updates
49 TopicsAnnouncing the General Availability of New Availability Zone Features for Azure App Service
What are Availability Zones? Availability Zones, or zone redundancy, refers to the deployment of applications across multiple availability zones within an Azure region. Each availability zone consists of one or more data centers with independent power, cooling, and networking. By leveraging zone redundancy, you can protect your applications and data from data center failures, ensuring uninterrupted service. Key Updates The minimum instance requirement for enabling Availability Zones has been reduced from three instances to two, while still maintaining a 99.99% SLA. Many existing App Service plans with two or more instances will automatically support Availability Zones without additional setup. The zone redundant setting for App Service plans and App Service Environment v3 is now mutable throughout the life of the resources. Enhanced visibility into Availability Zone information, including physical zone placement and zone counts, is now provided. For App Service Environment v3, the minimum instance fee for enabling Availability Zones has been removed, aligning the pricing model with the multi-tenant App Service offering. The minimum instance requirement for enabling Availability Zones has been reduced from three instances to two. You can now enjoy the benefits of Availability Zones with just two instances since we continue to uphold a 99.99% SLA even with the two-instance configuration. Many existing App Service plans with two or more instances will automatically support Availability Zones without necessitating additional setup. Over the past few years, efforts have been made to ensure that the App Service footprint supports Availability Zones wherever possible, and we’ve made significant gains in doing so. Therefore, many existing customers can enable Availability Zones on their current deployments without needing to redeploy. Along with supporting 2-instance Availability Zone configuration, we have enabled Availability Zones on the App Service footprint in regions where only two zones may be available. Previously, enabling Availability Zones required a region to have three zones with sufficient capacity. To account for the growing demand, we now support Availability Zone deployments in regions with just two zones. This allows us to provide you with Availability Zone features across more regions. And with that, we are upholding the 99.99% SLA even with the 2-zone configuration. Additionally, we are pleased to announce that the zone redundant setting (zoneRedundant property) for App Service plans and App Service Environment v3 is now mutable throughout the life of these resources. This enhancement allows customers on Premium V2, Premium V3, or Isolated V2 plans to toggle zone redundancy on or off as required. With this capability, you can reduce costs and scale to a single instance when multiple instances are not necessary. Conversely, you can scale out and enable zone redundancy at any time to meet your requirements. This ability has been requested for a while now and we are excited to finally make it available. For App Service Environment v3 users, this also means that your individual App Service plan zone redundancy status is now independent of other plans in your App Service Environment. This means that you can have a mix of zone redundant and non-zone redundant plans in an App Service Environment, something that was previously not supported. In addition to these new features, we also have a couple of other exciting things to share. We are now providing enhanced visibility into Availability Zone information, including the physical zone placement of your instances and zone counts. For our App Service Environment v3 customers, we have removed the minimum instance fee for enabling Availability Zones. This means that you now only pay for the Isolated V2 instances you consume. This aligns the pricing model with the multi-tenant App Service offering. For more information as well as guidance on how to use these features, see the docs - Reliability in Azure App Service. Azure Portal support for these new features will be available by mid-June 2025. In the meantime, see the documentation to use these new features with ARM/Bicep or the Azure CLI. Also check out BRK200 breakout session at Microsoft Build 2025 live on May 20th or anytime after via the recording where my team and I will be discussing these new features and many more exciting announcements for Azure App Service. If you’re in the Seattle area and attending Microsoft Build 2025 in person, come meet my team and me at our Expert Meetup Booth. FAQ Q: What are availability zones? Availability zones are physically separate locations within an Azure region, each consisting of one or more data centers with independent power, cooling, and networking. Deploying applications across multiple availability zones ensures high availability and business continuity. Q: How do I enable Availability Zones for my existing App Service plan or App Service Environment v3? There is a new toggle in the Azure portal that will be enabled if your App Service plan or App Service Environment v3 supports Availability Zones. Your deployment must be on the App Service footprint that supports zones in order to have this capability. There is a new property called “MaximumNumberOfZones”, which indicates the number of zones your deployment supports. If this value is greater than one, you are on the footprint that supports zones and can enable Availability Zones as long as you have two or more instances. If this value is equal to one, you need to redeploy. Note that we are continually working to expand the zone footprint across more App Service deployments. Q: Is there an additional charge for Availability Zones? There is no additional charge, you only pay for the instances