security
111 TopicsAzure Linux 3.0 Achieves Level 1 CIS Benchmark Certification
We’re excited to announce that Azure Linux 3.0 has successfully passed the Level 1 Center for Internet Security (CIS) benchmarks, reinforcing our commitment to delivering a secure and compliant platform for customers running Linux workloads on Azure Kubernetes Service (AKS). What is CIS? The Center for Internet Security is a nonprofit entity whose mission is to identify, develop, validate, promote, and sustain best practice solutions for cyber defense. It draws on the expertise of cybersecurity and IT professionals from government, business, and academia from around the world. To develop standards and best practices, including CIS benchmarks, controls, and hardened images, they follow a consensus decision-making model. CIS benchmarks are configuration baselines and best practices for securely configuring a system. CIS controls map to many established standards and regulatory frameworks, including the NIST Cybersecurity Framework (CSF) and NIST SP 800-53, the ISO 27000 series of standards, PCI DSS, HIPAA, and others. Each benchmark undergoes two phases of consensus review. The first occurs during initial development when experts convene to discuss, create, and test working drafts until they reach consensus on the benchmark. During the second phase, after the benchmark has been published, the consensus team reviews the feedback from the internet community for incorporation into the benchmark. CIS benchmarks provide two levels of security settings: Level 1 recommends essential basic security requirements that can be configured on any system and should cause little or no interruption of service or reduced functionality. Level 2 recommends security settings for environments requiring greater security that could result in some reduced functionality. What does this mean for Azure Linux 3.0? By meeting Level 1 requirements, Azure Linux 3.0 ensures that essential security controls are in place—helping organizations meet regulatory compliance and protect against common threats, without sacrificing performance or agility. For security and compliance-focused customers, this milestone means you can confidently deploy and scale your Linux-based applications on AKS, knowing that your foundation aligns with industry’s best practices. Azure Linux 3.0’s compliance with CIS Level 1 benchmarks support your efforts to achieve and maintain rigorous security postures, whether you’re subject to regulatory frameworks or following internal policies. How can customers try it out? We remain dedicated to making security simple. All Azure Linux 3.0 nodes on an AKS cluster will meet the Level 1 CIS benchmarks – no extra flags or parameters. Resources Visit the CIS Benchmark documentation to read a detailed list of benchmarks: Center for Internet Security (CIS) Benchmarks - Microsoft Compliance | Microsoft Learn.212Views1like0CommentsBug with Mac Remote Desktop 10.9.0, cannot remote in without manually logging in first
Now when I try to Remote Desktop into a vm that is on a domain, it will not let me connect because of a security error. This used to connect just fine. The only way to get around this is to manually log in. Once a user has logged into the computer, I can then remote into it like normal. Every time the vm is restarted though, I once again have to manually login to get remote access. The error I receive: We couldn't connect to the remote PC because of a security error. If this keeps happening, contact your network administrator for assistance. Error code: 0x18075.7KViews7likes14CommentsAdd the Networking Tab in the Host Pool Creation Wizard in the Azure Portal
Just like we have a Networking tab in the Storage Account where public access can be disabled and private endpoints enabled, there should be a similar option available during Host Pool creation in the Azure Portal. In my customer environment, which is a banking organization, a policy is enforced that does not allow any resource to be created with public access—it blocks the creation outright. az policy assignment create \ --name "DenyPublicAccess" \ --scope "/subscriptions/<subscription-id>" \ --policy "/providers/Microsoft.Authorization/policyDefinitions/<policy-definition-id>" The policy they use is named "Public network access should be disabled for PaaS services", which prevents the creation of a Host Pool unless public access is disabled. Currently, this setting cannot be configured during Host Pool creation in the Azure Portal, as the networking tab is only available after the Host Pool is created, allowing you to disable public access and enable private endpoints. For BFSI customers, requesting a policy relaxation is difficult. While this may be achieved through automation, the option should also be available in the Azure Portal. Otherwise, it creates a contradiction—there is a policy to disable public access, but no way to comply with it during the initial creation.Empowering Data Security with Azure Rights Management and Azure Information Protection
