threat protection
66 TopicsBecome a Microsoft Defender for Cloud Ninja
[Last update: 08/29/2025] All content has been reviewed and updated for August 2025. This blog post has a curation of many Microsoft Defender for Cloud (formerly known as Azure Security Center and Azure Defender) resources, organized in a format that can help you to go from absolutely no knowledge in Microsoft Defender for Cloud, to design and implement different scenarios. You can use this blog post as a training roadmap to learn more about Microsoft Defender for Cloud. On November 2nd, at Microsoft Ignite 2021, Microsoft announced the rebrand of Azure Security Center and Azure Defender for Microsoft Defender for Cloud. To learn more about this change, read this article. Every month we are adding new updates to this article, and you can track it by checking the red date besides the topic. If you already study all the modules and you are ready for the knowledge check, follow the procedures below: To obtain the Defender for Cloud Ninja Certificate 1. Take this knowledge check here, where you will find questions about different areas and plans available in Defender for Cloud. 2. If you score 80% or more in the knowledge check, request your participation certificate here. If you achieved less than 80%, please review the questions that you got it wrong, study more and take the assessment again. Note: it can take up to 24 hours for you to receive your certificate via email. To obtain the Defender for Servers Ninja Certificate (Introduced in 08/2023) 1. Take this knowledge check here, where you will find only questions related to Defender for Servers. 2. If you score 80% or more in the knowledge check, request your participation certificate here. If you achieved less than 80%, please review the questions that you got it wrong, study more and take the assessment again. Note: it can take up to 24 hours for you to receive your certificate via email. Modules To become an Microsoft Defender for Cloud Ninja, you will need to complete each module. The content of each module will vary, refer to the legend to understand the type of content before clicking in the topic’s hyperlink. The table below summarizes the content of each module: Module Description 0 - CNAPP In this module you will familiarize yourself with the concepts of CNAPP and how to plan Defender for Cloud deployment as a CNAPP solution. 1 – Introducing Microsoft Defender for Cloud and Microsoft Defender Cloud plans In this module you will familiarize yourself with Microsoft Defender for Cloud and understand the use case scenarios. You will also learn about Microsoft Defender for Cloud and Microsoft Defender Cloud plans pricing and overall architecture data flow. 2 – Planning Microsoft Defender for Cloud In this module you will learn the main considerations to correctly plan Microsoft Defender for Cloud deployment. From supported platforms to best practices implementation. 3 – Enhance your Cloud Security Posture In this module you will learn how to leverage Cloud Security Posture management capabilities, such as Secure Score and Attack Path to continuous improvement of your cloud security posture. This module includes automation samples that can be used to facilitate secure score adoption and operations. 4 – Cloud Security Posture Management Capabilities in Microsoft Defender for Cloud In this module you will learn how to use the cloud security posture management capabilities available in Microsoft Defender for Cloud, which includes vulnerability assessment, inventory, workflow automation and custom dashboards with workbooks. 5 – Regulatory Compliance Capabilities in Microsoft Defender for Cloud In this module you will learn about the regulatory compliance dashboard in Microsoft Defender for Cloud and give you insights on how to include additional standards. In this module you will also familiarize yourself with Azure Blueprints for regulatory standards. 6 – Cloud Workload Protection Platform Capabilities in Azure Defender In this module you will learn how the advanced cloud capabilities in Microsoft Defender for Cloud work, which includes JIT, File Integrity Monitoring and Adaptive Application Control. This module also covers how threat protection works in Microsoft Defender for Cloud, the different categories of detections, and how to simulate alerts. 7 – Streaming Alerts and Recommendations to a SIEM Solution In this module you will learn how to use native Microsoft Defender for Cloud capabilities to stream recommendations and alerts to different platforms. You will also learn more about Azure Sentinel native connectivity with Microsoft Defender for Cloud. Lastly, you will learn how to leverage Graph Security API to stream alerts from Microsoft Defender for Cloud to Splunk. 