replication
36 TopicsSeptember 2025 Recap: Azure Database for PostgreSQL
Hello Azure Community, We are back with another round of updates for Azure Database for PostgreSQL! September is packed with powerful enhancements, from the public preview of PostgreSQL 18 to the general availability of Azure Confidential Computing, plus several new capabilities designed to boost performance, security, and developer experience. Stay tuned as we dive deeper into each of these feature updates. Before we dive into the feature highlights, let’s take a look at PGConf NYC 2025 highlights. PGConf NYC 2025 Highlights Our Postgres team was glad to be part of PGConf NYC 2025! As a Platinum sponsor, Microsoft joined the global PostgreSQL community for three days of sessions covering performance, extensibility, cloud, and AI, highlighted by Claire Giordano’s keynote, “What Microsoft is Building for Postgres—2025 in Review,” along with deep dives from core contributors and engineers. If you missed it, you can catch up here: Keynote slides: What Microsoft is Building for Postgres—2025 in Review by Claire Giordano at PGConf NYC 2025 Day 3 wrap-up: Key takeaways, highlights, and insights from the Azure Database for PostgreSQL team. Feature Highlights Near Zero Downtime scaling for High Availability (HA) enabled servers - Generally Available Azure Confidential Computing for Azure Database for PostgreSQL - Generally Available PostgreSQL 18 on Azure Database for PostgreSQL - Public Preview PostgreSQL Discovery & Assessment in Azure Migrate - Public Preview LlamaIndex Integration with Azure Postgres Latest Minor Versions GitHub Samples: Entra ID Token Refresh for PostgreSQL VS Code Extension for PostgreSQL enhancements Near Zero Downtime scaling for High Availability (HA) enabled servers – Generally Available Scaling compute for high availability (HA) enabled Azure Database for PostgreSQL servers just got faster. With Near Zero Downtime (NZD) scaling, compute changes such as vCore or tier modifications are now complete with minimal interruption, typically under 30 seconds using HA failover which maintains the connection string. The service provisions a new primary and standby instance with the updated configuration, synchronizes them with the existing setup, and performs a quick failover. This significantly reduces downtime compared to traditional scaling (which could take 2–10 minutes), improving overall availability. Visit our documentation for full details on how Near Zero Downtime scaling works. Azure Confidential Computing for Azure Database for PostgreSQL - Generally Available Azure Confidential Computing (ACC) Confidential Virtual Machines (CVMs) are now generally available for Azure Database for PostgreSQL. This capability brings hardware-based protection for data in use, ensuring your most sensitive information remains secure, even while being processed. With CVMs, your PostgreSQL flexible server instance runs inside a Trusted Execution Environment (TEE), a secure, hardware-backed enclave that encrypts memory and isolates it from the host OS, hypervisor, and even Azure operators. This means your data enjoys end-to-end protection: at rest, in transit, and in use. Key Benefits: End-to-End Security: Data protected at rest, in transit, and in use Enhanced Privacy: Blocks unauthorized access during processing Compliance Ready: Meets strict security standards for regulated workloads Confidence in Cloud: Hardware-backed isolation for critical data Discover how Azure Confidential Computing enhances PostgreSQL check out the blog announcement. PostgreSQL 18 on Azure Database for PostgreSQL – Public Preview PostgreSQL 18 is now available in public preview on Azure Database for PostgreSQL, launched the same day as the PostgreSQL community release. PostgreSQL 18 introduces new performance, scalability, and developer productivity improvements. With this preview, you get early access to the latest community release on a fully managed Azure service. By running PostgreSQL 18 on flexible server, you can test application compatibility, explore new SQL and performance features, and prepare for upgrades well before general availability. This preview release gives you the opportunity to validate your workloads, extensions, and development pipelines in a dedicated preview environment while taking advantage of the security, high availability, and management capabilities in Azure. With PostgreSQL 18 in preview, you are among the first to experience the next generation of PostgreSQL on Azure, ensuring your applications are ready to adopt it when it reaches full general availability. To learn more about preview, read https://aka.ms/pg18 PostgreSQL Discovery & Assessment in Azure Migrate – Public Preview The PostgreSQL Discovery & Assessment feature is now available in public preview on Azure Migrate, making it easier to plan your migration journey to Azure. Migrating PostgreSQL workloads