you use. The only requirement is that you use two or more instances. Q: Can I change the zone redundant property after creating my App Service plan? Yes, the zone redundant property is now mutable, meaning you can toggle it on or off at any time. Q: How can I verify the zone redundancy status of my App Service Plans? We now display the physical zone for each instance, helping you verify zone redundancy status for audits and compliance reviews. Q: How do I use these new features? You can use ARM/Bicep or the Azure CLI at this time. Starting in mid-June, Azure Portal support should be available. The documentation currently shows how to use ARM/Bicep and the Azure CLI to enable these features. The documentation as well as this blog post will be updated once Azure Portal support is available. Q: Are Availability Zones supported on Premium V4? Yes! See the documentation for more details on how to get started with Premium V4 today.4.5KViews8likes12CommentsAnnouncing Azure Deployment Environments preview
[Update: May 23, 2023] We’re excited to announce that Azure Deployment Environments is now generally available and you can start using the service for free today. ------------------------------------------------------------------------------------------------------- We’re excited to announce the public preview of Azure Deployment Environments, a managed service that enables dev teams to quickly spin up app infrastructure with project-based templates to establish consistency and best practices while maximizing security, compliance, and cost-efficiency. Azure Deployment Environments eliminates the complexities of setting up and deploying environments by enabling teams to templatize their environments and define environment types specifically for development, testing, staging, or production. By defining environment types for different stages of development, organizations make it easy for developers to deploy environments not only with the right services and resources, but also with the right security and governance policies already applied to the environment, making it easier for developers to focus on their code instead of their infrastructure. Sign in to the Azure portal and search for “Deployment Environments” to begin creating environments for your organization.31KViews5likes17CommentsAnnouncing Advanced Kubernetes Troubleshooting Agent Capabilities (preview) in Azure Copilot
What’s new? Today, we're announcing Kubernetes troubleshooting agent capabilities in Azure Copilot, offering an intuitive, guided agentic experience that helps users detect, triage, and resolve common Kubernetes issues in their AKS clusters. The agent can provide root cause analysis for Kubernetes clusters and resources and is triggered by Kubernetes-specific keywords. It can detect problems like resource failures and scaling bottlenecks and intelligently correlates signals across metrics and events using `kubectl` commands when reasoning and provides actionable solutions. By simplifying complex diagnostics and offering clear next steps, the agent empowers users to troubleshoot independently. How it works With Kubernetes troubleshooting agent, Azure Copilot automatically investigates issues in your cluster by running targeted `kubectl` commands and analyzing your cluster’s configuration and current state. For instance, it identifies failing or pending pods, cluster events, resource utilization metrics, and configuration details to build a complete picture of what’s causing the issue. Azure Copilot then determines the most effective mitigation steps for your specific environment. It provides clear, step-by-step guidance, and in many cases, offers a one-click fix to resolve the issue automatically. If Azure Copilot can’t fully resolve the problem, it can generate a pre-populated support request with all the diagnostic details Microsoft Support needs. You’ll be able to review and confirm everything before the request is submitted. This agent is available via Azure Copilot in the Azure Portal. Learn more about how Azure Copilot works. How to Get Started To start using agents, your global administrator must request access to the agents preview at the tenant level in the Azure Copilot admin center. This confirms your interest in the preview and allows us to enable access. Once approved, users will see the Agent mode toggle in Azure Copilot chat and can then start using Copilot agents. Capacity is limited, so sign up early for the best chance to participate. Additionally, if you are interested in helping shape the future of agentic cloud ops and the role Copilot will play in it, please join our customer feedback program by filling up this form. Agents (preview) in Azure Copilot | Microsoft Learn Troubleshooting sample prompts From an AKS cluster resource, click Kubernetes troubleshooting with Copilot to automatically open Azure Copilot in context of the resource you want to troubleshoot: Try These Prompts to Get Started: Here are a few examples of the kinds of prompts you can use. If you're not already working in the context of a resource, you may need to provide the specific resource that you want to troubleshoot. "My pod keeps restarting can you help me figure out why" "Pods are stuck pending what is blocking them from being scheduled" "I am getting ImagePullBackOff how do I fix this" "One of my nodes is NotReady what is causing it" "My service cannot reach the backend pod what should I check" Note: When using these kinds of prompts, be sure agent mode is enabled by selecting the icon in the chat window: Learn More Troubleshooting agent capabilities in Agents (preview) in Azure Copilot | Microsoft Learn Announcing the CLI Agent for AKS: Agentic AI-powered operations and diagnostics at your fingertips - AKS Engineering Blog Microsoft Copilot in Azure Series - Kubectl | Microsoft Community Hub322Views3likes0CommentsHost remote MCP servers on Azure Functions