8 – Integrations and APIs In this module you will learn about the different integration capabilities in Microsoft Defender for Cloud, how to connect Tenable to Microsoft Defender for Cloud, and how other supported solutions can be integrated with Microsoft Defender for Cloud. 9 - DevOps Security In this module you will learn more about DevOps Security capabilities in Defender for Cloud. You will be able to follow the interactive guide to understand the core capabilities and how to navigate through the product. 10 - Defender for APIs In this module you will learn more about the new plan announced at RSA 2023. You will be able to follow the steps to onboard the plan and validate the threat detection capability. 11 - AI Posture Management and Workload Protection In this module you will learn more about the risks of Gen AI and how Defender for Cloud can help improve your AI posture management and detect threats against your Gen AI apps. Module 0 - Cloud Native Application Protection Platform (CNAPP) Improving Your Multi-Cloud Security with a CNAPP - a vendor agnostic approach Microsoft CNAPP Solution Planning and Operationalizing Microsoft CNAPP Understanding Cloud Native Application Protection Platforms (CNAPP) Cloud Native Applications Protection Platform (CNAPP) Microsoft CNAPP eBook Understanding CNAPP Why Microsoft Leads the IDC CNAPP MarketScape: Key Insights for Security Decision-Makers Module 1 - Introducing Microsoft Defender for Cloud What is Microsoft Defender for Cloud? A New Approach to Get Your Cloud Risks Under Control Getting Started with Microsoft Defender for Cloud Implementing a CNAPP Strategy to Embed Security From Code to Cloud Boost multicloud security with a comprehensive code to cloud strategy A new name for multi-cloud security: Microsoft Defender for Cloud Common questions about Defender for Cloud MDC Cost Calculator Microsoft Defender for Cloud expands U.S. Gov Cloud support for CSPM and server security (08/29/2025) Module 2 – Planning Microsoft Defender for Cloud Features for IaaS workloads Features for PaaS workloads Built-in RBAC Roles in Microsoft Defender for Cloud Enterprise Onboarding Guide Design Considerations for Log Analytics Workspace Onboarding on-premises machines using Windows Admin Center Understanding Security Policies in Microsoft Defender for Cloud Creating Custom Policies Centralized Policy Management in Microsoft Defender for Cloud using Management Groups Planning Data Collection for IaaS VMs Microsoft Defender for Cloud PoC Series – Microsoft Defender for Resource Manager Microsoft Defender for Cloud PoC Series – Microsoft Defender for Storage How to Effectively Perform an Microsoft Defender for Cloud PoC Microsoft Defender for Cloud PoC Series – Microsoft Defender for App Service Considerations for Multi-Tenant Scenario Microsoft Defender for Cloud PoC Series – Microsoft Defender CSPM Microsoft Defender for DevOps GitHub Connector - Microsoft Defender for Cloud PoC Series Grant tenant-wide permissions to yourself Simplifying Onboarding to Microsoft Defender for Cloud with Terraform Module 3 – Enhance your Cloud Security Posture How Secure Score affects your governance Enhance your Secure Score in Microsoft Defender for Cloud Security recommendations Active User (Public Preview) Resource exemption Customizing Endpoint Protection Recommendation in Microsoft Defender for Cloud Deliver a Security Score weekly briefing Send Microsoft Defender for Cloud Recommendations to Azure Resource Stakeholders Secure Score Reduction Alert Average Time taken to remediate resources Improved experience for managing the default Azure security policies Security Policy Enhancements in Defender for Cloud Create custom recommendations and security standards Secure Score Overtime Workbook Automation Artifacts for Secure Score Recommendations Connecting Defender for Cloud with Jira Remediation Scripts Module 4 – Cloud Security Posture Management Capabilities in Microsoft Defender for Cloud CSPM in Defender for Cloud Take a Proactive Risk-Based Approach to Securing your Cloud Native Applications Predict future security incidents! Cloud Security Posture Management with Microsoft Defender Software inventory filters added to asset inventory Drive your organization to security actions using Governance experience Managing Asset Inventory in Microsoft Defender for Cloud Vulnerability Assessment Workbook Template Vulnerability Assessment for Containers Implementing Workflow Automation Workflow Automation Artifacts Creating Custom Dashboard for Microsoft Defender for Cloud Using Microsoft Defender for Cloud API for Workflow Automation What you need to know when deleting and re-creating the security connector(s) in Defender for Cloud Connect AWS Account with Microsoft Defender for Cloud Video Demo - Connecting AWS accounts