can be challenging without clear visibility into your existing environment. This feature solves that problem by delivering deep insights into on-premises PostgreSQL deployments, making migration planning easier and more informed. With this feature, you can discover PostgreSQL instances across your infrastructure, assess migration readiness and identify potential blockers, receive configuration-based SKU recommendations for Azure Database for PostgreSQL, and estimate costs for running your workloads in Azure all in one unified experience. Key Benefits: Comprehensive Visibility: Understand your on-prem PostgreSQL landscape Risk Reduction: Identify blockers before migration Optimized Planning: Get tailored SKU and cost insights Faster Migration: Streamlined assessment for a smooth transition Learn more in our blog: PostgreSQL Discovery and Assessment in Azure Migrate LlamaIndex Integration with Azure Postgres The support for native LlamaIndex integration is now available for Azure Database for PostgreSQL! This enhancement brings seamless connectivity between Azure Database for PostgreSQL and LlamaIndex, allowing developers to leverage Azure PostgreSQL as a secure and high-performance vector store for their AI agents and applications. Specifically, this package adds support for: Microsoft Entra ID (formerly Azure AD) authentication when connecting to your Azure Database for PostgreSQL instances, and, DiskANN indexing algorithm when indexing your (semantic) vectors. This package makes it easy to connect LlamaIndex to your Azure PostgreSQL instances whether you're building intelligent agents, semantic search, or retrieval-augmented generation (RAG) systems. Explore the full guide here: https://aka.ms/azpg-llamaindex Latest Postgres minor versions: 17.6, 16.9, 15.13, 14.18 and 13.21 PostgreSQL minor versions 17.6, 16.9, 15.13, 14.18 and 13.21 are now supported by Azure Database for PostgreSQL. These minor version upgrades are automatically performed as part of the monthly planned maintenance in Azure Database for PostgreSQL. The upgrade automation ensures that your databases are always running the latest optimized versions without requiring manual intervention. This release fixes 3 security vulnerabilities and more than 55 bugs reported over the last several months. PostgreSQL minor versions are backward-compatible, so updates won’t affect your applications. For details about the release, see PostgreSQL community announcement. GitHub Samples: Entra ID Token Refresh for PostgreSQL We have introduced code samples for Entra ID token refresh, built specifically for Azure Database for PostgreSQL. These samples simplify implementing automatic token acquisition and refresh, helping you maintain secure, uninterrupted connectivity without manual intervention. By using these examples, you can keep sessions secure, prevent connection drops from expired tokens, and streamline integration with Azure Identity libraries for PostgreSQL workloads. What’s Included: Ready-to-use code snippets for token acquisition and refresh for Python and .NET Guidance for integrating with Azure Identity libraries Explore the samples repository on https://aka.ms/pg-access-token-refresh and start implementing it today. VS Code Extension for PostgreSQL enhancements A new version for VS Code Extension for PostgreSQL is out! This update introduces a Server Dashboard that provides high-level metadata and real-time performance metrics, along with historical insights for Azure Database for PostgreSQL Flexible Server. You can even use GitHub Copilot Chat to ask performance questions in natural language and receive diagnostic SQL queries in response. Additional enhancements include: A new keybinding for “Run Current Statement” in the Query Editor Support for dragging Object Explorer entities into the editor with properly quoted identifiers Ability to connect to databases via socket file paths Key fixes: Preserves the state of the Explain Analyze toolbar toggle Removes inadvertent logging of sensitive information from extension logs Stabilizes memory usage during long-running dashboard sessions Don’t forget to update to the latest version in the marketplace to take advantage of these enhancements and visit our GitHub repository to learn more about this month’s release. We’d love your feedback! Help us improve the Server Dashboard and other features by sharing your thoughts on GitHub . Azure Postgres Learning Bytes 🎓 Setting up logical replication between two servers This section will walk through setting up logical replication between two Azure Database for PostgreSQL flexible server instances. Logical replication replicates data changes from a source (publisher) server to a target (subscriber) server. Prerequisites PostgreSQL versions supported by logical replication (publisher/subscriber compatible). Network connectivity: subscriber must be able to connect to the publisher (VNet/NSG/firewall