threat intelligence
17 TopicsTable Talk: Sentinel’s New ThreatIntel Tables Explained
Key updates On April 3, 2025, we publicly previewed two new tables to support STIX (Structured Threat Information eXpression) indicator and object schemas: ThreatIntelIndicators and ThreatIntelObjects. To summarize the important dates: 31 August 2025: We previously announced that data ingestion into the legacy ThreatIntelligenceIndicator table would cease on the 31 July 2025. This timeline has now been extended and the transition to the new ThreatIntelIndicators and ThreatIntelObjects tables will proceed gradually until the 31 st of August 2025. The legacy ThreatIntelligenceIndicator table (and its data) will remain accessible, but no new data will be ingested there. Therefore, any custom content, such as workbooks, queries, or analytic rules, must be updated to reference the new tables to remain effective. If you require additional time to complete the transition, you may opt into dual ingestion, available until the official retirement on the 21 st of May 2026, by submitting a service request. Update: The opt in to dual ingestion ended on the 31 st of August and is no longer available. 31 May 2026: ThreatIntelligenceIndicator table support will officially retire, along with ingestion for those who opt-in to dual ingestion beyond 31 st of August 2025. What’s changing: ThreatIntelligenceIndicator VS ThreatIntelIndicators and ThreatIntelObjects Let’s summarise some of the differences. ThreatIntelligenceIndicator ThreatIntelIndicators ThreatIntelObjects Status Extended data ingestion until the 31st of August 2025, opt-in for additional transition time available. Deprecating on the 31st of May 2026 — no new data will be ingested after this date. Active and recommended for use. Active and complementary to ThreatIntelIndicators. Purpose Originally used to store threat indicators like IPs, domains, file hashes, etc. Stores individual threat indicators (e.g. IPs, URLs, file hashes). Stores STIX objects that provide contextual information about indicators. Examples: threat actors, malware families, campaigns, attack patterns. Characteristics Limitations: o Less flexible schema. o Limited support for STIX (Structured Threat Information eXpression) objects. o Fewer contextual fields for advanced threat hunting. Enhancements: o Supports STIX indicator schema. o Includes a Data column with full STIX object data for advanced hunting. o More metadata fields (e.g. LastUpdateMethod, IsDeleted, ExpirationDateTime). o Optimized ingestion: excludes empty key-value pairs and truncates long fields over 1,000 characters. Enhancements: o Enables richer threat modelling and correlation. o Includes fields like StixType, Data.name, and Data.id. Use cases Legacy structure for storing threat indicators. Migration Note: All custom queries, workbooks, and analytics rules referencing this table must be updated to use the new tables . Ideal for identifying and correlating specific threat indicators. Threat Hunting: Enables hunting for specific Indicators of Compromise (IOCs) such as IP addresses, domains, URLs, and file hashes. Alerting and detection rules: Can be used in KQL queries to match against telemetry from other tables (e.g. Heartbeat, SecurityEvent, Syslog). Example query correlating threat indictors with threat actors: Identify threat actors associated with specific threat indicators Useful for understanding relationships between indicators and broader threat entities (e.g. linking an IP to a known threat actor). Threat Hunting: Adds context by linking indicators to threat actors, malware families, campaigns, and attack patterns. Alerting and Detection rules: Enrich alerts with context like threat actor names or malware types. Example query listing TI objects related to a threat actor, “Sangria Tempest.” : List threat intelligence data related to a specific threat actor Benefits of the new ThreatIntelIndicators and ThreatIntelObjects tables In addition to what’s mentioned in the table above. The main benefits of the new table include: Enhanced Threat Visibility More granular and complete representation of threat intelligence. Support for advanced hunting scenarios and complex queries. Enables attribution to threat actors and relationships. Improved Hunting Capabilities Generic parsing of STIX patterns. Support for all valid STIX IoCs, Threat Actors, Identity, and Relationships. Important considerations with the new TI tables Higher volume of data being ingested: o In the legacy ThreatIntelligenceIndicator table, only the IoCs with Domain, File, URL, Email, Network sources were ingested. o The new tables support a richer schema and more detailed data, which naturally increases ingestion volume. The Data column in both tables stores full STIX objects, which are often large and complex. o Additional metadata fields (e.g. LastUpdateMethod, StixType, ObservableKey, etc.) increase the size of each record. o Some fields like description and pattern are truncated if they exceed 1,000 characters, indicating the potential for large payloads. More Frequent Republishing: o Previously, threat intelligence data was republished over a 12-day cycle. Now, all data is republished every 7-10 days (depending on the volume), increasing the ingestion frequency and volume. o This change ensures fresher data but also leads to more frequent ingestion events. o Republishing is identifiable by