Microsoft Defender for Cloud PoC Series - Multi-cloud with AWS Onboarding your AWS/GCP environment to Microsoft Defender for Cloud with Terraform How to better manage cost of API calls that Defender for Cloud makes to AWS Connect GCP Account with Microsoft Defender for Cloud Protecting Containers in GCP with Defender for Containers Video Demo - Connecting GCP Accounts Microsoft Defender for Cloud PoC Series - Multicloud with GCP All You Need to Know About Microsoft Defender for Cloud Multicloud Protection Custom recommendations for AWS and GCP 31 new and enhanced multicloud regulatory standards coverage Azure Monitor Workbooks integrated into Microsoft Defender for Cloud and three templates provided How to Generate a Microsoft Defender for Cloud exemption and disable policy report Cloud security posture and contextualization across cloud boundaries from a single dashboard Best Practices to Manage and Mitigate Security Recommendations Defender CSPM Defender CSPM Plan Options Go Beyond Checkboxes: Proactive Cloud Security with Microsoft Defender CSPM Cloud Security Explorer Identify and remediate attack paths Agentless scanning for machines Cloud security explorer and Attack path analysis Governance Rules at Scale Governance Improvements Data Security Aware Posture Management Unlocking API visibility: Defender for Cloud Expands API security to Function Apps and Logic Apps A Proactive Approach to Cloud Security Posture Management with Microsoft Defender for Cloud Prioritize Risk remediation with Microsoft Defender for Cloud Attack Path Analysis Understanding data aware security posture capability Agentless Container Posture Agentless Container Posture Management Microsoft Defender for Cloud - Automate Notifications when new Attack Paths are created Proactively secure your Google Cloud Resources with Microsoft Defender for Cloud Demystifying Defender CSPM Discover and Protect Sensitive Data with Defender for Cloud Defender for cloud's Agentless secret scanning for virtual machines is now generally available! Defender CSPM Support for GCP Data Security Dashboard Agentless Container Posture Management in Multicloud Agentless malware scanning for servers Recommendation Prioritization Unified insights from Microsoft Entra Permissions Management Defender CSPM Internet Exposure Analysis Future-Proofing Cloud Security with Defender CSPM ServiceNow's integration now includes Configuration Compliance module Agentless code scanning for GitHub and Azure DevOps (preview) 🚀 Suggested Labs: Improving your Secure Posture Connecting a GCP project Connecting an AWS project Defender CSPM Agentless container posture through Defender CSPM Contextual Security capabilities for AWS using Defender CSPM Module 5 – Regulatory Compliance Capabilities in Microsoft Defender for Cloud Understanding Regulatory Compliance Capabilities in Microsoft Defender for Cloud Adding new regulatory compliance standards Regulatory Compliance workbook Regulatory compliance dashboard now includes Azure Audit reports Microsoft cloud security benchmark: Azure compute benchmark is now aligned with CIS! Updated naming format of Center for Internet Security (CIS) standards in regulatory compliance CIS Azure Foundations Benchmark v2.0.0 in regulatory compliance dashboard Spanish National Security Framework (Esquema Nacional de Seguridad (ENS)) added to regulatory compliance dashboard for Azure Microsoft Defender for Cloud Adds Four New Regulatory Frameworks | Microsoft Community Hub 🚀 Suggested Lab: Regulatory Compliance Module 6 – Cloud Workload Protection Platform Capabilities in Microsoft Defender for Clouds Understanding Just-in-Time VM Access Implementing JIT VM Access File Integrity Monitoring in Microsoft Defender Understanding Threat Protection in Microsoft Defender Performing Advanced Risk Hunting in Defender for Cloud Microsoft Defender for Servers Demystifying Defender for Servers Onboarding directly (without Azure Arc) to Defender for Servers Agentless secret scanning for virtual machines in Defender for servers P2 & DCSPM Vulnerability Management in Defender for Cloud File Integrity Monitoring using Microsoft Defender for Endpoint Microsoft Defender for Containers Basics of Defender for Containers Secure your Containers from Build to Runtime AWS ECR Coverage in Defender for Containers Upgrade to Microsoft Defender Vulnerability Management End to end container security with unified SOC experience Binary drift detection episode Binary drift detection Cloud Detection Response experience Exploring the Latest Container Security Updates from Microsoft Ignite 2024 Unveiling Kubernetes lateral movement and attack paths with Microsoft Defender for Cloud Onboarding Docker Hub and JFrog Artifactory Improvements in Container’s Posture Management New AKS Security