rules). A replication role on the publisher (or a role with REPLICATION privilege). Step 1: Configure Server Parameters on both publisher and subscriber: On Publisher: wal_level=logical max_worker_processes=16 max_replication_slots=10 max_wal_senders=10 track_commit_timestamp=on On Subscriber: wal_level=logical max_worker_processes=16 max_replication_slots=10 max_wal_senders=10 track_commit_timestamp=on max_worker_processes = 16 max_sync_workers_per_subscription = 6 autovacuum = OFF (during initial copy) max_wal_size = 64GB checkpoint_timeout = 3600 Step 2: Create Publication (Publisher) and alter role with replication privilege ALTER ROLE <replication_user> WITH REPLICATION; CREATE PUBLICATION pub FOR ALL TABLES; Step 3: Create Subscription (Subscriber) CREATE SUBSCRIPTION <subscription-name> CONNECTION 'host=<publisher_host> dbname=<db> user=<user> password=<pwd>' PUBLICATION <publication-name>;</publication-name></pwd></user></db></publisher_host></subscription-name> Step 4: Monitor Publisher: This shows active processes on the publisher, including replication workers. SELECT application_name, wait_event_type, wait_event, query, backend_type FROM pg_stat_activity WHERE state = 'active'; Subscriber: The ‘pg_stat_progress_copy’ table tracks the progress of the initial data copy for each table. SELECT * FROM pg_stat_progress_copy; To explore more details on how to get started with logical replication, visit our blog on Tuning logical replication for Azure Database for PostgreSQL. Conclusion That’s all for the September 2025 feature highlights! We remain committed to making Azure Database for PostgreSQL more powerful and secure with every release. Stay up to date on the latest enhancements by visiting our Azure Database for PostgreSQL blog updates link. Your feedback matters and helps us shape the future of PostgreSQL on Azure. If you have suggestions, ideas, or questions, we’d love to hear from you: https://aka.ms/pgfeedback. We look forward to sharing even more exciting capabilities in the coming months. Stay tuned!675Views4likes0CommentsEffectively troubleshoot latency in SQL Server Transactional replication: Part 2
Are you struggling with latency issues in SQL Server Transactional replication? Our comprehensive guide provides clear, step-by-step instructions to effectively troubleshoot and resolve these challenges. Dive into proven techniques and best practices that will help you enhance your SQL Server's performance and ensure seamless data replication. Don't let latency slow you down—master the art of SQL Server troubleshooting today! I hope you find this teaser engaging! If you need any adjustments or additional content, feel free to let me know.4.5KViews4likes2CommentsAnnouncing Mirroring for Azure Database for PostgreSQL in Microsoft Fabric for Public Preview
Back at the first European Microsoft Fabric Community Conference in September 2024 we announced our Private Preview program for Mirroring for Azure Database for PostgreSQL in Microsoft Fabric. Today, in conjunction with 2025 edition of Microsoft Fabric Community Conference in Las Vegas, we're thrilled to announce our Public Preview milestone, giving customers the ability to leverage friction-free near-real time replication from Azure Database for PostgreSQL flexible server to Fabric OneLake in Delta tables, providing a solid foundation for reporting, advanced analytics, AI, and data science on operational data with minimal effort and impact on transactional workloads. Mirroring is setup from Fabric Data Warehousing experience by providing the Azure Database for PostgreSQL flexible server and database connection details, provide selections on what needs to be mirrored into Fabric, either all data or user selected eligible mirrored tables. And, just like that, mirroring is ready to go. Mirroring Azure Database for PostgreSQL flexible server creates an initial snapshot in Fabric OneLake, after which data is kept in sync in near-real time with every transaction. How mirroring to Fabric works in Azure Database for PostgreSQL flexible server Fabric mirroring in Azure Database for PostgreSQL flexible server is based on principles such as logical replication and the Change Data Capture (CDC) design pattern. Once Fabric mirroring is established for a database in Azure Database for PostgreSQL flexible server, an initial snapshot is created by a background process for selected tables to be mirrored. That snapshot is shipped to a Fabric OneLake's landing zone in Parquet format. A process running in Fabric, known as replicator, takes these initial snapshot files and creates tables in Delta format in the Mirrored database artifact. Subsequent changes applied to selected tables are also captured in the source database and shipped to the OneLake landing zone in batches. Those batches of changes are finally applied to the respective Delta tables in the Mirrored database artifact. For