student
550 TopicsModel Mondays S2E13: Open Source Models (Hugging Face)
1. Weekly Highlights 1. Weekly Highlights Here are the key updates we covered in the Season 2 finale: O1 Mini Reinforcement Fine-Tuning (GA): Fine-tune models with as few as ~100 samples using built-in Python code graders. Azure Live Interpreter API (Preview): Real-time speech-to-speech translation supporting 76 input languages and 143 locales with near human-level latency. Agent Factory – Part 5: Connecting agents using open standards like MCP (Model Context Protocol) and A2A (Agent-to-Agent protocol). Ask Ralph by Ralph Lauren: A retail example of agentic AI for conversational styling assistance, built on Azure OpenAI and Foundry’s agentic toolset. VS Code August Release: Brings auto-model selection, stronger safety guards for sensitive edits, and improved agent workflows through new agents.md support. 2. Spotlight – Open Source Models in Azure AI Foundry Guest: Jeff Boudier, VP of Product at Hugging Face Jeff showcased the deep integration between the Hugging Face community and Azure AI Foundry, where developers can access over 10 000 open-source models across multiple modalities—LLMs, speech recognition, computer vision, and even specialized domains like protein modeling and robotics. Demo Highlights Discover models through Azure AI Foundry’s task-based catalog filters. Deploy directly from Hugging Face Hub to Azure with one-click deployment. Explore Use Cases such as multilingual speech recognition and vision-language-action models for robotics. Jeff also highlighted notable models, including: SmoLM3 – a 3 B-parameter model with hybrid reasoning capabilities Qwen 3 Coder – a mixture-of-experts model optimized for coding tasks Parakeet ASR – multilingual speech recognition Microsoft Research protein-modeling collection MAGMA – a vision-language-action model for robotics Integration extends beyond deployment to programmatic access through the Azure CLI and Python SDKs, plus local development via new VS Code extensions. 3. Customer Story – DraftWise (BUILD 2025 Segment) The finale featured a customer spotlight on DraftWise, where CEO James Ding shared how the company accelerates contract drafting with Azure AI Foundry. Problem Legal contract drafting is time-consuming and error-prone. Solution DraftWise uses Azure AI Foundry to fine-tune Hugging Face language models on legal data, generating contract drafts and redline suggestions. Impact Faster drafting cycles and higher consistency Easy model management and deployment with Foundry’s secure workflows Transparent evaluation for legal compliance 4. Community Story – Hugging Face & Microsoft The episode also celebrated the ongoing collaboration between Hugging Face and Microsoft and the impact of open-source AI on the global developer ecosystem. Community Benefits Access to State-of-the-Art Models without licensing barriers Transparent Performance through public leaderboards and benchmarks Rapid Innovation as improvements and bug fixes spread quickly Education & Empowerment via tutorials, docs, and active forums Responsible AI Practices encouraged through community oversight 5. Key Takeaways Open Source AI Is Here to Stay Azure AI Foundry and Hugging Face make deploying, fine-tuning, and benchmarking open models easier than ever. Community Drives Innovation: Collaboration accelerates progress, improves transparency, and makes AI accessible to everyone. Responsible AI and Transparency: Open-source models come with clear documentation, licensing, and community-driven best practices. Easy Deployment & Customization: Azure AI Foundry lets you deploy, automate, and customize open models from a single, unified platform. Learn, Build, Share: The open-model ecosystem is a great place for students, developers, and researchers to learn, build, and share their work. Sharda's Tips: How I Wrote This Blog For this final recap, I focused on capturing the energy of the open source AI movement and the practical impact of Hugging Face and Azure AI Foundry collaboration. I watched the livestream, took notes on the demos and interviews, and linked directly to official resources for models, docs, and community sites. Here’s my Copilot prompt for this episode: "Generate a technical blog post for Model Mondays S2E13 based on the transcript and episode details. Focus on open source models, Hugging Face, Azure AI Foundry, and community workflows. Include practical links and actionable insights for developers and students! Learn & Connect Explore Open Models in Azure AI Foundry Hugging Face Leaderboard Responsible AI in Azure Machine Learning Llama-3 by Meta Hugging Face Community Azure AI Documentation About Model Mondays Model Mondays is your weekly Azure AI learning series: 5-Minute Highlights: Latest AI news and product updates 15-Minute Spotlight: Demos and deep dives with product teams 30-Minute AMA Fridays: Ask anything in Discord or the forum Start building: Watch Past Replays Register For AMA Recap Past AMAs Join The Community Don’t build alone! The Azure AI Developer Community is here for real-time chats, events, and support: Join the Discord Explore the Forum About Me I'm Sharda, a Gold Microsoft Learn Student Ambassador focused on cloud and AI. Find me on GitHub, Dev.to, Tech Community, and LinkedIn. In this blog series, I share takeaways from each week’s Model Mondays livestream.112Views0likes0CommentsPantry Log–Microsoft Cognitive, IOT and Mobile App for Managing your Fridge Food Stock
First published on MSDN on Mar 06, 2018 We are Ami Zou (CS & Math), Silvia Sapora(CS), and Elena Liu (Engineering), three undergraduate students from UCL, Imperial College London, and Cambridge University respectively.741Views0likes1CommentModel Mondays S2E8: On-Device & Local AI
Model Mondays S2E8: On-Device & Local AI Welcome to Episode 8! This week, we explored how AI is moving from the cloud to your own device, making it faster, more private, and more accessible. We also saw a real-world customer story from Xander Glasses, showing how AI can help people with hearing loss. RFD Observability tools in Azure AI Foundry: Real-time model telemetry, auto evals, quick evals, Python grader. GitHub Copilot Pro with Spark: AI pair programmer for code explanation and workflow suggestions. Synthetic Data for Vision Models: Training accurate models with procedurally generated data. Agent-Friendly Websites: Making sites accessible to AI agents via APIs, semantic markup, and OpenAPI specs. MCP (Model Context Protocol): Standardizing agent memory and context for scalable AI.128Views0likes0CommentsWhat is GitHub Codespaces and how can Students access it for free?