LastUpdateMethod = "LogARepublisher" in the tables. Optimising data ingestion There are two mechanisms to optimise threat intelligence data ingestion and control costs. Ingestion Rules See ingestion rules in action: Introducing Threat Intelligence Ingestion Rules | Microsoft Community Hub Sentinel supports Ingestion Rules that allow organizations to curate data before it enters the system. In addition, it enables: Bulk tagging, expiration extensions, and confidence-based filtering, which may increase ingestion if more indicators are retained or extended. Custom workflows that may result in additional ingestion events (e.g. tagging or relationship creation). Reduce noise by filtering out irrelevant TI Objects such as low confidence indicators (e.g. drop IoCs with a confidence score of 0), suppressing known false positives from specific feeds. These rules act on TI objects before they are ingested into Sentinel, giving you control over what gets stored and analysed. Data Collection Rules/ Data transformation As mentioned above, the ThreatIntelIndicator and ThreatIntelObjects tables include a “Data” column which contains the full original STIX object and may or may not be relevant for your use cases. In this case, you can use a workspace transformation DCR to filter it out using a KQL query. An example of this KQL query is shown below, for more examples about using workspace transformations and data collection rules: Data collection rules in Azure Monitor - Azure Monitor | Microsoft Learn source | project-away Data A few things to note: o Your threat intelligence feeds will be sending the additional STIX objects data and IoCs, if you prefer not to receive these additional TI data, you can modify the filter out data according to your use cases as mentioned above. More examples are mentioned here: Work with STIX objects and indicators to enhance threat intelligence and threat hunting in Microsoft Sentinel (Preview) - Microsoft Sentinel | Microsoft Learn o If you are using a data collection rule to make schema changes such as dropping the fields, please make sure to modify the relevant Sentinel content (e.g. detection rules, Workbooks, hunting queries, etc.) that are using the tables. o There can be additional cost when using Azure Monitor data transformations (such as when adding extra columns or adding enrichments to incoming data), however, if Sentinel is enabled on the Log Analytics workspace, there is no filtering ingestion charge regardless of how much data the transformation filters. New Threat Intelligence solution pack available A new Threat Intelligence solution is now available in the Content Hub, providing out of the box content referencing the new TI tables, including 51 detection rules, 5 hunting queries, 1 Workbook, 5 data connectors and also includes 1 parser for the ThreatIntelIndicators. Please note, the previous Threat Intelligence solution pack will be deprecated and removed after the transition phase. We recommend downloading the new solution from the Content Hub as shown below: Conclusion The transition to the new ThreatIntelIndicators and ThreatIntelObjects tables provide enhanced support for STIX schemas, improved hunting and alerting features, and greater control over data ingestion allowing organizations to get deeper visibility and more effective threat detection. To ensure continuity and maximize value, it's essential to update existing content and adopt the new Threat Intelligence solution pack available in the Content Hub. Related content and references: Work with STIX objects and indicators to enhance threat intelligence and threat hunting in Microsoft Sentinel Curate Threat Intelligence using Ingestion Rules Announcing Public Preview: New STIX Objects in Microsoft Sentinel3.3KViews1like2CommentsMulti Workspace for Single tenant is now in Public Preview in Microsoft’s unified SecOps platform
We are excited to continue to expand the use cases addressed with our unified SecOps platform, which brings the capabilities of Microsoft Sentinel, Defender XDR, Security Copilot, Threat Intelligence and more into a single experience with new and more robust functionality. Now, customers can onboard and manage multiple workspaces across Microsoft Sentinel and Defender in one place. Key Benefits of Multi Workspace Experience The multi-workspace experience offers several key benefits that enhance security operations: Unified Entity View: Customers can view all relevant entity data from multiple workspaces in a single entity page, facilitating comprehensive investigations. Workspace Filtering: Users can filter data by workspace when needed, ensuring flexibility in investigations. Enhanced Context: Aggregates alerts, incidents, and timeline events from all workspaces, providing deeper insights into entity behavior. Introducing the Primary Workspace Concept A new concept in the unified SecOps platform is Primary Workspace, which acts as a central hub where Microsoft Sentinel alerts are correlated with XDR data, resulting in incidents that include both Microsoft Sentinel’s primary workspace and XDR alerts. All XDR alerts and incidents are synced back to this workspace, ensuring a cohesive and comprehensive view of security events. The XDR connector is automatically connected to the Primary Workspace upon onboarding and can be switched if necessary. One Primary Workspace must always be connected to use the unified platform