Fabric mirroring, the CDC pattern is implemented in a proprietary PostgreSQL extension called azure_cdc, which is installed and registered in source databases during Fabric mirroring enablement workflow. This guided process has a new dedicated page in Azure Portal and is setting up all required pre-requisites and is offering a simplified experience where you just need to select which databases you want to replicate to Fabric OneLake (default is up to 3). You can read additional details regarding the server enablement process and other critical configuration and monitoring options on a dedicated page in Azure Database for PostgreSQL flexible server product documentation. Explore advanced analytics and data engineering for PostgreSQL in Microsoft Fabric Once data is on OneLake, mirrored data in the delta format is ready for immediate consumption across all Fabric experiences and features, such as Power BI with new Direct Lake mode, Data Warehouse, Data Engineering, Lakehouse, KQL Database, Notebooks and Copilot, which work instantly. Direct Lake mode is a fast path to load the data from the lake with groundbreaking semantic model capability for analyzing very large data volumes in Power BI. As Direct Lake mode also supports reading Delta tables right from OneLake, the Mirrored PostgreSQL database is Power BI ready along with Copilot capabilities. Data across any mirrored database (either Azure Database for PostgreSQL, Azure SQL DB, Azure Cosmos DB or Snowflake) can be cross-joined as well, enabling querying across any database, warehouse or Lakehouse (either as a shortcut to AWS S3 or ADLS Gen 2 etc.). With the same approach, you can also have multiple PosgreSQL databases from multiple servers mirrored to OneLake like in a typical SaaS provider scenario, where each database belongs to a different tenant, and execute cross-database queries to aggregate and analyze critical business metrics. Data scientists and data engineers can work with the mirrored Azure Database for PostgreSQL data joined with other sources (see this example with CosmosDB data) that are created as shortcuts in Lakehouse. Read about endless possibilities when loading operational databases in OneLake and Microsoft Fabric in related section of our product documentation here. Getting started with Mirroring for Azure Database for PostgreSQL in Fabric To summarize, Mirroring Azure Database for PostgreSQL in Microsoft Fabric plays a crucial role in enabling analytics and driving insights from operational data by ensuring that the most recent data is available for analysis. This allows businesses to make decisions based on the most current situation, rather than relying on outdated information. Improving accuracy also reduces the risk of discrepancies between the source and the replicated data, leading to more accurate analytics and reliable insights. In addition, is essential for predictive analytics and AI models provide the most recent data to make accurate predictions and decisions. To get started and learn more about Mirroring Azure Database for PostgreSQL flexible server in Microsoft Fabric, its pre-requisites, setup, FAQ’s, current limitations, and tutorial, please click here to read all about it and stay tuned for more updates and new features coming soon. To get more updates also on overall Mirroring capabilities in Fabric, please read this other blog post where you will get the latest news.1.5KViews3likes4CommentsLesson Learned #110 Azure SQL Managed Instance and Azure DNS
I got this recent case where customer wanted to create a transaction replication from Azure SQL Managed instance to another SQL Server inside the same virtual network, but in a different subnet, but all inside Azure. All communications that happens on Azure Network if not set a custom DNS will use Azure DNS to resolve name of resources inside the network. However there is something very important in the documentation https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-name-resolution-for-vms-and-role-instances#azure-provided-name-resolution "Azure-provided name resolution Along with resolution of public DNS names, Azure provides internal name resolution for VMs and role instances that reside within the same virtual network or cloud service. VMs and instances in a cloud service share the same DNS suffix, so the host name alone is sufficient. But in virtual networks deployed using the classic deployment model, different cloud services have different DNS suffixes. In this situation, you need the FQDN to resolve names between different cloud services. In virtual networks deployed using the Azure Resource Manager deployment model, the DNS suffix is consistent across the virtual network, so the FQDN is not needed. DNS names can be assigned to both VMs and network interfaces. Although Azure-provided name resolution does not require any configuration, it is not the appropriate choice for all