skilling
81 TopicsDon't miss session two, Adopting Copilot Chat and Agent Builder. Sign up now!
Our dynamic four-part webinar series, Agentic AI + Copilot Partner Skilling Accelerator, empowers you to harness the Microsoft AI ecosystem to unlock new revenue streams and enhance customer success. Across each of the four sessions, experts will deliver practical guidance, best practices, and proven strategies for applying AI tools across no-code, low-code, and pro-code scenarios. Tune in to the second session, Adopting Copilot Chat and Agent Builder, to learn how Copilot and agents can help your business design, position, and sell AI solutions that drive customer success and revenue growth. This live virtual event is scheduled for December 1, 2025. Register today to reserve your spot.95Views1like0CommentsPartner Blog | Build what’s next: Accelerating partner success with Microsoft skilling
This week at Microsoft Ignite, one message came through clearly: capability fuels growth. Across every industry and every role, partners investing in skilling are accelerating innovation, deepening customer trust, and driving measurable impact. Skilling is the new currency of the AI era. As organizations transform, partners are turning knowledge into action, advancing technical and business expertise to lead with confidence and drive customer outcomes. In the past year, more than 2.4 million partner learners have engaged in training across solution areas, and 1.7 million have completed AI-specific courses, a 66% increase year over year. Through the Microsoft AI Cloud Partner Program, we’re investing in resources that make learning simpler, more accessible, and more aligned to opportunity. From the centralized Partner Skilling Hub to Certification Weeks, in-person training events, LevelUp, and AI-focused bootcamps, partners can strengthen their technical depth, expand sales capability, and build the skills that turn potential into performance. Read the full list of partner announcements from Ignite in Nicole Dezen’s blog. Continue reading here103Views1like0CommentsRedefine work in an AI-enhanced world: Attend the Frontier Firms webinar November 24, 2025
Our dynamic four-part webinar series, Agentic AI + Copilot Partner Skilling Accelerator, empowers you to use the Microsoft AI ecosystem to unlock new revenue streams and enhance customer success. Across four sessions, experts will deliver practical guidance, industry best practices, and proven strategies for applying AI tools in no-code, low-code, and pro-code scenarios. The first session in this learning series explores Frontier Firms and how to position yourself as one, provides an overview of the Microsoft AI ecosystem, and offers tips on when and how to apply specific Microsoft tools. Don't miss this chance to level up your business's ability to design, position, and sell AI solutions that accelerate customer success and increase revenue. This live virtual event is scheduled for November 24, 2025. Register today to reserve your spot!91Views1like0CommentsLevel up your Python + AI skills with our complete series
We've just wrapped up our live series on Python + AI, a comprehensive nine-part journey diving deep into how to use generative AI models from Python. The series introduced multiple types of models, including LLMs, embedding models, and vision models. We dug into popular techniques like RAG, tool calling, and structured outputs. We assessed AI quality and safety using automated evaluations and red-teaming. Finally, we developed AI agents using popular Python agents frameworks and explored the new Model Context Protocol (MCP). To help you apply what you've learned, all of our code examples work with GitHub Models, a service that provides free models to every GitHub account holder for experimentation and education. Even if you missed the live series, you can still access all the material using the links below! If you're an instructor, feel free to use the slides and code examples in your own classes. If you're a Spanish speaker, check out the Spanish version of the series. Python + AI: Large Language Models 📺 Watch recording In this session, we explore Large Language Models (LLMs), the models that power ChatGPT and GitHub Copilot. We use Python to interact with LLMs using popular packages like the OpenAI SDK and LangChain. We experiment with prompt engineering and few-shot examples to improve outputs. We also demonstrate how to build a full-stack app powered by LLMs and explain the importance of concurrency and streaming for user-facing AI apps. Slides for this session Code repository with examples: python-openai-demos Python + AI: Vector embeddings 📺 Watch recording In our second session, we dive into a different type of model: the vector embedding model. A vector embedding is a way to encode text or images as an array of floating-point numbers. Vector embeddings enable similarity search across many types of content. In this session, we explore different vector embedding models, such as the OpenAI text-embedding-3 series, through both visualizations and Python code. We compare distance metrics, use quantization to reduce vector size, and experiment with multimodal embedding models. Slides for this session Code repository with examples: vector-embedding-demos Python + AI: Retrieval Augmented Generation 📺 Watch recording In