In today’s digital world, data is one of the most valuable assets a business can have. Whether it’s customer information, financial records, or internal documents, keeping that data safe is absolutely necessary. As more companies move to cloud-based systems and work in hybrid environments, the need for smart and reliable data protection tools is growing fast. That’s where Azure Rights Management (RMS) and Azure Information Protection (AIP) come in. These tools help businesses organize, label, and secure their data across different platforms, making sure it stays protected no matter where it goes. Understanding Azure Rights Management (RMS) Azure RMS is a cloud-based service designed to safeguard digital information through encryption, identity, and authorization policies. It ensures that data remains protected regardless of where it resides—on a local device, in the cloud, or in transit. Core Protection Workflow The Azure RMS protection process is straightforward yet powerful: Encryption: When a user initiates protection, the content is encrypted using strong cryptographic standards. Policy Attachment: An access policy is embedded within the file, defining what actions are permitted (e.g., read-only, no print, no forward). Authentication: Access is granted only after successful authentication via Azure Active Directory (Azure AD). Decryption and Enforcement: Once authenticated, the file is decrypted and the access policy is enforced in real time. Encryption Standards in Use Azure RMS employs: AES 128-bit and 256-bit encryption for securing documents. RSA 2048-bit encryption for protecting customer-specific root keys. These standards ensure that even if data is intercepted, it remains unreadable and unusable without proper authorization. Azure Information Protection: Beyond Encryption While Azure RMS focuses on securing content, Azure Information Protection (AIP) adds a layer of intelligence through classification and labeling. AIP enables organizations to define and apply sensitivity labels that reflect the value and confidentiality of their data. From Classic to Unified Labeling Microsoft has transitioned from the classic AIP client to the Unified Labeling Client, which integrates directly with Microsoft 365 compliance solutions. This shift simplifies management and enhances compatibility with modern Office applications. Sensitivity Labels in Action Sensitivity labels help organizations manage data access and usage by categorizing content into levels such as: Public: Safe for public distribution. General: Internal use only. Confidential: Restricted to specific internal groups. Highly Confidential: Limited to named individuals with strict usage controls (e.g., no printing or downloading). Labels can be applied manually by users or automatically based on content inspection, context, or metadata. Built-In Labeling in Office Apps Modern Office apps now support built-in labeling, eliminating the need for separate add-ins. This native integration ensures a smoother user experience and reduces the risk of compatibility issues or performance degradation. Licensing Overview To leverage AIP features, organizations must have the appropriate licensing: Office 365 E3 and above: Basic classification and labeling. AIP Plan 1: Included in Microsoft 365 E3 and EMS E3. AIP Plan 2: Included in Microsoft 365 E5 and EMS E5, offering advanced capabilities like automatic labeling and document tracking. Real-World Use Cases Access Control: Limit access to sensitive documents based on user roles or departments. Version Management: Use labels to distinguish between draft and final versions. Automated Workflows: Trigger encryption or archiving when documents reach a certain sensitivity level. Why Azure Information Protection Matters Implementing AIP brings a host of benefits: Persistent Protection: Data remains secure even when shared externally or accessed offline. Granular Control: Define who can access data and what they can do with it. Visibility and Auditing: Monitor access patterns and revoke access if needed. Hybrid Compatibility: Protect data across cloud and on-premises environments using the Rights Management connector. Centralized Management: Streamline policy creation and enforcement across the organization. Conclusion Azure RMS and AIP together form a powerful duo for modern data protection. By combining encryption, identity management, and intelligent labeling, organizations can confidently secure their most valuable asset information while enabling seamless collaboration and compliance.69Views0likes0CommentsUbuntu Pro FIPS 22.04 LTS on Azure: Secure, compliant, and optimized for regulated industries