deployment scenarios, as detailed in the previous table." Consider a Azure Resource Manager deployment it would not be necessary to use FQDN, however the way that the deployment of Azure SQL Managed Instance happens it will not share the same DNS sufix and we can see connectivity errors There are some workarounds: use the private IP or the FQDN of the SQL VM. The default DNS sufix is documented in same article above ( https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-name-resolution-for-vms-and-role-instances#name-resolution-that-uses-your-own-dns-server ) "When you are using Azure-provided name resolution, Azure Dynamic Host Configuration Protocol (DHCP) provides an internal DNS suffix (.internal.cloudapp.net) to each VM. This suffix enables host name resolution because the host name records are in the internal.cloudapp.net zone. When you are using your own name resolution solution, this suffix is not supplied to VMs because it interferes with other DNS architectures (like domain-joined scenarios). Instead, Azure provides a non-functioning placeholder (reddog.microsoft.com)." For this test I will create a linked server from SQL MI to SQL VM and we can see that I was able to connect with success to IP and VM.internal.cloudapp.net, but failing to simple VM name This behavior is also documented at https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-custom-dns "An Azure SQL Database Managed Instance must be deployed within an Azure virtual network (VNet). There are a few scenarios (for example, db mail, linked servers to other SQL instances in your cloud or hybrid environment) that require private host names to be resolved from the Managed Instance. In this case, you need to configure a custom DNS inside Azure. Since Managed Instance uses the same DNS for its inner workings, you need to configure the custom DNS server so that it can resolve public domain names. Important Always use fully-qualified domain names (FQDN) for the mail servers, SQL Servers, and other services even if they are within your private DNS zone. For example use smtp.contoso.com for mail server because simple smtp will not be properly resolved."6.4KViews2likes0CommentsIgnite 2025: Advancing Azure Database for MySQL with Powerful New Capabilities
At Ignite 2025, we’re introducing a wave of powerful new capabilities for Azure Database for MySQL, designed to help organizations modernize, scale, and innovate faster than ever before. From enhanced high availability and seamless serverless integrations to AI-powered insights and greater flexibility for developers, these advancements reflect our commitment to delivering a resilient, intelligent data platform. Join us as we unveil what’s next for MySQL on Azure - and discover how industry leaders are already building the future with confidence. Enhanced Failover Performance with Dedicated SLB for High-Availability Servers We’re excited to announce the General Availability of Dedicated Standard Load Balancer (SLB) for HA-enabled servers in Azure Database for MySQL. This enhancement introduces a dedicated SLB to High Availability configurations for servers created with public access or private link. By managing the MySQL data traffic path, SLB eliminates the need for DNS updates during failover, significantly reducing failover time. Previously, failover relied on DNS changes, which caused delays due to DNS TTL (30 seconds) and client-side DNS caching. What’s new with GA: The FQDN consistently resolves to the SLB IP address before and after failover. Load-balancing rules automatically route traffic to the active node. Removes DNS cache dependency, delivering faster failovers. Note: This feature is not supported for servers using private access with VNet integration. Learn more Build serverless, event-driven apps at scale – now GA with Trigger Bindings for Azure Functions We’re excited to announce the General Availability of Azure Database for MySQL Trigger bindings for Azure Functions, completing the full suite of Input, Output, and Trigger capabilities. This feature lets you build real-time, event-driven applications by automatically invoking Azure Functions when MySQL table rows are created or updated - eliminating custom polling and boilerplate code. With native support across multiple languages, developers can now deliver responsive, serverless solutions that scale effortlessly and accelerate innovation. Learn more Enable AI agents to query Azure Database for MySQL using Azure MCP Server We’re excited to announce that Azure MCP Server now supports Azure Database for MySQL, enabling AI agents to query and manage MySQL data using natural language through the open Model Context Protocol (MCP). Instead of writing SQL, you can simply ask questions like “Show the number of new users signed up in the last week in appdb.users grouped by day.”, all secured with Microsoft Entra authentication for enterprise-grade security. This