our third session, we explore one of the most popular techniques used with LLMs: Retrieval Augmented Generation. RAG is an approach that provides context to the LLM, enabling it to deliver well-grounded answers for a particular domain. The RAG approach works with many types of data sources, including CSVs, webpages, documents, and databases. In this session, we walk through RAG flows in Python, starting with a simple flow and culminating in a full-stack RAG application based on Azure AI Search. Slides for this session Code repository with examples: python-openai-demos Python + AI: Vision models 📺 Watch recording Our fourth session is all about vision models! Vision models are LLMs that can accept both text and images, such as GPT-4o and GPT-4o mini. You can use these models for image captioning, data extraction, question answering, classification, and more! We use Python to send images to vision models, build a basic chat-with-images app, and create a multimodal search engine. Slides for this session Code repository with examples: openai-chat-vision-quickstart Python + AI: Structured outputs 📺 Watch recording In our fifth session, we discover how to get LLMs to output structured responses that adhere to a schema. In Python, all you need to do is define a Pydantic BaseModel to get validated output that perfectly meets your needs. We focus on the structured outputs mode available in OpenAI models, but you can use similar techniques with other model providers. Our examples demonstrate the many ways you can use structured responses, such as entity extraction, classification, and agentic workflows. Slides for this session Code repository with examples: python-openai-demos Python + AI: Quality and safety 📺 Watch recording This session covers a crucial topic: how to use AI safely and how to evaluate the quality of AI outputs. There are multiple mitigation layers when working with LLMs: the model itself, a safety system on top, the prompting and context, and the application user experience. We focus on Azure tools that make it easier to deploy safe AI systems into production. We demonstrate how to configure the Azure AI Content Safety system when working with Azure AI models and how to handle errors in Python code. Then we use the Azure AI Evaluation SDK to evaluate the safety and quality of output from your LLM. Slides for this session Code repository with examples: ai-quality-safety-demos Python + AI: Tool calling 📺 Watch recording In the final part of the series, we focus on the technologies needed to build AI agents, starting with the foundation: tool calling (also known as function calling). We define tool call specifications using both JSON schema and Python function definitions, then send these definitions to the LLM. We demonstrate how to properly handle tool call responses from LLMs, enable parallel tool calling, and iterate over multiple tool calls. Understanding tool calling is absolutely essential before diving into agents, so don't skip over this foundational session. Slides for this session Code repository with examples: python-openai-demos Python + AI: Agents 📺 Watch recording In the penultimate session, we build AI agents! We use Python AI agent frameworks such as the new agent-framework from Microsoft and the popular LangGraph framework. Our agents start simple and then increase in complexity, demonstrating different architectures such as multiple tools, supervisor patterns, graphs, and human-in-the-loop workflows. Slides for this session Code repository with examples: python-ai-agent-frameworks-demos Python + AI: Model Context Protocol 📺 Watch recording In the final session, we dive into the hottest technology of 2025: MCP (Model Context Protocol). This open protocol makes it easy to extend AI agents and chatbots with custom functionality, making them more powerful and flexible. We demonstrate how to use the Python FastMCP SDK to build an MCP server running locally and consume that server from chatbots like GitHub Copilot. Then we build our own MCP client to consume the server. Finally, we discover how easy it is to connect AI agent frameworks like LangGraph and Microsoft agent-framework to MCP servers. With great power comes great responsibility, so we briefly discuss the security risks that come with MCP, both as a user and as a developer. Slides for this session Code repository with examples: python-mcp-demo1.3KViews0likes0CommentsBuilding a Multi-Agent System with Azure AI Agent Service: Campus Event Management
Personal Background My name is Peace Silly. I studied French and Spanish at the University of Oxford, where I developed a strong interest in how language is structured and interpreted. That curiosity about syntax and meaning eventually led me to computer science, which I came to see as another language built on logic and structure. In the academic year 2024–2025, I completed the MSc Computer Science at University College London, where I developed this project as part of my Master’s thesis. Project Introduction Can large-scale event management be handled through a simple chat interface? This was the question that guided my Master’s thesis project at UCL. As part of the Industry Exchange Network (IXN) and in collaboration with Microsoft, I set out to explore how conversational interfaces and autonomous AI agents could simplify one of the most