Organizations across government (including local and federal agencies and their contractors), finance, healthcare, and other regulated industries running workloads on Microsoft Azure now have a streamlined path to meet rigorous FIPS 140-3 compliance requirements. Canonical is pleased to announce the availability of Ubuntu Pro FIPS 22.04 LTS on the Azure Marketplace, featuring newly certified cryptographic modules. This offering extends the stability and comprehensive security features of Ubuntu Pro, tailored for state agencies, federal contractors, and industries requiring a FIPS-validated foundation on Azure. It provides the enterprise-grade Ubuntu experience, optimized for performance on Azure in collaboration with Microsoft, and enhanced with critical compliance capabilities. For instance, if you are building a Software as a Service (SaaS) application on Azure that requires FedRAMP authorization, utilizing Ubuntu Pro FIPS 22.04 LTS can help you meet specific controls like SC-13 (Cryptographic Protection), as FIPS 140-3 validated modules are a foundational requirement. This significantly streamlines your path to achieving FedRAMP compliance. What is FIPS 140-3 and why does it matter? FIPS 140-3 is the latest iteration of the benchmark U.S. government standard for validating cryptographic module implementations, superseding FIPS 140-2. Managed by NIST, it's essential for federal agencies and contractors and is a recognized best practice in many regulated industries like finance and healthcare. Using FIPS-validated components helps ensure cryptography is implemented correctly, protecting sensitive data in transit and at rest. Ubuntu Pro FIPS 22.04 LTS includes FIPS 140-3 certified versions of the Linux kernel and key cryptographic libraries (like OpenSSL, Libgcrypt, GnuTLS) pre-enabled, which are drop-in replacements for the standard packages, greatly simplifying deployment for compliance needs. The importance of security updates (fips-updates) A FIPS certificate applies to a specific module version at its validation time. Over time, new vulnerabilities (CVEs) are discovered in these certified modules. Running code with known vulnerabilities poses a significant security risk. This creates a tension between strict certification adherence and maintaining real-world security. Recognizing this, Canonical provides security fixes for the FIPS modules via the fips-updates stream, available through Ubuntu Pro. We ensure these security patches do not alter the validated cryptographic functions. This approach aligns with modern security thinking, including recent FedRAMP guidance, which acknowledges the greater risk posed by unpatched vulnerabilities compared to solely relying on the original certified binaries. Canonical strongly recommends all users enable the fips-updates repository to ensure their systems are both compliant and secure against the latest threats. FIPS 140-3 vs 140-2 The new FIPS 140-3 standard includes modern ciphers such as TLS v1.3, as well as deprecating older algorithms like MD5. If you are upgrading systems and workloads to FIPS 140-3, it will be necessary to perform rigorous testing to ensure that applications continue to work correctly. Compliance tooling Included Ubuntu Pro FIPS also includes access to Canonical's Ubuntu Security Guide (USG) tooling, which assists with automated hardening and compliance checks against benchmarks like CIS and DISA-STIG, a key requirement for FedRAMP deployments. How to get Ubuntu Pro FIPS on Azure You can leverage Ubuntu Pro FIPS 22.04 LTS on Azure in two main ways: Deploy the Marketplace Image: Launch a new VM directly from the dedicated Ubuntu Pro FIPS 22.04 LTS listing on the Azure Marketplace. This image comes with the FIPS modules pre-enabled for immediate use. Enable on an Existing Ubuntu Pro VM: If you already have an Ubuntu Pro 22.04 LTS VM running on Azure, you can enable the FIPS modules using the Ubuntu Pro Client (pro enable fips-updates). Upgrading standard Ubuntu: If you have a standard Ubuntu 22.04 LTS VM on Azure, you first need to attach Ubuntu Pro to it. This is a straightforward process detailed in the Azure documentation for getting Ubuntu Pro. Once Pro is attached, you can enable FIPS as described above. Learn More Ubuntu Pro FIPS provides a robust, maintained, and compliant foundation for your sensitive workloads on Azure. Watch Joel Sisko from Microsoft speak with Ubuntu experts in this webinar Explore all features of Ubuntu Pro on Azure Read details on the FIPS 140-3 certification for Ubuntu 22.04 LTS Official NIST certification link333Views2likes0CommentsAzure Virtual Desktop for Guest User / B2b Identity
All of our external customers have their own AAD / Entra ID and wish to not manage multiple identities. As we present our applications via AVD, it requires them to have a separate identity in our tenant currently. AVD should support guest accounts from another tenant to be able to sign in. Currently, per the documentation and per the ticket I just worked with Microsoft support: Azure Virtual Desktop doesn't support external identities, including guest accounts or business-to-business (B2B) identities. Whether you're serving internal commercial purposes or external users with Azure Virtual Desktop, you'll need to create and manage identities for those users yourself. Please continue development to allow guest accounts that have been invited into a tenant to sign in to AVD machines. Thanks!1.6KViews29likes6CommentsLinux and Open Source on Azure Quarterly Update - February 2025