GitHub Codespaces is a new service that is free for anyone to develop with powerful environments using Visual Studio Code. In this post, we'll cover how you can make use of this new technology and take advantage of its most powerful features.47KViews5likes6CommentsModel Mondays S2:E2 - Understanding Model Context Protocol (MCP)
This week in Model Mondays, we focus on the Model Context Protocol (MCP) — and learn how to securely connect AI models to real-world tools and services using MCP, Azure AI Foundry, and industry-standard authorization. Read on for my recap About Model Mondays Model Mondays is a weekly series designed to help you build your Azure AI Foundry Model IQ step by step. Here’s how it works: 5-Minute Highlights – Quick news and updates about Azure AI models and tools on Monday 15-Minute Spotlight – Deep dive into a key model, protocol, or feature on Monday 30-Minute AMA on Friday – Live Q&A with subject matter experts from Monday livestream If you want to grow your skills with the latest in AI model development, Model Mondays is the place to start. Want to follow along? Register Here - to watch upcoming Mondel Monday livestreams Watch Playlists to replay past Model Monday episodes Register Here - to join the AMA on MCP on Friday Jun 27 Visit The Forum- to view Foundry Friday AMAs and recaps Spotlight On: Model Context Protocol (MCP) This week, the Model Monday’s spotlight was on the Model Context Protocol (MCP) with subject matter expert Den Delimarsky. Don't forget to check out the slides from the presentation, for resource links! In this blog post, I’ll talk about my five key takeaways from this episode: What Is MCP and Why Does It Matter? What Is MCP Authorization and Why Is It Important? How Can I Get Started with MCP? Spotlight: My Aha Moment Highlights: What’s New in Azure AI 1 . What Is MCP and Why is it Important? MCP is a protocol that standardizes how AI applications connect the underlying AI models to required knowledge sources (data) and interaction APIs (functions) for more effective task execution. Because these models are pre-trained, they lack access to real-time or proprietary data sources (for knowledge) and real-world environments (for interaction). MCP allows them to "discover and use" relevant knowledge and action tools to add relevant context to the model for task execution. Explore: The MCP Specification Learn: MCP For Beginners Want to learn more about MCP - check out the AI Engineer World Fair 2025 "MCP and Keynotes" track. It kicks off with a keynote from Asha Sharma that gives you a broader vision for Azure AI Foundry. Then look for the talk from Harald Kirschner on MCP and VS Code. 2. What Is MCP Authorization and Why Does It Matter? MCP (Model Context Protocol) authorization is a system that helps developers manage who can access their apps, especially when they are hosted in the cloud. The goal is to simplify the process of securing these apps by using common tools like OAuth and identity providers (such as Google or GitHub), so developers don't have to be security experts. Key Takeaways: The new MCP proposal uses familiar identity providers to simplify the authorization process. It allows developers to secure their apps without requiring deep knowledge of security. The update ensures better security controls and prepares the system for future authentication methods. Related Reading: Aaron Parecki, Let's Fix OAuth in MCP Den Delimarsky, Improving The MCP Authorization Spec - One RFC At A Time MCP Specification, Authorization protocol draft On Monday, Den joined us live to talk about the work he did for the authorization protocol. Watch the session now to get a sense for what the MCP Authorization protocol does, how it works, and why it matters. Have questions? Submit them to the forum or Join the Foundry Friday AMA on Jun 27 at 1:30pm ET. 3. How Can I Get Started? If you want to start working with MCP, here’s how to do it easily: Learn the Fundamentals: Explore MCP For Beginners Use an MCP Server: Explore VSCode Agent Mode support . Use MCP with AI Agents: Explore the Azure MCP Server 4. What’s New in Azure AI Foundry? Managed Compute for Cohere Models: Faster, secure AI deployments with low latency. Prompt Shields: New Azure security system to protect against prompt injection and unsafe content. OpenAI o3 Pro Model: A fast, low-cost model similar to GPT-4 Turbo. Codex Mini Model: A smaller, quicker model perfect for developer command-line tasks. MCP Security Upgrades: Now easier to secure AI apps using familiar OAuth identity providers. 