effectively. Other onboarded workspaces are considered “Secondary” workspaces, with incidents created based on their individual data. We respect and protect your data boundaries- each workspace’s data will be synced with its own alerts only. Learn more: https://aka.ms/primaryWorkspace Multi Workspace Experience- Key Scenarios Onboarding multiple workspaces to the unified SecOps platform: Open the security portal: https://security.microsoft.com/ There are two options to connect workspaces, you can select either one: Option A: Connecting the workspace through the main home page: Click on” Connect a workspace” in the banner Select the workspaces you wish to onboard and click on “Next”. Select primary workspace Review the text and click on “Connect” After completing the connection, click on “Close”. Option B: Connecting the workspaces through the Settings page: Navigate to Settings and choose “Microsoft Sentinel” Click on "Connect workspace" Follow the same steps as Option A. Switching Primary Workspaces Navigate to Settings and choose "Microsoft Sentinel" On the workspace you wish to assign as Primary, click on the "3 dots" and choose "Set as primary" Confirm and proceed. Incidents and Alerts The incident queue is a single place for a SOC analyst to manage and investigate incidents. The alert queue centralized all your workspaces’ alert in the same place and provides the ability to see the alert page. In the unified queues, you are able now to view all incidents and alerts from all workloads and all workspaces and also filter by workspace. Each alert and incident are related to a single workspace to keep data boundaries. Bi-directional sync: Any change in the unified secOps portal is reflected to Sentinel portal and vice versa. Unified Entities The multi workspace aggregated view enhances entity pages in the unified portal by consolidating data from all relevant Sentinel workspaces into a single, unified experience. This feature enables security teams to gain a complete view of entity-related data without switching between workspaces, improving investigation efficiency and data accessibility. The unified entity page grants you with: Unified Entity View: Customers can see all relevant entity data from multiple workspaces in a single entity page. Workspace Filtering: Users can filter data by workspace when needed, ensuring flexibility in investigations. Enhanced Context: Aggregates alerts, incidents, and timeline events from all workspaces, providing deeper insights into entity behavior. Aggregated view: Provides a unified view of entity data across all workspaces. Supports a predefined logic to display key entity values across components. Introduces workspace filtering in Timeline, Incidents & Alerts, and Insights tabs. Entity Page Enhancements: Overview Section: Displays entity metadata aggregated from all workspaces. Timeline View: Supports events from all workspaces with workspace-based filtering. Incidents & Alerts: Aggregates incidents and alerts from multiple workspaces. Sentinel Tab: Defaults to the primary workspace but allows workspace filtering. Side Pane: Provides a summary view, dynamically updating based on workspace data. Advanced Hunting In Advanced Hunting, you'll be able to explore all your security data in a single place. For hunting and investigation purposes, you'll be able to: Query all Microsoft Sentinel workspaces data. Run queries across multiple workspaces using workspace operator. Access all Logs content of the workspace, including queries and functions, for read/ query Create custom detections on primary workspace Create Analytic rule with workspace operator on a secondary workspace. Microsoft Sentinel features + Using Workspace selector After you connect your workspace to the unified portal, Microsoft Sentinel is on the left-hand side navigation pane. Many of the existing Microsoft Sentinel features are integrated into the unified portal and are similar. Workspace selector: for users with permissions to multiple workspaces, in each Sentinel page, a workspace selector is added to the toolbox. User can easily switch between workspaces using the selector by clicking on “Select a workspace”. SOC Optimization The SOC Optimization feature is also available in the unified portal and contains data and recommendations for multiple workspaces. FAQ Who can onboard multiple workspaces? To onboard a primary workspace, user must be: Global admin/ Security admin AND Owner of subscription OR Global admin/ Security admin AND User access admin AND Microsoft Sentinel contributor To onboard secondary workspaces, user must be Owner of subscription OR User access admin and Microsoft Sentinel contributor. Who can change the primary workspace? Global admin or security admin can change workspace type (Primary/ Secondary) Do I need to onboard all my workspaces? You don’t need to onboard all your workspaces to use this feature, although we highly recommend you to, to ensure full coverage across all your environment. Will all users in my organization have access to all workspaces in the unified security operations portal? No - we respect the permissions granted for each user. Users can see only the data from the workspace they have permissions to. Will data from one workspace be synced to a second workspace? No, we keep the data boundaries between workspaces and ensure that each workspace will only be synced with its own data. When will