As we venture into 2025, it's exhilarating to reflect on the astonishing strides we've made in the domain of Linux and Open Source Software (OSS) on Azure. Let us dive into another edition of the quarterly update to learn more! Microsoft Ignite 2024 Linux on Azure took center stage at Microsoft Ignite 2024 with dedicated session and a meet-up booth. Our breakout session, theater session, and lab session drew over 500 attendees. This engagement is a testament to the enthusiasm and interest in Linux-based solutions on Azure. Check out the on-demand recording available on the Ignite website: What’s new in Linux: How we’re collaborating to help shape its future We announced that the Azure security baseline through Azure Policy and Machine Configuration for Linux has moved to public preview, and we are expanding the capabilities with built-in auto-remediation feature (limited public preview). Red Hat on Azure announcements at Ignite are captured here. Linux Promotional Offer The promotional offer for the latest Linux VMs in Azure is currently live. For a limited time, you can save an additional 15% on one-year Azure Reserved Virtual Machine (VM) Instances for the latest Linux VMs. This means you could save up to 56% compared to running an Azure VM on a PAYG (pay-as-you-go) basis. This offer is available until March 31, 2025. To learn more, read the blog and refer to the terms and conditions. Azure Linux 3.0 in preview on Azure Kubernetes Service v1.31 We are excited to announce that Azure Linux 3.0, the next major version release of the Azure Linux container host for Azure Kubernetes Service (AKS), is now available in preview on AKS version 1.31. Azure Linux 3.0 offers increased package availability and versions, an updated kernel, and improvements to performance, security, and tooling and developer experience. SUSE LTSS on Azure Marketplace Many of our customers rely on SUSE Linux Enterprise Server (SLES) for running their mission-critical SAP and HPC (high-performance computing) workloads on Azure. We’re excited to share that SUSE Long Term Service Pack Support (LTSS) is available in the Azure Marketplace, providing customers with options for managing the support lifecycle of their SUSE images in Azure. The blog announcement is here. Linux VM Image Quality on Azure In the continuously evolving landscape of cloud computing and AI, the quality and reliability of virtual machines (VMs) plays a vital role for businesses running mission-critical workloads. With over 65% of Azure workloads running Linux, our commitment to delivering high-quality Linux VM images and platforms remains unwavering. Find out how Microsoft ensures the quality of Linux VM images and platform experiences on Azure. Learn how LISA (an open-source tool) enhances the testing and validation processes for Linux kernels and guest OS images on Azure. MIT Technology Review Article We recently commissioned a sponsored article in collaboration with AMD on the topic of “Accelerating AI innovation through application modernization” published on MIT Technology Review. The article delves into AI driving new requirements for application modernization. Red Hat Summit Connects Microsoft’s sponsorship of the Red Hat Summit Connect global event series proved to be a resounding success. Spanning cities from Melbourne to Mexico City, we engaged with over 6,500 attendees. By partnering with key organizations, we reinforced the strength of our strategic alliance with Red Hat. What’s coming up next Migrate to Innovate Summit This event aims to showcase how cloud migration and modernization can build a platform for AI innovation. In 2.5 hours, the event will feature thought leaders and experts from Microsoft and Intel who will share their perspectives, present real-world case studies, and showcase product demonstrations to help customers accelerate their cloud journey. The event will be live on March 11, 2025. Register to check out the great content! SUSECON 2025 We will be at SUSECON 2025, which will take place in Orlando, Florida, from March 10th – 14th, 2025. We look forward to sharing insights, learning, and collaborating with everyone attending. Discover why Microsoft Azure is a trusted and proven cloud platform and explore the benefits of Azure-optimized solutions co-developed by Microsoft and SUSE for your business-critical Linux workloads. Check out one of the Microsoft sessions and meet with us at our booth. We recently published a recap covering some of Microsoft partners’ latest offerings on Linux and PGSQL. Stay tuned for more updates and thank you for being a part of this journey!458Views0likes0CommentsAutomating the Linux Quality Assurance with LISA on Azure