5. My Aha Moment Before this session, I used to think that connecting apps to AI was complicated and risky. I believed developers had to build their own security systems from scratch, which sounded tough. But this week, I learned that MCP makes it simple. We can now use trusted logins like Google or GitHub and securely connect AI models to real-world apps without extra hassle. How I Learned This ? To be honest, I also used Copilot to help me understand and summarize this topic in simple words. I wanted to make sure I really understood it well enough to explain it to my friends and peers. I believe in learning with the tools we have, and AI is one of them. By using Copilot and combining it with what I learned from the Model Monday’s session, I was able to write this blog in a way that is easy to understand Takeaway for Beginners: It’s okay to use AI to learn what matters is that you grow, verify, and share the knowledge in your own way. Coming Up Next Week: Next week, we dive into SLMs & Reasoning (Phi-4) with Mojan Javaheripi, PhD, Senior Researcher at Microsoft Research. This session will explore how Small Language Models (SLMs) can perform advanced reasoning tasks, and what makes models like Phi-4 reasoning efficient, scalable, and useful in practical AI applications. Register Here! Join The Community Great devs don't build alone! In a fast-pased developer ecosystem, there's no time to hunt for help. That's why we have the Azure AI Developer Community. Join us today and let's journey together! Join the Discord - for real-time chats, events & learning Explore the Forum - for AMA recaps, Q&A, and help! About Me: I'm Sharda, a Gold Microsoft Learn Student Ambassador interested in cloud and AI. Find me on Github, Dev.to, Tech Community and Linkedin. In this blog series I have summarized my takeaways from this week's Model Mondays livestream.696Views1like2CommentsPart 1 - Develop a VS Code Extension for Your Capstone Project
API Guardian - My Capstone Project As software and APIs evolve, developers encounter significant difficulties in maintaining and updating API endpoints. Breaking changes can lead to system instability, while outdated or unclear documentation makes maintenance less efficient. These challenges are further compounded by the time-consuming nature of updating dependencies and the tendency to prioritize new features over maintenance tasks. The absence of effective tools and processes to tackle these issues reduces overall productivity and developer efficiency. To address this, API Guardian was created as a Visual Studio Code extension that identifies API endpoints in a project and checks their functionality before deployment. This solution was developed to help developers save time spent fixing issues caused by breaking or non-breaking changes and to alleviate the difficulties in performing maintenance due to unclear or outdated documentation. Features and Capabilities This extension has 3 main features: Feature 1. Developers can decide if the extension will scan or skip specified files in the project. Press “Enter” to scan/skip all files. Type the file name (e.g., main.py) and press “Enter” to scan/skip a single file. Type file names with a delimiter (e.g., main.py | pythonFile.py) and press “Enter” to scan/skip multiple files. Feature 2. Custom hover messages when developers mouse over identified APIs This hover message will vary based on the status of the APIs. If the API returns a success status, the hover message will only show the completed API and its status. However, if an error occurs, the hover message will include this additional information: (1) API Name, (2) Official API Link, (3) Error Message, (4) Title of Recommended Fix and (5) Link to the Recommended Fix. Feature 3. Excel Report with Details of Identified APIs After all the identified APIs have been tested, an excel report will exported with the following information to allow developers to easily identify the APIs in the project. What Technology and Products does it involved? Building a Visual Studio Code extension and publishing it to the Visual Studio Marketplace involves a mix of technologies and tools. The project was initiated using the NPM package, generator-code, to set up a JavaScript project for developing the extension. All the extension's logic will be developed and managed within the "extension.js" file generated during the setup process. Once ready for deployment, we will package the extension using "vsce" to generate a ".vsix" file, which will then be used for deployment to the Visual Studio Code Marketplace. The deployment process involves requiring the user to create a publishing account and using tools like vsce to upload and manage the extension's version, updates, and metadata. As part of this process, you would need to create a Personal Access Token (PAT) from Azure DevOps. This token is used to verify your identity and authenticate the publishing tool, allowing you to securely upload your extension to the Visual Studio Marketplace. The PAT provides the necessary permissions for tasks such as version management, publishing new releases, and updating the extension metadata. What did I learn? Throughout this journey, I learned not just about the technical stack but also about the value of detailed project setup and secure publishing processes. While the technical steps can be challenging, they’re incredibly rewarding, and I’m excited to dive deeper into it moving forward. I’m looking forward to exploring how the extension can be further improved and enhanced. If you're interested in learning more about how my API guidance was built, keep an eye out for my next post! API Guardian https://marketplace.visualstudio.com/items?itemName=APIGuardian-vsc.api About the Authors Main Author - Ms Joy Cheng Yee Shing, BSc (Hon) Computing Science Academic Supervisor - Dr Peter Yau, Microsoft MVP315Views0likes0CommentsUnderstanding Azure OpenAI Service Quotas and Limits: A Beginner-Friendly Guide