integration delivers a unified, secure interface for building intelligent, context-aware workflows across Azure services - accelerating insights and automation. Learn more Greater networking flexibility with Custom Port Support Custom port support for Azure Database for MySQL is now generally available, giving organizations the flexibility to configure a custom port (between 25001 and 26000) during new server creation. This enhancement streamlines integration with legacy applications, supports strict network security policies, and helps avoid port conflicts in complex environments. Supported across all network configurations - including public access, private access, and Private Link - custom port provisioning ensures every new MySQL server can be tailored to your needs. The managed experience remains seamless, with all administrative capabilities and integrations working as before. Learn more Streamline migrations and compatibility with Lower Case Table Names support Azure Database for MySQL now supports configuring lower_case_table_names server parameter during initial server creation for MySQL 8.0 and above, ensuring seamless alignment with your organization’s naming conventions. This setting is automatically inherited for restores and replicas, and cannot be modified. Key Benefits: Simplifies migrations by aligning naming conventions and reducing complexity. Enhances compatibility with legacy systems that depend on case-insensitive table names. Minimizes support dependency, enabling faster and smoother onboarding. Learn more Unlock New Capabilities with Private Preview Features at Ignite 2025 We’re excited to announce that you can now explore two powerful capabilities in early access - Reader Endpoint for seamless read scaling and Server Rename for greater flexibility in server management. Scale reads effortlessly with Reader Endpoint (Private Preview) We’re excited to announce that the Reader Endpoint feature for Azure Database for MySQL is now ready for private preview. Reader Endpoint provides a dedicated read-only endpoint for read replicas, enabling automatic connection-based load balancing of read-only traffic across multiple replicas. This simplifies application architecture by offering a single endpoint for read operations, improving scalability and fault tolerance. Azure Database for MySQL supports up to 10 read replicas per primary server. By routing read-only traffic through the reader endpoint, application teams can efficiently manage connections and optimize performance without handling individual replica endpoints. Reader endpoints continuously monitor the health of replicas and automatically exclude any replica that exceeds the configured replication lag threshold or becomes unavailable. To enroll in the preview, please submit your details using this form. Limitations During Private Preview: Only performance-based routing is supported in this preview. Certain settings such as routing method and the option to attach new replicas to the reader endpoint can only be configured at creation time. Only one reader endpoint can be created per replica group. Including the primary server as a fallback for read traffic when no replicas are available is not supported in this preview. Get flexibility in server management with Server Rename (Private Preview) We’re excited to announce the Private Preview of Server Rename for Azure Database for MySQL. This feature lets you update the name of an existing MySQL server without recreating it, migrating data, or disrupting applications - making it easier to adopt clear, consistent naming. It provides a near zero-downtime path to a new hostname of the server. To enroll in the preview, please submit your details using this form. Limitations During Private Preview: Primary server with read replicas: Renaming a primary server that has read replicas keeps replication healthy. However, the SHOW SLAVE STATUS output on the replicas will still display the old primary server's name. This is a display inconsistency only and does not affect replication. Renaming is currently unsupported for servers using Customer Managed Key (CMK) encryption or Microsoft Entra Authentication (Entra Id). Real-World Success: Azure Database for MySQL Powers Resilient Applications at Scale Factorial Factorial, a leading HR software provider, uses Azure Database for MySQL alongside Azure Kubernetes Service to deliver secure, scalable HR solutions for thousands of businesses worldwide. By leveraging Azure Database for MySQL’s reliability and seamless integration with cloud-native technologies, Factorial ensures high availability and rapid innovation for its customers. Learn more YES (Youth Employment Service) South Africa’s largest youth employment initiative, YES, operates at national scale by leveraging Azure Database for MySQL to deliver a resilient, centralized platform for real-time job matching, learning management, and