underestimated coordination challenges in campus life: managing events across multiple departments, societies, and facilities. At large universities, event management is rarely straightforward. Rooms are shared between academic timetables, student societies, and one-off events. A single lecture theatre might host a departmental seminar in the morning, a society meeting in the afternoon, and a careers talk in the evening, each relying on different systems, staff, and communication chains. Double bookings, last-minute cancellations, and maintenance issues are common, and coordinating changes often means long email threads, manual spreadsheets, and frustrated users. These inefficiencies do more than waste time; they directly affect how a campus functions day to day. When venues are unavailable or notifications fail to reach the right people, even small scheduling errors can ripple across entire departments. A smarter, more adaptive approach was needed, one that could manage complex workflows autonomously while remaining intuitive and human for end users. The result was the Event Management Multi-Agent System, a cloud-based platform where staff and students can query events, book rooms, and reschedule activities simply by chatting. Behind the scenes, a network of Azure-powered AI agents collaborates to handle scheduling, communication, and maintenance in real time, working together to keep the campus running smoothly. The user scenario shown in the figure below exemplifies the vision that guided the development of this multi-agent system. Starting with Microsoft Learning Resources I began my journey with Microsoft’s tutorial Build Your First Agent with Azure AI Foundry which introduced the fundamentals of the Azure AI Agent Service and provided an ideal foundation for experimentation. Within a few weeks, using the Azure Foundry environment, I extended those foundations into a fully functional multi-agent system. Azure Foundry’s visual interface was an invaluable learning space. It allowed me to deploy, test, and adjust model parameters such as temperature, system prompts, and function calling while observing how each change influenced the agents’ reasoning and collaboration. Through these experiments, I developed a strong conceptual understanding of orchestration and coordination before moving to the command line for more complex development later. When development issues inevitably arose, I relied on the Discord support community and the GitHub forum for troubleshooting. These communities were instrumental in addressing configuration issues and providing practical examples, ensuring that each agent performed reliably within the shared-thread framework. This early engagement with Microsoft’s learning materials not only accelerated my technical progress but also shaped how I approached experimentation, debugging, and iteration. It transformed a steep learning curve into a structured, hands-on process that mirrored professional software development practice. A Decentralised Team of AI Agents The system’s intelligence is distributed across three specialised agents, powered by OpenAI’s GPT-4.1 models through Azure OpenAI Service. They each perform a distinct role within the event management workflow: Scheduling Agent – interprets natural language requests, checks room availability, and allocates suitable venues. Communications Agent – notifies stakeholders when events are booked, modified, or cancelled. Maintenance Agent – monitors room readiness, posts fault reports when venues become unavailable, and triggers rescheduling when needed. Each agent operates independently but communicates through a shared thread, a transparent message log that serves as the coordination backbone. This thread acts as a persistent state space where agents post updates, react to changes, and maintain a record of every decision. For example, when a maintenance fault is detected, the Maintenance Agent logs the issue, the Scheduling Agent identifies an alternative venue, and the Communications Agent automatically notifies attendees. These interactions happen autonomously, with each agent responding to the evolving context recorded in the shared thread. Interfaces and Backend The system was designed with both developer-focused and user-facing interfaces, supporting rapid iteration and intuitive interaction. The Terminal Interface Initially, the agents were deployed and tested through a terminal interface, which provided a controlled environment for debugging and verifying logic step by step. This setup allowed quick testing of individual agents and observation of their interactions within the shared thread. The Chat Interface As the project evolved, I introduced a lightweight chat interface to make the system accessible to staff and students. This interface allows users to book rooms, query events, and reschedule activities using plain language. Recognising that some users might still want to see what happens behind the scenes, I added an optional toggle that reveals the intermediate steps of agent reasoning. This transparency feature proved valuable for debugging and for more technical users who wanted to understand how the agents collaborated. When a user interacts with the chat interface, they are effectively communicating with the Scheduling Agent, which acts as the primary entry point. The