Dashboard in Defender for Cloud The Risk of Default Configuration: How Out-of-the-Box Helm Charts Can Breach Your Cluster Your cluster, your rules: Helm support for container security with Microsoft Defender for Cloud Microsoft Defender for Storage Protect your storage resources against blob-hunting Malware Scanning in Defender for Storage What's New in Defender for Storage 🎉Malware scanning add-on is now generally available in Azure Gov Secret and Top-Secret clouds (08/29/2025) Defender for Storage: Malware Scan Error Message Update Protecting Cloud Storage in the Age of AI Microsoft Defender for SQL New Defender for SQL VA Defender for SQL on Machines Enhanced Agent Update Microsoft Defender for SQL Anywhere New autoprovisioning process for SQL Server on machines plan Enhancements for protecting hosted SQL servers across clouds and hybrid environments Defender for Open-Source Relational Databases Multicloud Microsoft Defender for KeyVault Microsoft Defender for AppService Microsoft Defender for Resource Manager Understanding Security Incident Security Alert Correlation Alert Reference Guide 'Copy alert JSON' button added to security alert details pane Alert Suppression Simulating Alerts in Microsoft Defender for Cloud Alert validation Simulating alerts for Windows Simulating alerts for Linux Simulating alerts for Containers Simulating alerts for Storage Simulating alerts for Microsoft Key Vault Simulating alerts for Microsoft Defender for Resource Manager Integration with Microsoft Defender for Endpoint Auto-provisioning of Microsoft Defender for Endpoint unified solution Resolve security threats with Microsoft Defender for Cloud Protect your servers and VMs from brute-force and malware attacks with Microsoft Defender for Cloud Filter security alerts by IP address Alerts by resource group Defender for Servers Security Alerts Improvements From visibility to action: The power of cloud detection and response 🚀 Suggested Labs: Workload Protections Agentless container vulnerability assessment scanning Microsoft Defender for Cloud database protection Protecting On-Prem Servers in Defender for Cloud Defender for Storage Module 7 – Streaming Alerts and Recommendations to a SIEM Solution Continuous Export capability in Microsoft Defender for Cloud Deploying Continuous Export using Azure Policy Connecting Microsoft Sentinel with Microsoft Defender for Cloud Closing an Incident in Azure Sentinel and Dismissing an Alert in Microsoft Defender for Cloud Microsoft Sentinel bi-directional alert synchronization 🚀 Suggested Lab: Exporting Microsoft Defender for Cloud information to a SIEM Module 8 – Integrations and APIs Integration with Tenable Integrate security solutions in Microsoft Defender for Cloud Defender for Cloud integration with Defender EASM Defender for Cloud integration with Defender TI REST APIs for Microsoft Defender for Cloud Obtaining Secure Score via REST API Using Graph Security API to Query Alerts in Microsoft Defender for Cloud Automate(d) Security with Microsoft Defender for Cloud and Logic Apps Automating Cloud Security Posture and Cloud Workload Protection Responses Module 9 – DevOps Security Overview of Microsoft Defender for Cloud DevOps Security DevOps Security Interactive Guide Configure the Microsoft Security DevOps Azure DevOps extension Configure the Microsoft Security DevOps GitHub action Automate SecOps to Developer Communication with Defender for DevOps Compliance for Exposed Secrets Discovered by DevOps Security Automate DevOps Security Recommendation Remediation DevOps Security Workbook Remediating Security Issues in Code with Pull Request Annotations Code to Cloud Security using Microsoft Defender for DevOps GitHub Advanced Security for Azure DevOps alerts in Defender for Cloud Securing your GitLab Environment with Microsoft Defender for Cloud Bridging the Gap Between Code and Cloud with Defender for Cloud Integrate Defender for Cloud CLI with CI/CD pipelines Code Reachability Analysis 🚀 Suggested Labs: Onboarding Azure DevOps to Defender for Cloud Onboarding GitHub to Defender for Cloud Module 10 – Defender for APIs What is Microsoft Defender for APIs? Onboard Defender for APIs Validating Microsoft Defender for APIs Alerts API Security with Defender for APIs Microsoft Defender for API Security Dashboard Exempt functionality now available for Defender for APIs recommendations Create sample alerts for Defender for APIs detections Defender for APIs reach GA Increasing API Security Testing Visibility Boost Security with API Security Posture Management 🚀 Suggested Lab: Defender for APIs Module 11 – AI Posture Management and Workload Protection Secure your AI applications from code to runtime with Microsoft Defender for Cloud AI security posture management AI threat protection Secure your AI