threat intelligence
46 TopicsCloud Posture + Attack Surface Signals in Microsoft Sentinel (Prisma Cloud + Cortex Xpanse)
Microsoft expanded Microsoft Sentinel’s connector ecosystem with Palo Alto integrations that pull cloud posture, cloud workload runtime, and external attack surface signals into the SIEM, so your SOC can correlate “what’s exposed” and “what’s misconfigured” with “what’s actively being attacked.” Specifically, the Ignite connectors list includes Palo Alto: Cortex Xpanse CCF and Palo Alto: Prisma Cloud CWPP. Why these connectors matter for Sentinel detection engineering Traditional SIEM pipelines ingest “events.” But exposure and posture are just as important as the events—because they tell you which incidents actually matter. Attack surface (Xpanse) tells you what’s reachable from the internet and what attackers can see. Posture (Prisma CSPM) tells you which controls are broken (public storage, permissive IAM, weak network paths). Runtime (Prisma CWPP) tells you what’s actively happening inside workloads (containers/hosts/serverless). In Sentinel, these become powerful when you can join them with your “classic” telemetry (cloud activity logs, NSG flow logs, DNS, endpoint, identity). Result: fewer false positives, faster triage, better prioritization. Connector overview (what each one ingests) 1) Palo Alto Prisma Cloud CSPM Solution What comes in: Prisma Cloud CSPM alerts + audit logs via the Prisma Cloud CSPM API. What it ships with: connector + parser + workbook + analytics rules + hunting queries + playbooks (prebuilt content). Best for: Misconfig alerts: public storage, overly permissive IAM, weak encryption, risky network exposure. Compliance posture drift + audit readiness (prove you’re monitoring and responding). 2) Palo Alto Prisma Cloud CWPP (Preview) What comes in: CWPP alerts via Prisma Cloud API (Compute/runtime side). Implementation detail: Built on Codeless Connector Platform (CCP). Best for: Runtime detections (host/container/serverless security alerts) “Exploit succeeded” signals that you need to correlate with posture and exposure. 3) Palo Alto Cortex Xpanse CCF What comes in: Alerts logs fetched from the Cortex Xpanse API, ingested using Microsoft Sentinel Codeless Connector Framework (CCF). Important: Supports DCR-based ingestion-time transformations that parse to a custom table for better performance. Best for: External exposure findings and “internet-facing risk” detection Turning exposure into incidents only when the asset is critical / actively targeted. Reference architecture (how the data lands in Sentinel) Here’s the mental model you want for all three: flowchart LR A[Palo Alto Prisma Cloud CSPM] -->|CSPM API: alerts + audit logs| S[Sentinel Data Connector] B[Palo Alto Prisma Cloud CWPP] -->|Prisma API: runtime alerts| S C[Cortex Xpanse] -->|Xpanse API: exposure alerts| S S -->|CCF/CCP + DCR Transform| T[(Custom Tables)] T --> K[KQL Analytics + Hunting] K --> I[Incidents] I -->P[SOAR Playbooks] K --> W[Workbooks / Dashboards] Key design point: Xpanse explicitly emphasizes DCR transformations at ingestion time, use that to normalize fields early so your queries stay fast under load. Deployment patterns (practical, SOC-friendly setup) Step 0 — Decide what goes to “analytics” vs “storage” If you’re using Sentinel’s data lake strategy, posture/exposure data is a perfect candidate for longer retention (trend + audit), while only “high severity” may need real-time analytics. Step 1 — Install solutions from Content Hub Install: Palo Alto Prisma Cloud CSPM Solution Palo Alto Prisma Cloud CWPP (Preview) Palo Alto Cortex Xpanse CCF Step 2 — Credentials & least privilege Create dedicated service accounts / API keys in Palo Alto products with read-only scope for: CSPM alerts + audit CWPP alerts Xpanse alerts/exposures Step 3 — Validate ingestion (don’t skip this) In Sentinel Logs: Locate the custom tables created by each solution (Tables blade). Run a basic sanity query: “All events last 1h” “Top 20 alert types” “Distinct severities” Tip: Save “ingestion smoke tests” as Hunting queries so you can re-run them after upgrades. Step 4 — Turn on included analytics content (then tune) The Prisma Cloud CSPM solution comes with multiple analytics rules, hunting queries, and playbooks out of the box—enable them gradually and tune thresholds before going wide. Detection engineering: high-signal correlation recipes Below are patterns that consistently outperform “single-source alerts.” I’m giving them as KQL templates using placeholder table names because your exact custom table names/columns are workspace-dependent (you’ll see them after install). Recipe 1 — “Internet-exposed + actively probed” (Xpanse + network logs) Goal: Only fire when exposure is real and there’s traffic evidence. let xpanse = <XpanseTable> | where TimeGenerated > ago(24h) | where Severity in ("High","Critical") | project