Scheduling Agent interprets natural-language commands such as “Book the Engineering Auditorium for Friday at 2 PM” or “Reschedule the robotics demo to another room.” It then coordinates with the Maintenance and Communications Agents to complete the process. Behind the scenes, the chat interface connects to a FastAPI backend responsible for core logic and data access. A Flask + HTMX layer handles lightweight rendering and interactivity, while the Azure AI Agent Service manages orchestration and shared-thread coordination. This combination enables seamless agent communication and reliable task execution without exposing any of the underlying complexity to the end user. Automated Notifications and Fault Detection Once an event is scheduled, the Scheduling Agent posts the confirmation to the shared thread. The Communications Agent, which subscribes to thread updates, automatically sends notifications to all relevant stakeholders by email. This ensures that every participant stays informed without any manual follow-up. The Maintenance Agent runs routine availability checks. If a fault is detected, it logs the issue to the shared thread, prompting the Scheduling Agent to find an alternative room. The Communications Agent then notifies attendees of the change, ensuring minimal disruption to ongoing events. Testing and Evaluation The system underwent several layers of testing to validate both functional and non-functional requirements. Unit and Integration Tests Backend reliability was evaluated through unit and integration tests to ensure that room allocation, conflict detection, and database operations behaved as intended. Automated test scripts verified end-to-end workflows for event creation, modification, and cancellation across all agents. Integration results confirmed that the shared-thread orchestration functioned correctly, with all test cases passing consistently. However, coverage analysis revealed that approximately 60% of the codebase was tested, leaving some areas such as Azure service integration and error-handling paths outside automated validation. These trade-offs were deliberate, balancing test depth with project scope and the constraints of mocking live dependencies. Azure AI Evaluation While functional testing confirmed correctness, it did not capture the agents’ reasoning or language quality. To assess this, I used Azure AI Evaluation, which measures conversational performance across metrics such as relevance, coherence, fluency, and groundedness. The results showed high scores in relevance (4.33) and groundedness (4.67), confirming the agents’ ability to generate accurate and context-aware responses. However, slightly lower fluency scores and weaker performance in multi-turn tasks revealed a retrieval–execution gap typical in task-oriented dialogue systems. Limitations and Insights The evaluation also surfaced several key limitations: Synthetic data: All tests were conducted with simulated datasets rather than live campus systems, limiting generalisability. Scalability: A non-functional requirement in the form of horizontal scalability was not tested. The architecture supports scaling conceptually but requires validation under heavier load. Despite these constraints, the testing process confirmed that the system was both technically reliable and linguistically robust, capable of autonomous coordination under normal conditions. The results provided a realistic picture of what worked well and what future iterations should focus on improving. Impact and Future Work This project demonstrates how conversational AI and multi-agent orchestration can streamline real operational processes. By combining Azure AI Agent Services with modular design principles, the system automates scheduling, communication, and maintenance while keeping the user experience simple and intuitive. The architecture also establishes a foundation for future extensions: Predictive maintenance to anticipate venue faults before they occur. Microsoft Teams integration for seamless in-chat scheduling. Scalability testing and real-user trials to validate performance at institutional scale. Beyond its technical results, the project underscores the potential of multi-agent systems in real-world coordination tasks. It illustrates how modularity, transparency, and intelligent orchestration can make everyday workflows more efficient and human-centred. Acknowledgements What began with a simple Microsoft tutorial evolved into a working prototype that reimagines how campuses could manage their daily operations through conversation and collaboration. This was both a challenging and rewarding journey, and I am deeply grateful to Professor Graham Roberts (UCL) and Professor Lee Stott (Microsoft) for their guidance, feedback, and support throughout the project.293Views2likes0CommentsAzure Kubernetes Service Automatic: Fast and frictionless Kubernetes for all
AKS Automatic simplifies Kubernetes by offering a fully managed, opinionated experience that abstracts away from infrastructure complexity, while keeping the full power of Kubernetes at your fingertips. Learn how production-ready clusters and automated infrastructure operations can accelerate your time to delivery and simplify operations for you! Check out the announcement blog here!155Views0likes0CommentsJoin the Movement at Azure Dev Summit!