applications from code to runtime Data and AI security dashboard Protecting Azure AI Workloads using Threat Protection for AI in Defender for Cloud Plug, Play, and Prey: The security risks of the Model Context Protocol Exposing hidden threats across the AI development lifecycle in the cloud (08/29/2025) Learn Live: Enable advanced threat protection for AI workloads with Microsoft Defender for Cloud Microsoft AI Security Story: Protection Across the Platform 🚀 Suggested Lab: Security for AI workloads Are you ready to take your knowledge check? If so, click here. If you score 80% or more in the knowledge check, request your participation certificate here. If you achieved less than 80%, please review the questions that you got it wrong, study more and take the assessment again. Note: it can take up to 24 hours for you to receive your certificate via email. Other Resources Microsoft Defender for Cloud Labs Become an Microsoft Sentinel Ninja Become an MDE Ninja Cross-product lab (Defend the Flag) Release notes (updated every month) Important upcoming changes Have a great time ramping up in Microsoft Defender for Cloud and becoming a Microsoft Defender for Cloud Ninja!! Reviewer: Tom Janetscheck, Senior PM332KViews64likes37CommentsUncover the latest cloud data security capabilities from Microsoft Defender for Cloud
Learn about the latest multicloud data security capabilities from Microsoft Defender for Cloud to strengthen your data security posture and protect your cloud data estate against data breaches and malware distribution.6.5KViews9likes0CommentsAnnouncing new CNAPP capabilities in Defender for Cloud
At Ignite 2023, we are excited to announce new innovations in Microsoft Defender for Cloud that will help security admins strengthen their CNAPP deployment, improve the cloud security posture through additional code to cloud insights, and protect cloud-native applications across multicloud environments in a unified solution.What you need to know when deleting and re-creating the security connector(s) in Defender for Cloud
Introduction: Have you ever found yourself in a situation where you needed to move a security connector in Defender for Cloud between subscriptions or tenant? This article provides guidance on important considerations for removing and re-creating security connectors for AWS/GCP in Microsoft Defender for Cloud. These security connectors store the configuration preferences that Defender for Cloud uses to access your AWS/GCP environment and provide security recommendations and alerts. There may be instances where you need to re-create the connector, such as following best practice guidance, connecting to a different Azure tenant, or storing connectors in different resource groups. I cover the process of re-creating the connector in more detail, including the creation of the connector, the deletion of the connector, and the re-creation of the connector. Creating the security connector: To onboard your AWS/GCP environment to Defender for Cloud, you need to create a security connector. As part of this process, you run a Cloud Formation template in AWS or a cloud shell script in GCP. These templates/scripts create the roles and resources that Defender for Cloud requires to provide security recommendations and alerts for your workloads. The resources and roles created in AWS/GCP depend on the Defender for Cloud plans you select on the security connector. In AWS, the minimum set of roles and resources created by the template includes: Identity provider IAM roles In GCP, the minimum set of roles and resources created by the script includes: Workload identity provider Workload identity pool Policy (role bindings) The outcome of the security connector creation process is the creation of the connector as an Azure resource inside the selected subscription and resource group, as well as the roles and resources created in AWS/GCP. If you enable CWP capabilities and auto-provisioning, the Azure Arc agent and extensions also get installed on AWS/GCP compute resources such as servers, managed Kubernetes, and databases (figure 1). Deleting the security connector: If you need to delete the security connector, you can do so through the Environment settings blade or via the Security Connectors REST API. This will delete the connector as an Azure resource inside the resource group and subscription selected during the creation process. However, it is important to note that deleting the connector in Defender for Cloud does not remove the roles and resources created by the template/script in AWS/GCP. After deleting the connector, it is your responsibility to properly delete these resources in AWS/GCP (like the AWS roles created by the security connector that are displayed in figure 2, note that some information is intentionally