AssetIp=<ip_field>, Finding=<finding_field>, Severity, TimeGenerated; let net = <NetworkFlowTable> | where TimeGenerated > ago(24h) | where Direction == "Inbound" | summarize Hits=count(), SrcIps=make_set(SrcIp, 50) by DstIp; xpanse | join kind=inner (net) on $left.AssetIp == $right.DstIp | where Hits > 50 | project TimeGenerated, Severity, Finding, AssetIp, Hits, SrcIps Why it works: Xpanse gives you exposure. Flow/WAF/Firewall gives you intent. Recipe 2 — “Misconfiguration that creates a breach path” (CSPM + identity or cloud activity) Goal: Prioritize posture findings that coincide with suspicious access or admin changes. let posture = <PrismaCSPMTable> | where TimeGenerated > ago(7d) | where PolicySeverity in ("High","Critical") | where FindingType has_any ("Public", "OverPermissive", "NoMFA", "EncryptionDisabled") | project ResourceId=<resource_id>, Finding=<finding>, PolicySeverity, FirstSeen=TimeGenerated; let activity = <CloudActivityTable> | where TimeGenerated > ago(7d) | where OperationName has_any ("RoleAssignmentWrite","SetIamPolicy","AddMember","CreateAccessKey") | project ResourceId=<resource_id>, Actor=<caller>, OperationName, TimeGenerated; posture | join kind=inner (activity) on ResourceId | project PolicySeverity, Finding, OperationName, Actor, FirstSeen, TimeGenerated | order by PolicySeverity desc, TimeGenerated desc Recipe 3 — “Runtime alert on a workload that was already high-risk” (CWPP + CSPM) Goal: Raise severity when runtime alerts occur on assets with known posture debt. let risky_assets = <PrismaCSPMTable> | where TimeGenerated > ago(30d) | where PolicySeverity in ("High","Critical") | summarize RiskyFindings=count() by AssetId=<asset_id>; <CWPPTable> | where TimeGenerated > ago(24h) | project AssetId=<asset_id>, AlertName=<alert>, Severity=<severity>, TimeGenerated, Details=<details> | join kind=leftouter (risky_assets) on AssetId | extend RiskScore = coalesce(RiskyFindings,0) | order by Severity desc, RiskScore desc, TimeGenerated desc SOC outcome: same runtime alert, different priority depending on posture risk. Operational (in real life) 1) Normalize severities early If Xpanse is using DCR transforms (it is), normalize severity to a consistent enum (“Informational/Low/Medium/High/Critical”) to simplify analytics. 2) Deduplicate exposure findings Attack surface tools can generate repeated findings. Use a dedup function (hash of asset + finding type + port/service) and alert only on “new or changed exposure.” 3) Don’t incident-everything Treat CSPM findings as: Incidents only when: critical + reachable + targeted OR tied to privileged activity Tickets when: high risk but not active Backlog when: medium/low with compensating controls 4) Make SOAR “safe by default” Automations should prefer reversible actions: Block IP (temporary) Add to watchlist Notify owners Open ticket with evidence bundle …and only escalate to destructive actions after confidence thresholds.156Views3likes0CommentsXDR advanced hunting region specific endpoints
Hi, I am exploring XDR advanced hunting API to fetch data specific to Microsoft Defender for Endpoint tenants. The official documentation (https://learn.microsoft.com/en-us/defender-xdr/api-advanced-hunting) mentions to switch to Microsoft Graph advanced hunting API. I had below questions related to it: 1. To fetch the region specific(US , China, Global) token and Microsoft Graph service root endpoints(https://learn.microsoft.com/en-us/graph/deployments#app-registration-and-token-service-root-endpoints ) , is the recommended way to fetch the OpenID configuration document (https://learn.microsoft.com/en-us/entra/identity-platform/v2-protocols-oidc#fetch-the-openid-configuration-document) for a tenant ID and based on the response, the region specific SERVICE/TOKEN endpoints could be fetched? Since using it, there is no need to maintain different end points for tenants in different regions. And do we use the global service URL https://login.microsoftonline.com to fetch OpenID config document for a tenantID in any region? 2. As per the documentation, Microsoft Graph Advanced hunting API is not supported in China region (https://learn.microsoft.com/en-us/graph/api/security-security-runhuntingquery?view=graph-rest-1.0&tabs=http). In this case, is it recommended to use Microsoft XDR Advanced hunting APIs(https://learn.microsoft.com/en-us/defender-xdr/api-advanced-hunting) to support all region tenants(China, US, Global)?167Views0likes1CommentQuestion malware autodelete
A malware like Trojan:Win32/Wacatac.C!ml can download other malware, this other malware can perform the malicious action, this malware can delete itself and in the next scan of antivirus free this malware that deleted itself will not have any trace and will not be detected by the scan?100Views0likes1CommentDeep Dive into Preview Features in Microsoft Defender Console