multi-tenancy be available? Multi-tenancy in the unified SecOps platform for single workspace is already in GA. Multi-tenancy for multiple workspaces is released to public preview with this capability as well. Can I still access my environment in Azure? Yes, all experiences remain the same. We provide bi-directional sync to make sure all changes are up to date. Conclusion Microsoft’s unified SecOps platform support for multi workspace customers represents a significant leap forward in cybersecurity management. By centralizing operations and providing robust tools for detection, investigation, and automation, it empowers organizations to maintain a vigilant and responsive security posture. The platform’s flexibility and comprehensive view of security data make it an invaluable asset for modern security operations. With the public preview now available, organizations can experience firsthand the transformative impact of the Unified Security Operations Platform. Join us in pioneering a new era of cybersecurity excellence. Learn More Please visit our documentation to learn more on the scenarios supported and how to onboard multiple workspaces to the unified platform: https://aka.ms/OnboardMultiWS1.5KViews1like1CommentMicrosoft Sentinel & Cyberint Threat Intel Integration Guide
Explore comprehensive guide on "Microsoft Sentinel & Cyberint Threat Intel Integration Guide," to learn how to integrate Cyberint's advanced threat intelligence with Microsoft Sentinel. This detailed resource will walk you through the integration process, enabling you to leverage enriched threat data for improved detection and response. Elevate your security posture and ensure robust protection against emerging threats. Read the guide to streamline your threat management and enhance your security capabilities.9.9KViews1like1CommentAnnouncing Public Preview: New STIX Objects in Microsoft Sentinel
Security teams often struggle to understand the full context of an attack. In many cases, they rely solely on Indicators of Compromise (IoCs) without the broader insights provided by threat intelligence developed on Threat Actors, Attack Patterns, Identities - and the Relationships between each. This lack of context available to enrich their workflows limits their ability to connect the dots, prioritize threats effectively, and respond comprehensively to evolving attacks. To help customers build out a thorough, real-time understanding of threats, we are excited to announce the public preview of new Threat Intelligence (TI) object support in Microsoft Sentinel and in the Unified SOC Platform. In addition to Indicators of Compromise (IoCs), Microsoft Sentinel now supports Threat Actors, Attack Patterns, Identities, and Relationships. This enhancement empowers organizations to take their threat intelligence management to the next level. In this blog, we’ll highlight key scenarios for which your team would use STIX objects, as well as demos showing how to create objects and new relationships and how to use them to hunt threats across your organization Key Scenarios STIX objects are a critical tool for incident responders attempting to understand an attack and threat intelligence analysts seeking more information on critical threats. It is designed to improve interoperability and sharing of threat intelligence across different systems and organizations. Below, we’ve highlighted four ways Unified SOC Platform customers can begin using STIX objects to protect their organization. Ingesting Objects: You can now ingest these objects from various commercial feeds through several methods including STIX TAXII servers, API, files, or manual input. Curating Threat Intelligence: Curate and manage any of the supported Threat Intelligence objects. Creating Relationships: Establish connections between objects to enhance threat detection and response. For example: Connecting Threat Actor to Attack Pattern: The threat actor "APT29" uses the attack pattern "Phishing via Email" to gain initial access. Linking Indicator to Threat Actor: An indicator (malicious domain) is attributed to the threat actor "APT29". Associating Identity (Victim) with Attack Pattern: The organization "Example Corp" is targeted by the attack pattern "Phishing via Email". Hunt and Investigate Threats More Effectively: Match curated TI data against your logs in the unified SOC platform powered by Microsoft Sentinel. Use these insights to detect, investigate, and hunt threats more efficiently, keeping your organization secure. Get Started Today with the new Hunting Model The ability to ingest and manage these new Threat Intelligence objects is now available in public preview. To enable this data in your workspaces for hunting and detection, submit your request here and we will provide further details. Demo and screen shots Demo 1: Hunt and detect threats using STIX objects Scenario: Linking an IOC to a Threat Actor: An indicator (malicious domain) is attributed to the threat actor " Sangria tempest " via the new TI relationship builder. Please note that the Sangria tempest actor object and the IOC are already present in this demo. These objects can be added automatically or created manually. To create new relationship, sign into your Sentinel instance and go to Add new à TI relationship. In the New TI relationship builder, you can select existing TI objects and define how it's related to one or more other TI objects. After