obfuscated). There is an additional consideration, if you enable CWP capabilities, on AWS/GCP compute resources such as servers, managed Kubernetes, and databases. Defender for Cloud will now automatically delete Azure Arc machines when those machines are deleted in connected AWS or GCP account. This applies to machine connected to an AWS and GCP account and covered by Defender for Servers or Defender for SQL on machines. After deleting the connector, it is your responsibility to properly remove the Azure Arc agent and extensions installed on any other resources in AWS/GCP. If you wish to offboard completely, additionally you need to delete the Azure Arc representations of these resources, in the resource group in which the security connector was stored. If you're planning on re-creating the security connector, there are some exceptions to the above guidance: if you’re connecting the same AWS/GCP environment, to the same Azure tenant and are using the same Azure subscription, but different resource group to store the connector in, then you don’t need to delete the roles and resources that the security connector created in AWS/GCP. if you’re connecting the same AWS/GCP environment, to the same Azure tenant and are using different Azure subscription, and different resource group to store the connector in, then you don’t need to delete the roles and resources that the security connector created in AWS/GCP. if you’re connecting the same AWS environment, to a different Azure tenant and are using different Azure subscription, and different resource group to store the connector in, then it's highly recommended due to security reasons to delete the Stack/StackSet in AWS you used during the onboarding process. if you’re connecting the same GCP environment, to a different Azure tenant and are using different Azure subscription, and different resource group to store the connector in, then it's highly recommended due to security reasons to delete the old Workload identity pool and providers in GCP. Then you can create a new workload identity pool and providers in the management project and link the providers to pre-existing policy (role bindings). Re-creating the security connector: There are certain scenarios that warrant re-creating the security connector, for example you might want to store security connectors in different subscriptions or resource groups. If you need to re-create the security connector, you will need to follow the same process as outlined in the "Creating a security connector" section. Please note, you need to wait at least one minute after deleting the security connector in Azure, prior to re-creating it. When re-creating the security connector in the same Azure tenant, you don’t need to delete the roles and resources on the AWS/GCP side. However, if choose to do so you might need to wait longer until you're able to re-create the security connector, because in GCP there is a 'soft' delete for 30 days. The deletion in AWS is instantaneous. Conclusion: In summary, it is important to carefully consider the process of removing and re-creating security connectors in Microsoft Defender for Cloud. Properly deleting and re-creating these connectors requires following the correct process and properly deleting the resources and roles created in AWS/GCP. Following these steps will help ensure the security and effectiveness of your cloud environments. Reviewers: Or Serok Jeppa, Senior PM Manager Ameer Abu Zhaia, Software Engineer II Giulio Astori, Principal Product Manager Contributors: Ameer Abu Zhaia, Software Engineer II Chemi Shumacher, Senior Software EngineerMicrosoft Defender for Cloud - Elevating Runtime Protection
In today's rapidly evolving digital landscape, runtime security is crucial for maintaining the integrity of applications in containerized environments. As threats become increasingly sophisticated, the demand for more adaptive protection continues to rise. Attackers are no longer relying on generic exploits — they are actively targeting vulnerabilities in container configurations, runtime processes, and shared resources. From injecting malicious code to escalating privileges and exploiting kernel vulnerabilities, their tactics are constantly evolving. Overcoming these challenges requires continuous monitoring, validating container immutability, and detecting anomalies to prevent and respond to threats in real time, ensuring container security throughout their lifecycle. Building on these best practices, Microsoft Defender for Cloud delivers advanced and innovative runtime threat protection for containerized environments, providing real-time defense and adaptive security to address evolving threats head-on. Empowering SOC with real-time threat detection At the heart of our enhanced runtime protection