Azure Dev Summit is a chance for you to join a community of developers, architects, and tech leaders building with Azure, .NET, and Microsoft AI. This isn’t just another conference. It is a Microsoft-sponsored celebration of innovation, learning, and connection — and we’re bringing some of the most inspiring voices in tech to the stage. Find out more about the speakers at Azure Dev Summit and make sure to register! https://azuredevsummit.com/142Views1like0CommentsGetting Started with AI Agents: A Student Developer’s Guide to the Microsoft Agent Framework
AI agents are becoming the backbone of modern applications, from personal assistants to autonomous research bots. If you're a student developer curious about building intelligent, goal-driven agents, Microsoft’s newly released Agent Framework is your launchpad. In this post, we’ll break down what the framework offers, how to get started, and why it’s a game-changer for learners and builders alike. What Is the Microsoft Agent Framework? The Microsoft Agent Framework is a modular, open-source toolkit designed to help developers build, orchestrate, and evaluate AI agents with minimal friction. It’s part of the AI Agents for Beginners curriculum, which walks you through foundational concepts using reproducible examples. At its core, the framework helps you: Define agent goals and capabilities Manage memory and context Route tasks through tools and APIs Evaluate agent performance with traceable metrics Whether you're building a research assistant, a coding helper, or a multi-agent system, this framework gives you the scaffolding to do it right. What’s Inside the Framework? Here’s a quick look at the key components: Component Purpose AgentRuntime Manages agent lifecycle, memory, and tool routing AgentConfig Defines agent goals, tools, and memory settings Tool Interface Lets you plug in custom tools (e.g., web search, code execution) MemoryProvider Supports semantic memory and context-aware responses Evaluator Tracks agent performance and goal completion The framework is built with Python and .NET and designed to be extensible, perfect for experimentation and learning. Try It: Your First Agent in 10 Minutes Here’s a simplified walkthrough to get you started: Clone the repo git clone https://github.com/microsoft/ai-agents-for-beginners Open the Sample cd ai-agents-for-beginners/14-microsoft-agent-framework Install dependencies pip install -r requirements.txt Run the sample agent python main.py You’ll see a basic agent that can answer questions using a web search tool and maintain context across turns. From here, you can customize its goals, memory, and tools. Why Student Developers Should Care Modular Design: Learn how real-world agents are structured—from memory to evaluation. Reproducible Workflows: Build agents that can be debugged, traced, and improved over time. Open Source: Contribute, fork, and remix with your own ideas. Community-Ready: Perfect for hackathons, research projects, or portfolio demos. Plus, it aligns with Microsoft’s best practices for agent governance, making it a solid foundation for enterprise-grade development. Why Learn? Here are a few ideas to take your learning further: Build a custom tool (e.g., a calculator or code interpreter) Swap in a different memory provider (like a vector DB) Create an evaluation pipeline for multi-agent collaboration Use it in a class project or student-led workshop Join the Microsoft Azure AI Foundry Discord https://aka.ms/Foundry/discord share your project and build your AI Engineer and Developer connections. Star and Fork the AI Agents for Beginners repo for updates and new modules. Final Thoughts The Microsoft Agent Framework isn’t just another library, it’s a teaching tool, a playground, and a launchpad for the next generation of AI builders. If you’re a student developer, this is your chance to learn by doing, contribute to the community, and shape the future of agentic systems. So fire up your terminal, fork the repo, and start building. Your first agent is just a few lines of code away.556Views0likes1Comment