The Global AI Community is excited to bring you the latest updates on AI Upskilling Framework Level 3 Building, straight from Microsoft Ignite! This session dives deep into advanced concepts for building agentic workflows and showcases new announcements that will help developers accelerate their Agentic AI journey.AI Dev Days 2025: Your Gateway to the Future of AI Development
What’s in Store? Day 1 – 10 December: Video Link Building AI Applications with Azure, GitHub, and Foundry Explore cutting-edge topics like: Agentic DevOps Azure SRE Agent Microsoft Foundry MCP Models for AI innovation Day 2 – 11 December Agenda: Video Link Using AI to Boost Developer Productivity Get hands-on with: Agent HQ VS Code & Visual Studio 2026 GitHub Copilot Coding Agent App Modernisation Strategies Why Join? Hands-on Labs: Apply the latest product features immediately. Highlights from Microsoft Ignite & GitHub Universe 2025: Stay ahead of the curve. Global Reach: Local-language workshops for LATAM and EMEA coming soon. You’ll recognise plenty of familiar faces in the lineup – don’t miss the chance to connect and learn from the best! 👉 Register now and share widely across your networks – there’s truly something for everyone! https://aka.ms/ai-dev-daysUpcoming Live Stream: Building AI Agents with the AI Toolkit & Microsoft Foundry
We’re at a moment where generative AI is shifting from single-prompt interactions to agents that can process visuals, store memory, and act. And the best way to understand that shift is to build something yourself! That’s exactly what we’re doing in my upcoming live stream on Building AI Agents with the AI Toolkit & Microsoft Foundry — a hands-on walkthrough of the full lab experience from Microsoft Ignite 2025! This session is designed for developers, makers, and anyone curious about how multimodal agents get from idea to working prototype. What we'll explore During the stream, I’ll walk through the core concepts and build steps from the lab, including: Setting Up Your Environment in Microsoft Foundry You’ll see how to create and configure your project, connect to models, and prepare your workspace using the AI Toolkit in VS Code. This lab makes it approachable, even if you’re new to Foundry or agent workflows. Testing Multimodal Inputs We’ll explore how the agent processes text and images, how the model interprets such input, and how that insight becomes part of its reasoning loop. During the stream, I’ll show you what strong visual prompts look like, where people usually get stuck, and how to shape the output you want. Designing an Agent System Prompt We’ll look at how to structure agent behavior and how a well-crafted system prompt becomes the foundation for consistent responses and accurate multimodal reasoning. This includes grounding, action definitions, and the type of instructions that help an agent combine text, vision, and reasoning capabilities. Iterating With the AI Toolkit This is where things get fun. We’ll use the AI Toolkit’s playground and debugging tools to observe the agent’s thought process, test different instructions, and evaluate its planning behavior. You’ll see why tools like trace view, structured output, and function definitions make iteration faster and more predictable. Expanding Beyond the Lab To close, we’ll talk through what it looks like to extend the agent: Adding new skills Changing how it plans Connecting it to additional data Turning the prototype into an application My goal is for you to take away a repeatable workflow, one you can reuse whether you’re building a creative tool, a developer agent, or something entirely new. The Bigger Picture Multimodal agents are becoming the new interface layer for apps: they can interpret images, understand context, take actions, and guide users through workflows that feel natural. If you understand how to prototype them, you understand how AI-powered products will be built in the next few years. This stream is for anyone who wants to experiment, learn by doing, and make sense of where AI tooling is headed. Date: Wednesday December 3, 2025 Time: 10AM – 11AM Pacific Link: https://aka.ms/AITGHC/Dec3/b View on Demand