lies our advanced detection capabilities. To stay ahead of evolving threats and offer near real-time threat detection, Microsoft Defender for Cloud is proud to announce significant advancements in its unique eBPF sensor. This sensor now provides Kubernetes alerts, powered by Microsoft Defender for Endpoint (MDE) detection engine in the backend. Leveraging Microsoft’s industry-leading security expertise, we've tailored MDE's robust security capabilities to specifically address the unique challenges of containerized environments. By carefully validating detections against container-specific threat landscapes, adding relevant context, and adjusting alerts as needed, we've optimized the solution for maximum accuracy and effectiveness that is needed for cloud-native environments. By utilizing the MDE detection engine, we offer the following enhancements: Near real-time detection: Our solution provides timely alerts, enabling you to respond quickly to threats and minimize their impact. Expanded threat coverage: We've expanded our detection capabilities to cover a broader range of threats such as binary drift and additional threat matrix coverage. Enhanced visibility: Gain deeper insights into your container environment with detailed threat information and context that is sent to Defender XDR for further investigation. Switching between multiple portals leaves customers with a fragmented view of their security landscape, hindering their ability to investigate and respond to security incidents efficiently. To combat this, Defender for Cloud alerts are integrated with Defender XDR. By centralizing alerts from both solutions within Defender XDR, customers can gain comprehensive visibility of their security landscape and simplify incident detection, investigation, and response effectively. Introducing binary drift detection to maintain optimal security and performance, containerized applications should strictly adhere to their defined boundaries. With binary drift detection in place, unauthorized code injections can be swiftly identified. By comparing the modified container image against the original, the system detects any discrepancies, enabling timely response to potential threats. By combining binary drift detection with other security measures, organizations can reduce the risk of exploitation and protect their containerized applications from malicious attacks. An example of binary drift detection Key takeaways from above illustration: Common Vulnerability and Exposures (CVE) pose significant risks to containerized environments. Binary drift detection can help identify unauthorized changes to container images, even if they result from CVE exploitation. Regular patching and updating of container images are crucial to prevent vulnerabilities. In some customer environments, it's common to deviate from best practices. For example, tasks like debugging and monitoring often require running processes that aren’t part of the original container image. To handle this, we offer binary drift detection along with a flexible policy system. This lets you choose when to receive alerts or ignore them. You can customize these settings based on your cloud environment or by filtering specific Kubernetes resources. Learn more about binary drift detection For a deep dive into binary drift detection and how it can enhance your container security posture, please see Container, Security, Kubernetes. Presenting new scenario-driven alert simulation Simulate real-world attack scenarios within your containerized environments with this innovative simulator, enabling you to test your detection capabilities and response procedures. You can enhance your security posture and protect your containerized environments from emerging threats by leveraging this powerful tool. Examples of some of the attack scenarios that can be simulated using this tool are: Reconnaissance activity: Mimic the actions of attackers as they gather information about your cluster. Cluster-to-cloud: Simulate lateral movement as attackers attempt to spread across your environment. Secret gathering: Test your ability to detect attempts to steal sensitive information. Crypto-mining activity: Simulate the impact of resource-intensive crypto-mining operations. Webshell invocation: Test your detection capabilities for malicious web shells. You can gain valuable insights into your security controls and identify areas for improvement. This tool provides a safe and controlled environment to practice incident response, ensuring that your team is well-prepared to handle real-world threats. Key benefits of scenario-driven alert simulation: Test detection capabilities: Validate your ability to identify and respond to various attack types. Validate response procedures: Ensure your incident