defining a TI object’s relationship, click on “Common” to provide metadata for this relationship, such as Description, Tags, and Confidence score: p time, source, and description. Another type of meta data a customer can add to a relationship is the Traffic Light Protocol (TLP). The TLP is a set of designations used to ensure that sensitive information is shared with the appropriate audience. It uses four colors to indicate different levels of sensitivity and the corresponding sharing permissions: TLP:RED: Information is highly sensitive and should not be shared outside of the specific group or meeting where it was originally disclosed. TLP:AMBER: Information can be shared with members of the organization, but not publicly. It is intended to be used within the organization to protect sensitive information. TLP:GREEN: Information can be shared with peers and partner organizations within the community, but not publicly. It is intended for a wider audience within the community. TLP:WHITE: Information can be shared freely and publicly without any restrictions. Once the relationship is created, your newly created relationship can be viewed from the “Relationships” tab. Now, retrieve information about relationships and indicators associated with the threat actor 'Sangria Tempest'. For Microsoft Sentinel customers leveraging the Azure portal experience, you can access this in Log Analytics. For customers who have migrated to the unified SecOps platform in the Defender portal, you can go find this under “Advanced Hunting”. The following KQL query provides you with all TI objects related to “Sangria Tempest.” You can use this query for any threat actor name. let THREAT_ACTOR_NAME = 'Sangria Tempest'; let ThreatIntelObjectsPlus = (ThreatIntelObjects | union (ThreatIntelIndicators | extend StixType = 'indicator') | extend tlId = tostring(Data.id) | extend StixTypes = StixType | extend Pattern = case(StixType == "indicator", Data.pattern, StixType == "attack-pattern", Data.name, "Unkown") | extend feedSource = base64_decode_tostring(tostring(split(Id, '---')[0])) | summarize arg_max(TimeGenerated, *) by Id | where IsDeleted == false); let ThreatActorsWithThatName = (ThreatIntelObjects | where StixType == 'threat-actor' | where Data.name == THREAT_ACTOR_NAME | extend tlId = tostring(Data.id) | extend ActorName = tostring(Data.name) | summarize arg_max(TimeGenerated, *) by Id | where IsDeleted == false); let AllRelationships = (ThreatIntelObjects | where StixType == 'relationship' | extend tlSourceRef = tostring(Data.source_ref) | extend tlTargetRef = tostring(Data.target_ref) | extend tlId = tostring(Data.id) | summarize arg_max(TimeGenerated, *) by Id | where IsDeleted == false); let SourceRelationships = (ThreatActorsWithThatName | join AllRelationships on $left.tlId == $right.tlSourceRef | join ThreatIntelObjectsPlus on $left.tlTargetRef == $right.tlId); let TargetRelationships = (ThreatActorsWithThatName | join AllRelationships on $left.tlId == $right.tlTargetRef | join ThreatIntelObjectsPlus on $left.tlSourceRef == $right.tlId); SourceRelationships | union TargetRelationships | project ActorName, StixTypes, ObservableValue, Pattern, Tags, feedSource You now have all the information your organization has available about Sangria Tempest, correlated to maximize your understanding of the threat actor and its associations to threat infrastructure and activity. Demo 2: Curate and attribute objects We have created new UX to streamline TI object creation, which includes the capability to attribute to other objects, so while you are creating a new IoC, you can also attribute that indicator to a Threat Actor, all from one place. To create a new TI object and attribute it to one or multiple threat actors, follow the steps below: Go to Add new a TI Object. In the Context menu, select any object type. Enter all the required information in the fields on the right-hand side for your selected indicator type. While creating a new TI object, you can do TI object curation. This includes defining the relationship. You can also quickly duplicate TI objects, making it easier for those who create multiple TI objects daily. Please note that we also introduced an “Add and duplicate” button to allow customers to create multiple TI objects with the same metadata to streamline a manual bulk process. Demo 3: New supported IoC types The attack pattern builder now supports the creation of four new indicator types. These enable customers to build more specific attack patterns that boost understanding of and organizational knowledge around threats. These new indicators include: X509 certificate X509 certificates are used to authenticate the identity of devices and servers, ensuring secure communication over the internet. They are crucial in preventing man-in-the-middle attacks and verifying the legitimacy of websites and services. For instance, if a certificate is suddenly replaced or a new, unknown certificate appears, it could indicate a compromised server or a malicious actor attempting to intercept communications. JA3 JA3 fingerprints are unique identifiers generated from the TLS/SSL handshake process. They help in identifying specific applications and tools used in network traffic, making it easier to detect malicious activities For example, if a network traffic analysis reveals a JA3 fingerprint matching that of the Cobalt Strike tool, it could indicate an ongoing