Model Context Protocol (MCP) servers allow AI agents to access external tools, data, and systems, greatly extending the capability and power of agents. When you’re ready to expose your MCP servers externally, within your organization or to the world, it’s important that the servers are run in a secure, scalable, and reliable environment. Azure Functions provides such a robust platform for hosting your remote MCP servers, offering high scalability with the Flex Consumption plan, built‑in authentication feature for Microsoft Entra and OAuth, and a serverless billing model. The platform also offers two hosting options for added flexibility and convenience. The options allow for hosting of MCP servers built with Azure Functions MCP extension or the official MCP SDKs. Azure Functions MCP Extension (GA) The MCP extension allows you to build and host servers using Azure Functions programming model, i.e. using triggers and bindings. The MCP tool trigger allows you to focus on implementing tools you want to expose, instead of worrying about handling protocol and server logistics. The MCP extension launched as public preview back in April and is now generally available, with support for .NET, Java, JavaScript, Python, and Typescript. New features in the extension Support for streamable-http transport Support for the newer streamable-http transport is added to the extension. Unless your client specifically requires the older Server-Sent Events (SSE) transport, you should use the streamable-http. The two transports have different endpoints in the extension: Transport Endpoint Streamable HTTP /runtime/webhooks/mcp Server-Sent Events (SSE) /runtime/webhooks/mcp/sse Defining server information You can use the extensions.mcp section in host.json to define MCP server information. { "version": "2.0", "extensions": { "mcp": { "instructions": "Some test instructions on how to use the server", "serverName": "TestServer", "serverVersion": "2.0.0", "encryptClientState": true, "messageOptions": { "useAbsoluteUriForEndpoint": false }, "system": { "webhookAuthorizationLevel": "System" } } } } Built-in server authentication and authorization The built-in feature implements the requirements of the MCP authorization protocol, such as issuing 401 challenge and hosting the Protected Resource Metadata document. You can configure it to use identity providers like Microsoft Entra for server authentication. In addition to server authenticating, you can also leverage this feature to implement on-behalf-of (OBO) auth flows where the client invokes a tool that accesses some downstream services on-behalf-of the user. Learn more about the built-in authentication and authorization feature. Mavin Build Plugin for Java For Java applications, the Maven Build Plugin (version 1.40.0) parses and verifies MCP tool annotations during build time. This process automatically generates the correct MCP extension configuration, ensuring that the MCP tool defined by the user is properly set up. The build-time analysis is especially beneficial for Java apps, as it allows developers to utilize the MCP extension without concerns about increased cold start times. We'll continuously enhance the plugin’s capabilities. Upcoming improvements, such as property type inference, will reduce manual configuration and make it even easier to use the McpToolTrigger. Get started Checkout the quickstarts to get an MCP extension server deployed in minutes: C# (.NET) remote-mcp-functions-dotnet Python remote-mcp-functions-python TypeScript (Node.js) remote-mcp-functions-typescript Java remote-mcp-functions-java References Learn more about the MCP extension and tool trigger in official documentations. Self‑hosted MCP server (public preview) In addition to the MCP extension, Azure Functions also supports hosting MCP servers implemented with the official SDKs. This is a suitable option for teams that have existing SDK‑based servers or who favor the SDK experience over the Functions programming model. There is no need to modify your server code; you can lift and shift these MCP servers to Azure Functions— which is why they are termed self‑hosted. The hosting capability supports the following features: Stateless servers that use the streamable-http transport. If you need your server to be stateful, consider using the Functions MCP extension for now. Servers implemented with Python, TypeScript, C#, or Java MCP SDK. Built-in server authentication and authorization like the MCP extension Hosting requirement Self-hosted MCP servers are deployed to the Azure Functions platform as custom handlers. You can think of custom handlers as lightweight web servers that receive events from the Functions host. The only requirement for hosting the MCP server is a file called host.json. Add this file to your project root to tell Functions how to run the server. An example host.json for a Python server looks like: { "version": "2.0", "configurationProfile": "mcp-custom-handler", "customHandler": { "description": { "defaultExecutablePath": "python", "arguments": ["path to main python script, e.g. hello.py"] }, "port": "8000" } } Get started Check out quickstarts to get your self-hosted MCP server deployed in minutes: C# (.NET) mcp-sdk-functions-hosting-dotnet Python mcp-sdk-functions-hosting-python TypeScript (Node.js) mcp-sdk-functions-hosting-node Java Coming soon! References Read the official documentation of self-hosted MCP servers and learn about integrations with Azure services like Foundry and API Center. For .NET developers - check out the overview of self-hosted MCP servers from the recent .NET Conference! We’d love to hear from you! Let us know your thoughts about hosting remote MCP server on Azure Functions. Does either of the options meet your needs? What other MCP features are you looking for? Let us know what you’d like us to prioritize next!526Views3likes0Comments