response teams are prepared to handle real-world threats. Identify gaps in security: Discover weaknesses in your security posture and address them proactively. Improve incident response time: Practice handling simulated incidents to reduce response times in real-world situations. Alert simulation tool Enhancing Cloud Detection and Response (CDR) From detection to resolution, we've streamlined every step of the process to ensure robust and efficient threat management. By enabling better visibility, faster investigation, and precise response capabilities, SOC teams can confidently address container threats, reducing risks and operational disruptions across multi-cloud environments. Cloud-native response actions for containers Swift and precise containment is critical in dynamic, containerized environments. To address this, we’ve introduced cloud-native response actions in Defender XDR, enabling SOC teams to: Cut off unauthorized pod access and prevent lateral movement by instantly isolating compromised pods. Stop ongoing malicious pod activity and minimize impact by terminating compromised pods with a single click. These capabilities are specifically designed to meet the unique challenges of multi-cloud ecosystems, empowering security teams to reduce Mean Time to Resolve (MTTR) and ensure operational continuity. Response actions Action center view Log collection in advanced hunting Limited visibility in Kubernetes activities, cloud infrastructure changes, and runtime processes weakens effective threat detection and investigation in containerized environments. To bridge this gap, we’ve enhanced Defender XDR’s advanced hunting experience by collecting: KubeAudit logs: Delivering detailed insights into Kubernetes events and activities. Azure Control Plane logs: Providing a comprehensive view of cloud infrastructure activities. Process events: Capturing detailed runtime activity. This enriched data enables SOC teams to do deeper investigations, hunt for advanced threats, and create custom detection rules. With full visibility across AKS, EKS, and GKE, these capabilities strengthen defenses and support proactive security strategies. Advance hunting view Accelerating investigations with built-in queries Lengthy investigation processes can delay incident resolution and can potentially lead to a successful attack attempt. To address this, we’ve equipped go hunt with pre-built queries specifically tailored for cloud and containerized threats. These built-in queries allow SOC teams to: Focus their time in quickly identifying attacker activity and not write custom queries. Gain insights in minutes vs. hours, reducing the investigation time enormously. This streamlined approach enhances SOC efficiency, ensuring that teams spend more time on remediation and less on query development. Go hunt view Bridging knowledge gaps with guided response using Microsoft Security Copilot Many security teams, especially those working in complex environments like containers, may not have deep expertise in every aspect of container threat response. Additionally, security teams might encounter threats or vulnerabilities they haven’t seen before. We are excited to integrate with Security Copilot to bridge this gap. Security Copilot serves as a valuable tool that offers: Step-by-step, context-rich guidance for each incident. Tailored recommendations for effective threat containment and remediation. By leveraging AI-driven insights, Security Copilot empowers SOC teams of varying expertise levels to navigate incidents with precision, ensuring consistent and effective responses across the board. Security copilot recommendations Summary Microsoft Defender for Cloud has introduced significant advancements in runtime protection for containerized environments. By leveraging the Microsoft Defender for Endpoint (MDE) detection engine, this solution now offers near real-time threat detection, enhancing threat visibility and response capabilities. A key feature, binary drift detection, monitors changes in container images to identify unauthorized modifications and prevent security breaches. Additionally, the integration with Defender XDR centralizes alerts, providing comprehensive visibility and simplifying incident detection, investigation, and response. With enhanced cloud-native response actions and advanced hunting capabilities, SOC teams can confidently address container threats, reducing risks and operational disruptions across multi-cloud environments. Learn more Ready to elevate your container security? Experience the power of our new features firsthand with our cutting-edge simulator—test them in your containerized environments and see the difference! Alerts for Kubernetes Clusters - Microsoft Defender for Cloud | Microsoft Learn5.6KViews4likes0Comments