cyber attack. JA3S JA3S fingerprints extend the capabilities of JA3 by also including server-specific characteristics in the fingerprinting process. This provides a more comprehensive view of the network traffic and helps in identifying both client and server-side threats For instance, if a server starts communicating with an unknown external IP address using a specific JA3S fingerprint, it could be a sign of a compromised server or data exfiltration attempt. User agent User Agents provide information about the client software making requests to a server, such as the browser or operating system. They are useful in identifying and profiling devices and applications accessing a network For example, if a User Agent string associated with a known malicious browser extension appears in network logs, it could indicate a compromised device. Conclusion: The ability to ingest, curate, and establish relationships between various threat intelligence objects such as Threat Actors, Attack Patterns, and Identities provides a powerful framework for incident responders and threat intelligence analysts. The use of STIX objects not only improves interoperability and sharing of threat intelligence but also empowers organizations to hunt and investigate threats more efficiently. As customers adopt these new capabilities, they will find themselves better equipped to understand the full context of an attack and build robust defenses against future threats. With the public preview of Threat Intelligence (TI) object support, organizations are encouraged to explore these new tools and integrate them into their security operations, taking the first step towards a more informed and proactive approach to cybersecurity.7.3KViews4likes1CommentIntroducing Threat Intelligence Ingestion Rules
Microsoft Sentinel just rolled out a powerful new public preview feature: Ingestion Rules. This feature lets you fine-tune your threat intelligence (TI) feeds before they are ingested to Microsoft Sentinel. You can now set custom conditions and actions on Indicators of Compromise (IoCs), Threat Actors, Attack Patterns, Identities, and their Relationships. Use cases include: Filter Out False Positives: Suppress IoCs from feeds known to generate frequent false positives, ensuring only relevant intel reaches your analysts. Extending IoC validity periods for feeds that need longer lifespans. Tagging TI objects to match your organization's terminology and workflows Get Started Today with Ingestion Rules To create new “Ingestion rule”, navigate to “Intel Management” and Click on “Ingestion rules” With the new Ingestion rules feature, you have the power to modify or remove indicators even before they are integrated into Sentinel. These rules allow you to act on indicators currently in the ingestion pipeline. > Click on “Ingestion rules” Note: It can take up to 15 minutes for the rule to take effect Use Case #1: Delete IOC’s with less confidence score while ingesting When ingesting IOC's from TAXII/Upload API/File Upload, indicators are imported continuously. With pre-ingestion rules, you can filter out indicators that do not meet a certain confidence threshold. Specifically, you can set a rule to drop all indicators in the pipeline with a confidence score of 0, ensuring that only reliable data makes it through. Use Case #2: Extending IOC’s The following rule can be created to automatically extend the expiration date for all indicators in the pipeline where the confidence score is greater than 75. This ensures that these high-value indicators remain active and usable for a longer duration, enhancing the overall effectiveness of threat detection and response. Use Case #3: Bulk Tagging Bulk tagging is an efficient way to manage and categorize large volumes of indicators based on their confidence scores. With pre-ingestion rules, you can set up a rule to tag all indicators in the pipeline where the confidence score is greater than 75. This automated tagging process helps in organizing indicators, making it easier to search, filter, and analyze them based on their tags. It streamlines the workflow and improves the overall management of indicators within Sentinel. Managing Ingestion rules In addition to the specific use cases mentioned, managing ingestion rules gives you control over the entire ingestion process. 1. Reorder Rules You can reorder rules to prioritize certain actions over others, ensuring that the most critical rules are applied first. This flexibility allows for a tailored approach to data ingestion, optimizing the system's performance and accuracy. 2. Create From Creating new ingestion rules from existing ones can save you a significant amount of time and offer the flexibility to incorporate additional logic or remove unnecessary elements. Effectively duplicating these rules ensures you can quickly adapt to new requirements, streamline operations, and maintain a high level of efficiency in managing your data ingestion process. 3. Delete Ingestion Rules Over time, certain rules may become obsolete or redundant as your organizational needs and security strategies evolve. It's important to note that each workspace is limited to a maximum of 25 ingestion rules. Having a clean and relevant set of rules ensures that your data ingestion process remains streamlined and efficient, minimizing unnecessary processing and potential conflicts. Deleting outdated or unnecessary rules allows for a more focused approach to threat detection and response. It reduces clutter, which can significantly enhance the performance. By regularly reviewing and purging obsolete rules, you maintain a high level of operational efficiency and ensure that only the most critical and up-to-date rules are in place. Conclusion By leveraging these pre-ingestion rules effectively, you can enhance the quality and reliability of the IOC’s ingested into Sentinel, leading to more accurate threat detection and an improved security posture for your organization.4.9KViews3likes2CommentsWhat’s New: Exciting new Microsoft Sentinel Connectors Announcement - Ignite 2024