Azure OpenAI Service allows developers, researchers, and students to integrate powerful AI models like GPT-4, GPT-3.5, and DALL·E into their applications. But with great power comes great responsibility and limits. Before you dive into building your next AI-powered solution, it's crucial to understand how quotas and limits work in the Azure OpenAI ecosystem. This guide is designed to help students and beginners easily understand the concept of quotas, limits, and how to manage them effectively. What Are Quotas and Limits? Think of Azure's quotas as your "AI data pack." It defines how much you can use the service. Meanwhile, limits are hard boundaries set by Azure to ensure fair use and system stability. Quota The maximum number of resources (e.g., tokens, requests) allocated to your Azure subscription. Limit The technical cap imposed by Azure on specific resources (e.g., number of files, deployments). Key Metrics: TPM & RPM Tokens Per Minute (TPM) TPM refers to how many tokens you can use per minute across all your requests in each region. A token is a chunk of text. For example, the word "Hello" is 1 token, but "Understanding" might be 2 tokens. Each model has its own default TPM. Example: GPT-4 might allow 240,000 tokens per minute. You can split this quota across multiple deployments. Requests Per Minute (RPM) RPM defines how many API requests you can make every minute. For instance, GPT-3.5-turbo might allow 350 RPM. DALL·E image generation models might allow 6 RPM. Deployment, File, and Training Limits Here are some standard limits imposed on your OpenAI resource: Resource Type Limit Standard model deployments 32 Fine-tuned model deployments 5 Training jobs 100 total per resource (1 active at a time) Fine-tuning files 50 files (total size: 1 GB) Max prompt tokens per request Varies by model (e.g., 4096 tokens for GPT-3.5) How to View and Manage Your Quota Step-by-Step: Go to the Azure Portal. Navigate to your Azure OpenAI resource. Click on "Usage + quotas" in the left-hand menu. You will see TPM, RPM, and current usage status. To Request More Quota: In the same "Usage + quotas" panel, click on "Request quota increase". Fill in the form: Select the region. Choose the model family (e.g., GPT-4, GPT-3.5). Enter the desired TPM and RPM values. Submit and wait for Azure to review and approve. What is Dynamic Quota? Sometimes, Azure gives you extra quota based on demand and availability. “Dynamic quota” is not guaranteed and may increase or decrease. Useful for short-term spikes but should not be relied on for production apps. Example: During weekends, your GPT-3.5 TPM may temporarily increase if there's less traffic in your region. Best Practices for Students Monitor Regularly: Use the Azure Portal to keep an eye on your usage. Batch Requests: Combine multiple tasks in one API call to save tokens. Start Small: Begin with GPT-3.5 before requesting GPT-4 access. Plan Ahead: If you're preparing a demo or a project, request quota in advance. Handle Limits Gracefully: Code should manage 429 Too Many Requests errors. Quick Resources Azure OpenAI Quotas and Limits How to Request Quota in Azure Join the Conversation on Azure AI Foundry Discussions! Have ideas, questions, or insights about AI? Don't keep them to yourself! Share your thoughts, engage with experts, and connect with a community that’s shaping the future of artificial intelligence. 🧠✨ 👉 Click here to join the discussion!1.7KViews0likes0CommentsRedeeming Azure for Student from your GitHub Student Pack when you do not have an Academic Email
GitHub Student Developer Pack Learn to ship software like a pro. There's no substitute for hands-on experience. But for most students, real world tools can be cost-prohibitive. That's why we created the GitHub Student Developer Pack with some of our partners and friends. Sign up for Student Developer Pack22KViews1like2CommentsHow to Optimize your Codespaces: Pro-tips for managing quotas
Now that GitHub Codespaces is free for anyone, you might be surprised to see how fast you can hit the free quota. Here are four things you can do to make the most out of the 90 hours you get every month (and 180 hours if you are a student).11KViews3likes1Comment