updates
40 TopicsAnnouncing the General Availability of New Availability Zone Features for Azure App Service
What are Availability Zones? Availability Zones, or zone redundancy, refers to the deployment of applications across multiple availability zones within an Azure region. Each availability zone consists of one or more data centers with independent power, cooling, and networking. By leveraging zone redundancy, you can protect your applications and data from data center failures, ensuring uninterrupted service. Key Updates The minimum instance requirement for enabling Availability Zones has been reduced from three instances to two, while still maintaining a 99.99% SLA. Many existing App Service plans with two or more instances will automatically support Availability Zones without additional setup. The zone redundant setting for App Service plans and App Service Environment v3 is now mutable throughout the life of the resources. Enhanced visibility into Availability Zone information, including physical zone placement and zone counts, is now provided. For App Service Environment v3, the minimum instance fee for enabling Availability Zones has been removed, aligning the pricing model with the multi-tenant App Service offering. The minimum instance requirement for enabling Availability Zones has been reduced from three instances to two. You can now enjoy the benefits of Availability Zones with just two instances since we continue to uphold a 99.99% SLA even with the two-instance configuration. Many existing App Service plans with two or more instances will automatically support Availability Zones without necessitating additional setup. Over the past few years, efforts have been made to ensure that the App Service footprint supports Availability Zones wherever possible, and we’ve made significant gains in doing so. Therefore, many existing customers can enable Availability Zones on their current deployments without needing to redeploy. Along with supporting 2-instance Availability Zone configuration, we have enabled Availability Zones on the App Service footprint in regions where only two zones may be available. Previously, enabling Availability Zones required a region to have three zones with sufficient capacity. To account for the growing demand, we now support Availability Zone deployments in regions with just two zones. This allows us to provide you with Availability Zone features across more regions. And with that, we are upholding the 99.99% SLA even with the 2-zone configuration. Additionally, we are pleased to announce that the zone redundant setting (zoneRedundant property) for App Service plans and App Service Environment v3 is now mutable throughout the life of these resources. This enhancement allows customers on Premium V2, Premium V3, or Isolated V2 plans to toggle zone redundancy on or off as required. With this capability, you can reduce costs and scale to a single instance when multiple instances are not necessary. Conversely, you can scale out and enable zone redundancy at any time to meet your requirements. This ability has been requested for a while now and we are excited to finally make it available. For App Service Environment v3 users, this also means that your individual App Service plan zone redundancy status is now independent of other plans in your App Service Environment. This means that you can have a mix of zone redundant and non-zone redundant plans in an App Service Environment, something that was previously not supported. In addition to these new features, we also have a couple of other exciting things to share. We are now providing enhanced visibility into Availability Zone information, including the physical zone placement of your instances and zone counts. For our App Service Environment v3 customers, we have removed the minimum instance fee for enabling Availability Zones. This means that you now only pay for the Isolated V2 instances you consume. This aligns the pricing model with the multi-tenant App Service offering. For more information as well as guidance on how to use these features, see the docs - Reliability in Azure App Service. Azure Portal support for these new features will be available by mid-June 2025. In the meantime, see the documentation to use these new features with ARM/Bicep or the Azure CLI. Also check out BRK200 breakout session at Microsoft Build 2025 live on May 20th or anytime after via the recording where my team and I will be discussing these new features and many more exciting announcements for Azure App Service. If you’re in the Seattle area and attending Microsoft Build 2025 in person, come meet my team and me at our Expert Meetup Booth. FAQ Q: What are availability zones? Availability zones are physically separate locations within an Azure region, each consisting of one or more data centers with independent power, cooling, and networking. Deploying applications across multiple availability zones ensures high availability and business continuity. Q: How do I enable Availability Zones for my existing App Service plan or App Service Environment v3? There is a new toggle in the Azure portal that will be enabled if your App Service plan or App Service Environment v3 supports Availability Zones. Your deployment must be on the App Service footprint that supports zones in order to have this capability. There is a new property called “MaximumNumberOfZones”, which indicates the number of zones your deployment supports. If this value is greater than one, you are on the footprint that supports zones and can enable Availability Zones as long as you have two or more instances. If this value is equal to one, you need to redeploy. Note that we are continually working to expand the zone footprint across more App Service deployments. Q: Is there an additional charge for Availability Zones? There is no additional charge, you only pay for the instances you use. The only requirement is that you use two or more instances. Q: Can I change the zone redundant property after creating my App Service plan? Yes, the zone redundant property is now mutable, meaning you can toggle it on or off at any time. Q: How can I verify the zone redundancy status of my App Service Plans? We now display the physical zone for each instance, helping you verify zone redundancy status for audits and compliance reviews. Q: How do I use these new features? You can use ARM/Bicep or the Azure CLI at this time. Starting in mid-June, Azure Portal support should be available. The documentation currently shows how to use ARM/Bicep and the Azure CLI to enable these features. The documentation as well as this blog post will be updated once Azure Portal support is available. Q: Are Availability Zones supported on Premium V4? Yes! See the documentation for more details on how to get started with Premium V4 today.4.4KViews8likes12CommentsAnnouncing Azure Deployment Environments preview
