vm
18 TopicsCreate Stunning AI Videos with Sora on Azure AI Foundry!
Special credit to Rory Preddy for creating the GitHub resource that enable us to learn more about Azure Sora. Reach him out on LinkedIn to say thanks. Introduction Artificial Intelligence (AI) is revolutionizing content creation, and video generation is at the forefront of this transformation. OpenAI's Sora, a groundbreaking text-to-video model, allows creators to generate high-quality videos from simple text prompts. When paired with the powerful infrastructure of Azure AI Foundry, you can harness Sora's capabilities with scalability and efficiency, whether on a local machine or a remote setup. In this blog post, I’ll walk you through the process of generating AI videos using Sora on Azure AI Foundry. We’ll cover the setup for both local and remote environments. Requirements: Azure AI Foundry with sora model access A Linux Machine/VM. Make sure that the machine already has the package below: Java JRE 17 (Recommended) OR later Maven Step Zero – Deploying the Azure Sora model on AI Foundry Navigate to the Azure AI Foundry portal and head to the “Models + Endpoints” section (found on the left side of the Azure AI Foundry portal) > Click on the “Deploy Model” button > “Deploy base model” > Search for Sora > Click on “Confirm”. Give a deployment name and specify the Deployment type > Click “Deploy” to finalize the configuration. You should receive an API endpoint and Key after successful deploying Sora on Azure AI Foundry. Store these in a safe place because we will be using them in the next steps. Step one – Setting up the Sora Video Generator in the local/remote machine. Clone the roryp/sora repository on your machine by running the command below: git clone https://github.com/roryp/sora.git cd sora Then, edit the application.properties file in the src/main/resources/ folder to include your Azure OpenAI Credentials. Change the configuration below: azure.openai.endpoint=https://your-openai-resource.cognitiveservices.azure.com azure.openai.api-key=your_api_key_here If port 8080 is used for another application, and you want to change the port for which the web app will run, change the “server.port” configuration to include the desired port. Allow appropriate permissions to run the “mvnw” script file. chmod +x mvnw Run the application ./mvnw spring-boot:run Open your browser and type in your localhost/remote host IP (format: [host-ip:port]) in the browser search bar. If you are running a remote host, please do not forget to update your firewall/NSG to allow inbound connection to the configured port. You should see the web app to generate video with Sora AI using the API provided on Azure AI Foundry. Now, let’s generate a video with Sora Video Generator. Enter a prompt in the first text field, choose the video pixel resolution, and set the video duration. (Due to technical limitation, Sora can only generate video of a maximum of 20 seconds). Click on the “Generate video” button to proceed. The cost to generate the video should be displayed below the “Generate Video” button, for transparency purposes. You can click on the “View Breakdown” button to learn more about the cost breakdown. The video should be ready to download after a maximum of 5 minutes. You can check the status of the video by clicking on the “Check Status” button on the web app. The web app will inform you once the download is ready and the page should refresh every 10 seconds to fetch real-time update from Sora. Once it is ready, click on the “Download Video” button to download the video. Conclusion Generating AI videos with Sora on Azure AI Foundry is a game-changer for content creators, marketers, and developers. By following the steps outlined in this guide, you can set up your environment, integrate Sora, and start creating stunning AI-generated videos. Experiment with different prompts, optimize your workflow, and let your imagination run wild! Have you tried generating AI videos with Sora or Azure AI Foundry? Share your experiences or questions in the comments below. Don’t forget to subscribe for more AI and cloud computing tutorials!509Views0likes3CommentsStep-by-step: Integrate Ollama Web UI to use Azure Open AI API with LiteLLM Proxy
Introductions Ollama WebUI is a streamlined interface for deploying and interacting with open-source large language models (LLMs) like Llama 3 and Mistral, enabling users to manage models, test them via a ChatGPT-like chat environment, and integrate them into applications through Ollama’s local API. While it excels for self-hosted models on platforms like Azure VMs, it does not natively support Azure OpenAI API endpoints—OpenAI’s proprietary models (e.g., GPT-4) remain accessible only through OpenAI’s managed API. However, tools like LiteLLM bridge this gap, allowing developers to combine Ollama-hosted models with OpenAI’s API in hybrid workflows, while maintaining compliance and cost-efficiency. This setup empowers users to leverage both self-managed open-source models and cloud-based AI services. Problem Statement As of February 2025, Ollama WebUI, still do not support Azure Open AI API. The Ollama Web UI only support self-hosted Ollama API and managed OpenAI API service (PaaS). This will be an issue if users want to use Open AI models they already deployed on Azure AI Foundry. Objective To integrate Azure OpenAI API via LiteLLM proxy into with Ollama Web UI. LiteLLM translates Azure AI API requests into OpenAI-style requests on Ollama Web UI allowing users to use OpenAI models deployed on Azure AI Foundry. If you haven’t hosted Ollama WebUI already, follow my other step-by-step guide to host Ollama WebUI on Azure. Proceed to the next step if you have Ollama WebUI deployed already. Step 1: Deploy OpenAI models on Azure Foundry. If you haven’t created an Azure AI