Introduction Building on the insights from our previous blog regarding how MSFT ensures the quality of Linux images, this article aims to elaborate on the open-source tools that are instrumental in securing exceptional performance, reliability, and overall excellence of virtual machines on Azure. While numerous testing tools are available for validating Linux kernels, guest OS images and user space packages across various cloud platforms, finding a comprehensive testing framework that addresses the entire platform stack remains a significant challenge. A robust framework is essential, one that seamlessly integrates with Azure's environment while providing the coverage for major testing tools, such as LTP and kselftest and covers critical areas like networking, storage and specialized workloads, including Confidential VMs, HPC, and GPU scenarios. This unified testing framework is invaluable for developers, Linux distribution providers, and customers who build custom kernels and images. This is where LISA (Linux Integration Services Automation) comes into play. LISA is an open-source tool specifically designed to automate and enhance the testing and validation processes for Linux kernels and guest OS images on Azure. In this blog, we will provide the history of LISA, its key advantages, the wide range of test cases it supports, and why it is an indispensable resource for the open-source community. Moreover, LISA is available under the MIT License, making it free to use, modify, and contribute. History of LISA LISA was initially developed as an internal tool by Microsoft to streamline the testing process of Linux images and kernel validations on Azure. Recognizing the value it could bring to the broader community, Microsoft open-sourced LISA, inviting developers and organizations worldwide to leverage and enhance its capabilities. This move aligned with Microsoft's growing commitment to open-source collaboration, fostering innovation and shared growth within the industry. LISA serves as a robust solution to validate and certify that Linux images meet the stringent requirements of modern cloud environments. By integrating LISA into the development and deployment pipeline, teams can: Enhance Quality Assurance: Catch and resolve issues early in the development cycle. Reduce Time to Market: Accelerate deployment by automating repetitive testing tasks. Build Trust with Users: Deliver stable and secure applications, bolstering user confidence. Collaborate and Innovate: Leverage community-driven improvements and share insights. Benefits of Using LISA Scalability: Designed to run large-scale test cases, from 1 test case to 10k test cases in one command. Multiple platform orchestration: LISA is created with modular design, to support run the same test cases on various platforms including Microsoft Azure, Windows HyperV, BareMetal, and other cloud-based platforms. Customization: Users can customize test cases, workflow, and other components to fit specific needs, allowing for targeted testing strategies. It’s like building kernels on-the-fly, sending results to custom database, etc. Community Collaboration: Being open source under the MIT License, LISA encourages community contributions, fostering continuous improvement and shared expertise. Extensive Test Coverage: It offers a rich suite of test cases covering various aspects of compatibility of Azure and Linux VMs, from kernel, storage, networking to middleware. How it works Infrastructure LISA is designed to be componentized and maximize compatibility with different distros. Test cases can focus only on test logic. Once test requirements (machines, CPU, memory, etc) are defined, just write the test logic without worrying about environment setup or stopping services on different distributions. Orchestration. LISA uses platform APIs to create, modify and delete VMs. For example, LISA uses Azure API to create VMs, run test cases, and delete VMs. During the test case running, LISA uses Azure API to collect serial log and can hot add/remove data disks. If other platforms implement the same serial log and data disk APIs, the test cases can run on the other platforms seamlessly. Ensure distro compatibility by abstracting over 100 commands in test cases, allowing focus on validation logic rather than distro compatibility. Pre-processing workflow assists in building the kernel on-the-fly, installing the kernel from package repositories, or modifying all test environments. Test matrix helps one run to test all. For example, one run can test different vm sizes on Azure, or different images, even different VM sizes and different images together. Anything is parameterizable, can be tested in a matrix. Customizable notifiers enable the saving of test results and files to any type of storage and database. Agentless and low dependency LISA operates test systems via SSH without requiring additional dependencies, ensuring compatibility with any system that supports SSH. Although some test cases require installing extra dependencies, LISA itself does not. This allows LISA to perform tests on systems with limited resources or even different operating systems. For instance, LISA can run on Linux, FreeBSD, Windows, and ESXi. Getting Started with LISA Ready to dive in? Visit the LISA project at aka.ms/lisa to access the documentation. Install: Follow the installation guide provided in the repository to set up LISA in your