[Update: May 23, 2023] We’re excited to announce that Azure Deployment Environments is now generally available and you can start using the service for free today. ------------------------------------------------------------------------------------------------------- We’re excited to announce the public preview of Azure Deployment Environments, a managed service that enables dev teams to quickly spin up app infrastructure with project-based templates to establish consistency and best practices while maximizing security, compliance, and cost-efficiency. Azure Deployment Environments eliminates the complexities of setting up and deploying environments by enabling teams to templatize their environments and define environment types specifically for development, testing, staging, or production. By defining environment types for different stages of development, organizations make it easy for developers to deploy environments not only with the right services and resources, but also with the right security and governance policies already applied to the environment, making it easier for developers to focus on their code instead of their infrastructure. Sign in to the Azure portal and search for “Deployment Environments” to begin creating environments for your organization.31KViews5likes17CommentsAnnouncing Early Preview: BYO Remote MCP Server on Azure Functions
If you’ve already built Model Context Protocol (MCP) servers with the MCP SDKs and wished you could turn them into world class Remote MCP servers using a hyperscale, serverless platform, then this one’s for you! We’ve published samples showing how to host bring‑your-own (BYO) Remote MCP servers on Azure Functions, so you can run the servers you’ve already built with the MCP SDKs—Python, Node, and .NET—with minimal changes and full serverless goodness. Why this is exciting Keep your code. If you’ve already implemented servers with the MCP SDKs (Python, Node, .NET), deploy them to Azure Functions as remote MCP servers with just one line of code change. Serverless scale when you need it. Functions on the Flex Consumption plan handles bursty traffic, scales out and back to zero automatically, and gives you serverless billing. Secure by default. Your remote server endpoint is protected with function keys out-of- the-box, with option to layer on Azure API Management for added authorization flow. BYO vs. Functions Remote MCP extension—pick the path that fits The BYO option complements the existing Azure Functions MCP extension: Build and host with Functions MCP extension: You can build stateful MCP servers with the MCP tool trigger and binding and host them on Functions. Support for SSE is available today with streamable HTTP coming soon. Host BYO remote MCP Server (this announcement): If you already have a server built with the MCP SDKs, or you prefer those SDKs’ ergonomics, host it as‑is on Functions and keep your current codebase. Either way, you benefit from Functions’ serverless platform: secure access & auth, burst scale, event-driven scale from 0 to N, and pay-for-what-you‑use. What’s supported in this early preview Servers built with the Python, Node, and .NET SDKs Debug locally with func start on Visual Studio or Visual Studio Code; deploy with the Azure Developer CLI (azd up) to get your remote MCP server quickly deployed to Azure Functions Stateless servers using the streamable HTTP transport, with guidance coming soon for stateful servers Hosting on Flex Consumption plan Try it now! Python: https://github.com/Azure-Samples/mcp-sdk-functions-hosting-python Node: https://github.com/Azure-Samples/mcp-sdk-functions-hosting-node .NET: https://github.com/Azure-Samples/mcp-sdk-functions-hosting-dotnet Each repo includes the sample weather MCP server implemented with the MCP SDK for that language. You’ll find instructions on how to run the server locally with Azure Functions Core Tools and deploy with azd up in minutes. Once deployed, you can connect to the remote server from an MCP client. The samples use Visual Studio Code, but other clients like Claude can also be used. Provide feedback to shape feature Tell us what you need next - identity flows, diagnostics, more languages, or any other features. Your feedback will shape how we take this early preview to the next level!1.4KViews3likes0CommentsSelf Hosted AI Application on AKS in a day with KAITO and CoPilot.
In this blog post I document my experience of spending a full day using KAITO and Copilot to accelerate deployment and development of a self managed AI enabled chatbot deployed in a managed cluster. The goal is to showcase how quickly using a mix of AI tooling we can go from zero to a self hosted, tuned LLM and chatbot application. At the top of this article I want to share my perspective on the future of projects such as KAITO. At the moment I believe KAITO to be somewhat ahead of its time, as most enterprises begin adopting abstracted artificial intelligence it is brilliant to see projects like KAITO being developed ready for the eventual abstraction pendulum to swing back, motivated by usual factors such as increased skills in the market, cost and governance. Enterprises will undoubtedly in the future look to take centralised control of the AI models being used by their enterprises as GPU's become cheaper, more readily available and powerful. When this shift happens open source projects like KAITO will become common place in enterprises. It is also my opinion that Kubernetes lends itself perfectly to be the AI platform of the future a position shared by the CNCF (albeit both sources here may be somewhat biased). The resiliency, scaling and existence of Kuberentes primitives such as "Jobs" mean that Kubernetes is already the de-facto platform for machine learning training and inference. These same reasons also make Kuberentes the best underlying platform for AI development. Companies including DHL, Wayve and even OpenAI all run ML or AI workloads already on Kubernetes. That does not mean that Data Scientists and engineers will suddenly be creating Dockerfiles or exploring admission controllers, Kubernetes instead, as a platform will be multiple layers of abstraction away (Full scale self service platform engineering) however the engineers responsible for running and operating the platform will hail projects like KAITO.1.4KViews3likes0Comments