Hub already, search for Azure AI Foundry on Azure, and click on the “+ Create” button > Hub. Fill out all the empty fields with the appropriate configuration and click on “Create”. After the Azure AI Hub is successfully deployed, click on the deployed resources and launch the Azure AI Foundry service. To deploy new models on Azure AI Foundry, find the “Models + Endpoints” section on the left hand side and click on “+ Deploy Model” button > “Deploy base model” A popup will appear, and you can choose which models to deploy on Azure AI Foundry. Please note that the o-series models are only available to select customers at the moment. You can request access to the o-series models by completing this request access form, and wait until Microsoft approves the access request. Click on “Confirm” and another popup will emerge. Now name the deployment and click on “Deploy” to deploy the model. Wait a few moments for the model to deploy. Once it successfully deployed, please save the “Target URI” and the API Key. Step 2: Deploy LiteLLM Proxy via Docker Container Before pulling the LiteLLM Image into the host environment, create a file named “litellm_config.yaml” and list down the models you deployed on Azure AI Foundry, along with the API endpoints and keys. Replace "API_Endpoint" and "API_Key" with “Target URI” and “Key” found from Azure AI Foundry respectively. Template for the “litellm_config.yaml” file. model_list: - model_name: [model_name] litellm_params: model: azure/[model_name_on_azure] api_base: "[API_ENDPOINT/Target_URI]" api_key: "[API_Key]" api_version: "[API_Version]" Tips: You can find the API version info at the end of the Target URI of the model's endpoint: Sample Endpoint - https://example.openai.azure.com/openai/deployments/o1-mini/chat/completions?api-version=2024-08-01-preview Run the docker command below to start LiteLLM Proxy with the correct settings: docker run -d \ -v $(pwd)/litellm_config.yaml:/app/config.yaml \ -p 4000:4000 \ --name litellm-proxy-v1 \ --restart always \ ghcr.io/berriai/litellm:main-latest \ --config /app/config.yaml --detailed_debug Make sure to run the docker command inside the directory where you created the “litellm_config.yaml” file just now. The port used to listen for LiteLLM Proxy traffic is port 4000. Now that LiteLLM proxy had been deployed on port 4000, lets change the OpenAI API settings on Ollama WebUI. Navigate to Ollama WebUI’s Admin Panel settings > Settings > Connections > Under the OpenAI API section, write http://127.0.0.1:4000 as the API endpoint and set any key (You must write anything to make it work!). Click on “Save” button to reflect the changes. Refresh the browser and you should be able to see the AI models deployed on the Azure AI Foundry listed in the Ollama WebUI. Now let’s test the chat completion + Web Search capability using the "o1-mini" model on Ollama WebUI. Conclusion Hosting Ollama WebUI on an Azure VM and integrating it with OpenAI’s API via LiteLLM offers a powerful, flexible approach to AI deployment, combining the cost-efficiency of open-source models with the advanced capabilities of managed cloud services. While Ollama itself doesn’t support Azure OpenAI endpoints, the hybrid architecture empowers IT teams to balance data privacy (via self-hosted models on Azure AI Foundry) and cutting-edge performance (using Azure OpenAI API), all within Azure’s scalable ecosystem. This guide covers every step required to deploy your OpenAI models on Azure AI Foundry, set up the required resources, deploy LiteLLM Proxy on your host machine and configure Ollama WebUI to support Azure AI endpoints. You can test and improve your AI model even more with the Ollama WebUI interface with Web Search, Text-to-Image Generation, etc. all in one place.6.3KViews1like4CommentsHow to deploy your free private Minecraft server with Azure for Student?
Students like Minecraft and it is possible to run a free private Minecraft Server with Microsoft Azure for Student. This post is a guideline to create your own Minecraft server in Azure and have fun with your friends!47KViews3likes4CommentsDeploying Jupyterhub on Azure for Individual Students or Class Groups
A simple JupyterHub distribution for a small (1-400) number of users on a single server. Based on JupyterOrg http://tljh.jupyter.org/en/latest/ We recommend reading When to use The Littlest JupyterHub to determine if this is the right tool for you.5.9KViews0likes0CommentsData Science Virtual Machine with GPU for $0.18/Hour using Low Priority VMs
First published on MSDN on Dec 18, 2018 Deploy cheaper low priority (preemptable) instances of Ubuntu Data Science Virtual Machine ‘DSVM’ using the Microsoft Azure portalDeploy to Azure via Github-We have a set of deploy to Azure Scripts available to deploy the low priority VM simply click the link below There are additional scripts here on the DSVM GitHub repo for deploying Linux or Windows versions This template uses a Scale set to deploy a single VM low priority.548Views0likes0CommentsUnderstanding Containers - the layer between the operating system’s kernel and the application
First published on MSDN on Jun 22, 2018 Guest blog by Christo Lolov, Microsoft Student Partner at Imperial College LondonAbout me I am a Third Year, Computing MEng at Imperial College London and a have a number of blogs already published on various areas of technology which interest me see https://blogs.2.7KViews0likes0CommentsUsing Microsoft Azure Data Science Virtual Machines in your teaching and Research Labs
First published on MSDN on Jan 11, 2018 Running Data Science VM on Azure for your data science and deep learning lab resourcesCreate the lab infrastructure as followsUse a shared pool of Ubuntu Data Science VMs (with GPUs if doing deep learning) with each student getting a separate account.1KViews0likes0Comments