testing environment. Run: Follow the instructions to run LISA on local machine, Azure or existing systems. Extend: Follow the documents to extend LISA by test cases, data sources, tools, platform, workflow, etc. Join the Community: Engage with other users and contributors through forums and discussions to share experiences and best practices. Contribute: Modify existing test cases or create new ones to suit your needs. Share your contributions with the community to enhance LISA's capabilities. Conclusion LISA offers open-source collaborative testing solutions designed to operate across diverse environments and scenarios, effectively narrowing the gap between enterprise demands and community-led innovation. By leveraging LISA, customers can ensure their Linux deployments are reliable and optimized for performance. Its comprehensive testing capabilities, combined with the flexibility and support of an active community, make LISA an indispensable tool for anyone involved in Linux quality assurance and testing. Your feedback is invaluable, and we would greatly appreciate your insights.513Views1like0CommentsFrom Compliance to Auto-Remediation: Azure's Latest Linux Security Innovations
We are pleased to announce that the Azure security baseline through Azure Policy and Machine Configuration for Linux has moved to public preview, and we are expanding the capabilities with built-in auto-remediation feature (limited public preview). Customers face increasing pressure to comply with requirements set by governments, regulatory bodies, or specific industries. As their environments become more complex and hybrid, achieving and maintaining compliance on a large scale remains challenging and problematic. Failing to meet compliance goals can result in substantial business harm, including financial penalties and the potential loss of customers. Introducing enhanced audit and the new auto-remediation experience: Recognizing the above-mentioned challenges, Microsoft has developed a solution to help customers navigate these complexities at ease. The Azure security baseline for Linux offers compliance and built-in auto-remediation (limited public preview) features via Azure Policy’s Machine Configuration and Microsoft’s open-source Azure-OSconfig engine. The combination of these capabilities will ensure that security is embedded by design and compliance requirements are upheld, whether workloads operate in the cloud, on-premises, or in another CSP environment, through the Azure Arc platform. Thanks to the new approach we provide detailed information about the state of compliance and more accurate results with detailed descriptions with direct reference to the CIS rule definitions. Furthermore, the new architecture has enabled us to implement and provide automatic remediation capabilities against the security baseline providing a Linux-native experience for our customers when it comes to hardening. Microsoft has implemented a streamlined version of Linux security best practices, primarily based on the latest CIS (Center for Internet Security) Distribution Independent Linux benchmark. All the audit and remediation results are available and can be queried within the Azure Resource Graph Explorer for reporting and monitoring purposes. As security is Microsoft’s top priority, we will provide these capabilities at no additional cost to our customers, with charges only applying to the Azure Arc managed workloads hosted on-premises or other CSP environments. What’s next: At Microsoft we strive to continuously improve customer satisfaction - understanding that a one-size-fits-all approach is not feasible for hardening and security, we are committed to working with our customers throughout the preview process to improve the end-to-end experience. In addition to that, Microsoft is committed to evolve and further develop and deliver new security baseline contents to be fully aligned with the latest CIS standards across various Linux distributions and will collaborate with the relevant standard bodies to contribute to the standards, benefiting both the broader community and the wider industry. Stay tuned in this space for more information - exciting news to come in the upcoming months! What happens with the existing Azure security baseline for Linux capability: Every VM customer which has the “Linux machines should meet requirements for the Azure compute security baseline” policy definition assigned will be auto migrated by the Azure team in the upcoming months to the new policy definition. (audit only) We are going to do a gradual rollout of this enhanced capability. For the time being approximately 3-6 months post announcement, the existing policy will still be available and then it will be deprecated and removed from the Azure portal. Learn more: Sign-up form for the auto-remediation capability Read more about Azure Arc Check out the Azure osconfig’s GitHub repo Comparison between old and new baseline is attached to the blog List of supported operating systems (check the Linux distros in the table)1.7KViews0likes6Comments