Microsoft Sentinel continues to be a leading cloud-native security information and event management (SIEM) solution, empowering organizations to detect, investigate, and respond to threats across their digital ecosystem at scale. Microsoft Sentinel offers robust out of the box (OOTB) content, allowing seamless connections with a wide array of data sources from both Microsoft and third-party providers. This enables comprehensive collection and analysis of security signals across multicloud, multiplatform environments, enhancing your overall security posture. In this Ignite 2024 blog post, we are thrilled to present the latest integrations contributed by our esteemed Partners. These new integrations further expand the capabilities of Microsoft Sentinel, enabling you to connect your existing security solutions and leverage Microsoft Sentinel’s powerful analytics and automation capabilities to fortify your defenses against evolving cyber threats. Featured ISV 1Password for Microsoft Sentinel The integration between 1Password Extended Access Management and Microsoft Sentinel provides businesses with real-time visibility and alerts for login attempts and account changes. It enables quick detection of security threats and streamlines reporting by monitoring both managed and unmanaged apps from a single, centralized platform, ensuring faster response times and enhanced security. Cisco Secure Email Threat Defense Sentinel Application This application collects threat information from Cisco Secure Email Threat Defense and ingests it into Microsoft Sentinel for visualization and analysis. It enhances email security by detecting and blocking advanced threats, providing comprehensive visibility and fast remediation. Cribl Stream Solution for Microsoft Sentinel Cribl Stream accelerates SIEM migrations by ingesting, transforming, and enriching third party data into Microsoft Sentinel. It simplifies data onboarding, optimizes data in various formats, and helps maintain compliance, enhancing security operations and threat detection. FortiNDR Cloud FortiNDR Cloud integrates Fortinet’s network detection and response capabilities with Microsoft Sentinel, providing advanced threat detection and automated response. Fortinet FortiNDR Cloud enhances network security by helping to identify and mitigate threats in real-time. Pure Storage Solution for Microsoft Sentinel This solution integrates Pure Storage’s data storage capabilities with Sentinel, providing enhanced data protection and performance. It helps optimize storage infrastructure and improve data security. New and Notable CyberArk Audit for Microsoft Sentinel This solution extracts audit trail data from CyberArk and integrates it with Microsoft Sentinel, providing a comprehensive view of system and user activities. It enhances incident response with automated workflows and real-time threat detection. Cybersixgill Actionable Alerts for Microsoft Sentinel Cybersixgill provides contextual and actionable alerts based on data from the deep and dark web. It helps SOC analysts detect phishing, data leaks, and vulnerabilities, enhancing incident response and threat remediation. Cyware For Microsoft Sentinel Cyware integrates with Microsoft Sentinel to automate incident response and enhance threat hunting. It uses Logic Apps and hunting queries to streamline security operations and provides contextual threat intelligence. Ermes Browser Security for Microsoft Sentinel Ermes Browser Security ingests security and audit events into Microsoft Sentinel, providing enhanced visibility and reporting. It helps monitor and respond to web threats, improving the organization’s security posture. Gigamon Data Connector for Microsoft Sentinel This solution integrates Gigamon GigaVUE Cloud Suite, including Application Metadata Intelligence, with Microsoft Sentinel, providing comprehensive network traffic visibility and insights. It helps detect anomalies and optimize network performance, enhancing overall security. Illumio Sentinel Integration Illumio integrates its micro-segmentation capabilities with Microsoft Sentinel, providing real-time visibility and control over network traffic. It helps prevent lateral movement of threats and enhances overall network security. Infoblox App for Microsoft Sentinel The Infoblox solution enhances SecOps capabilities by seamlessly integrating Infoblox's AI-driven analytics, providing actionable insights, dashboards, and playbooks derived from DNS intelligence. These insights empower SecOps teams to achieve rapid incident response and remediation, all within the familiar Microsoft Sentinel user interface. LUMINAR Threat Intelligence for Microsoft Sentinel LUMINAR integrates threat intelligence and leaked credentials data into Microsoft