Background for Discussion Microsoft Defender XDR (Extended Detection and Response) is evolving rapidly, offering enhanced security capabilities through preview features that can be enabled in the MDE console. These preview features are accessible via: Path: Settings > Microsoft Defender XDR > General > Preview features Under this section, users can opt into three distinct integrations: Microsoft Defender XDR + Microsoft Defender for Identity Microsoft Defender for Endpoint Microsoft Defender for Cloud Apps Each of these options unlocks advanced functionalities that improve threat detection, incident correlation, and response automation across identity, endpoint, and cloud environments. However, enabling these features is optional and may depend on organizational readiness or policy. This raises important questions about: What specific technical capabilities are introduced by each preview feature? Where exactly are these feature parameters are reflected in the MDE console? What happens if an organization chooses not to enable these preview features? Are there alternative ways to access similar functionalities through public preview or general availability?283Views1like0CommentsIntegrate Defender for Cloud Apps w/ Azure Firewall or VPN Gateway
Hello, Recently I have been tasked with securing our openAI implementation. I would like to marry the Defender for Cloud Apps with the sanctioning feature and the Blocking unsanctioned traffic like the Defender for Endpoint capability. To do this, I was only able to come up with: creating a windows 2019/2022 server, with RRAS, and two interfaces in Azure, one Public, and one private. Then I add Defender for Endpoint, Optimized to act as a traffic moderator, integrated the solution with Defender for cloud apps, with BLOCK integration enabled. I can then sanction each of the desired applications, closing my environment and only allowing sanctioned traffic to sanctioned locations. This solution seemed : difficult to create, not the best performer, and the solution didn't really take into account the ability of the router to differentiate what solution was originating the traffic, which would allow for selective profiles depending on the originating source. Are there any plans on having similar solutions available in the future from: VPN gateway (integration with Defender for Cloud Apps), or Azure Firewall -> with advanced profile. The Compliance interface with the sanctioning traffic feature seems very straight forward .94Views0likes0CommentsNewly Created DfE Device Groups not immediately usable
I created a device group via https://security.microsoft.com/securitysettings/endpoints/machine_groups to apply a custom Indicator URL block for a single device based on an exact device name match. I ensured that the device is matched with the group rule using the Preview Device feature. Immediately after creating the device group, I clicked on Apply Changes on the device group page but after an hour, the device group still shows 0 device members and is not yet visible when creating the custom TI URL rule. It's extremely frustrating when we need to respond quickly to threats but have to wait for back-end replication/scripts to run just for creating and using a Defender device group.846Views0likes7CommentsMS Defender Azure Arc Logic App
What is the best procedure for configuring a Logic App for Microsoft Defender in an Azure Arc environment? We had a very unexpected experience during onboarding—after configuring the Logic App, we missed setting a cap, and within a week, it consumed over $18K USD. I believe there must be a way to fine-tune the configuration to optimize costs. From my perspective, no organization would adopt an environment with such high costs for Microsoft Defender Plan 2 without better cost control measures in place. Could you suggest best practices or optimizations to prevent such excessive consumption?150Views0likes1CommentWeird updates "Security Threat Intelligence" on desktop
Hi guys, my name is Mo and I am new to the XRD community 🥰 I m observing anomalous device behavior. Upon login or wake-up, multiple virtual machines are active, some exhibiting headless screen reader functionality. This issue emerged following the installation of Microsoft security threat intelligence updates. Considering Windows Defender's machine learning and predictive maintenance capabilities, I question the deployment of these updates to my system. Is this update a standard Windows component? The associated URL is currently inaccessible. I acknowledge the potential of XR, CDN, and Hologres technologies (and other Azure/cloud-enabled features) to alter user experience. Could someone provide clarification regarding these iterative security updates? My usage is limited to cloud platforms and reputable open-source software; I do not utilize malicious websites. Thank you. #misclassification?158Views0likes2Comments