Sentinel, helping organizations maintain visibility of their threat landscape. It provides timely, actionable insights to help detect and respond to threats before they impact the organization. Prancer PenSuite AI Prancer PenSuite AI now supercharges Microsoft Sentinel by injecting pentesting and real-time AppSec data into SOC operations. With powerful red teaming simulations, it empowers teams to detect vulnerabilities earlier, respond faster, and stay ahead of evolving threats. Phosphorus Connector for Microsoft Sentinel Phosphorus Cybersecurity’s Intelligent Active Discovery provides in-depth context for xIoT assets, that enhances threat detection and allows for targeted responses, enabling organizations to isolate or secure specific devices based on their criticality. Silverfort for Microsoft Sentinel Silverfort integrates its Unified Identity Protection Platform with Microsoft Sentinel, securing authentication and access to sensitive systems, both on-premises and in the cloud without requiring agents or proxies. Transmit Security Data Connector for Sentinel Transmit Security integrates its identity and access management capabilities with Sentinel, providing real-time monitoring and threat detection for user activities. It helps secure identities and prevent unauthorized access. In addition to commercially supported integrations, Microsoft Sentinel Content Hub also connects you to hundreds of community-based solutions as well as thousands of practitioner contributions. For more details and instructions on how to set up these integrations see Microsoft Sentinel data connectors | Microsoft Learn. To our partners: Thank you for your unwavering partnership and invaluable contributions on this journey to deliver the most comprehensive, timely insights and security value to our mutual customers. Security is indeed a team sport, and we are grateful to be working together to enhance the security landscape. Your dedication and innovation are instrumental in our collective success. We hope you find these new partner solutions useful, and we look forward to hearing your feedback and suggestions. Stay tuned for more updates and announcements on Microsoft Sentinel and its partner ecosystem. Learn More Microsoft’s commitment to Security Microsoft’s Secure Future Initiative Unified SecOps | SIEM and XDR Solutions Unified Platform documentation | Microsoft Defender XDR What else is new with Microsoft Sentinel? Microsoft Sentinel product home Schema Mapping Microsoft Sentinel Partner Solution Contributions Update – Ignite 2023 Additional resources: Sentinel Ignite 2024 Blog Latest Microsoft Tech Community Sentinel blog announcements Microsoft Sentinel solution for SAP Microsoft Sentinel solution for Power Platform Microsoft Sentinel pricing Microsoft Sentinel customer stories Microsoft Sentinel documentation3.2KViews0likes0CommentsLevel Up Your Security Skills with the New Microsoft Sentinel Ninja Training!
If you’ve explored our Microsoft Sentinel Ninja Training in the past, it’s time to revisit! Our training program has undergone some exciting changes to keep you ahead of the curve in the ever-evolving cybersecurity landscape. Microsoft Sentinel is a cutting-edge, cloud-native SIEM and SOAR solution designed to help security professionals protect their organizations from today’s complex threats. Our Ninja Training program is here to guide you through every aspect of this powerful tool. So, what’s new? In addition to the structured security roles format, the Ninja Training now offers a more interactive experience with updated modules, hands-on labs, and real-world scenarios. Whether you're focusing on threat detection, incident response, or automation, the training ensures you gain the practical skills needed to optimize your security operations. One of the biggest updates is the integration of Sentinel into the Defender XDR portal, creating a unified security platform. This merger simplifies workflows, speeds up incident response, and minimizes tool-switching, allowing for seamless operations. Other highlights include: Step-by-step guidance through the official Microsoft Sentinel documentation. Exclusive webinars and up-to-date blog posts from Microsoft experts. If you're ready to take your Sentinel skills to the next level or want to revisit the program’s new features, head over to the blog now and dive into the refreshed Microsoft Sentinel Ninja Training! Don’t miss out—your next cybersecurity breakthrough is just a click away!5.8KViews5likes1CommentTutorial: Get started with Azure WAF investigation Notebook
In this blog, we introduce you to the Azure WAF guided investigation Notebook using Microsoft Sentinel, which lets you investigate an Azure WAF triggered SQL injection attack event log. This Azure WAF Notebook queries incidents related to Azure WAF SQL injection events in your Microsoft Sentinel workspace. In addition to guiding you through the Azure WAF SQL injection incidents, the Notebook correlates the incidents with Threat Intelligence, maps them to the Sentinel entity graph, and gives you a complete picture of the attack landscape. Furthermore, it will guide you through an investigation experience to determine if the incident is a true positive, false positive or benign positive using Azure WAF raw logs. Upon confirmation of a false positive, the Azure WAF exclusions are applied automatically using Azure WAF APIs.11KViews2likes1Comment