career services - connecting thousands of young people and employers, and helping nearly 45 percent of participants secure permanent roles within six months. Learn more Nasdaq At Ignite 2025, Nasdaq will showcase how it uses Azure Database for MySQL - alongside Azure Database for PostgreSQL and other Azure products - to power a secure, resilient architecture that safeguards confidential data while unlocking new agentic AI capabilities. Learn more These examples demonstrate that Azure Database for MySQL is trusted by industry leaders to build resilient, scalable applications - empowering organizations to innovate and grow with confidence. We Value Your Feedback Azure Database for MySQL is built for scale, resilience, and performance - ready to support your most demanding workloads. With every update, we’re focused on simplifying development, migration, and management so you can build with confidence. Explore the latest features and enhancements to see how Azure Database for MySQL meets your data needs today and in the future. We welcome your feedback and invite you to share your experiences or suggestions at AskAzureDBforMySQL@service.microsoft.com Stay up to date by visiting What's new in Azure Database for MySQL, and follow us on YouTube | LinkedIn | X for ongoing updates. Thank you for choosing Azure Database for MySQL!516Views2likes0CommentsAugust 2025 Recap: Azure Database for PostgreSQL
Hello Azure Community, August was an exciting month for Azure Database for PostgreSQL! We have introduced updates that make your experience smarter and more secure. From simplified Entra ID group login to integrations with LangChain and LangGraph, these updates help with improving access control and seamless integration for your AI agents and applications. Stay tuned as we dive deeper into each of these feature updates. Feature Highlights Enhanced Performance recommendations for Azure Advisor - Generally Available Entra-ID group login using user credentials - Public Preview New Region Buildout: Austria East LangChain and LangGraph connector Active-Active Replication Guide Enhanced Performance recommendations for Azure Advisor - Generally Available Azure Advisor now offers enhanced recommendations to further optimize PostgreSQL server performance, security, and resource management. These key updates are as follows: Index Scan Insights: Detection and recommendations for disabled index and index-only scans to improve query efficiency. Audit Logging Review: Identification of excessive logging via the pgaudit.log parameter, with guidance to reduce overhead. Statistics Monitoring: Alerts on server statistics resets and suggestions to restore accurate performance tracking. Storage Optimization: Analysis of storage usage with recommendations to enable the Storage Autogrow feature for seamless scaling. Connection Management: Evaluation of workloads for short-lived connections and frequent connectivity errors, with recommendations to implement PgBouncer for efficient connection pooling. These enhancements aim to provide deeper operational insights and support proactive performance tuning for PostgreSQL workloads. For more details read the Performance recommendations documentation. Entra-ID group login using user credentials - Public Preview The public preview for Entra-ID group login using user credentials is now available. This feature simplifies user management and improves security within the Azure Database for PostgreSQL. This allows administrators and users to benefit from a more streamlined process like: Changes in Entra-ID group memberships are synchronized on a periodic 30min basis. This scheduled syncing ensures that access controls are kept up to date, simplifying user management and maintaining current permissions. Users can log in with their own credentials, streamlining authentication, and improving auditing and access management for PostgreSQL environments. As organizations continue to adopt cloud-native identity solutions, this update represents a major improvement in operational efficiency and security for PostgreSQL database environments. For more details read the documentation on Entra-ID group login. New Region Buildout: Austria East New region rollout! Azure Database for PostgreSQL flexible server is now available in Austria East, giving customers in and around the region lower latency and data residency options. This continues our mission to bring Azure PostgreSQL closer to where you build and run your apps. For the full list of regions visit: Azure Database for PostgreSQL Regions. LangChain and LangGraph connector We are excited to announce that native LangChain & LangGraph support is now available for Azure Database for PostgreSQL! This integration brings native support for Azure Database for PostgreSQL into LangChain or LangGraph workflows, enabling developers to use Azure PostgreSQL as a secure and high-performance vector store and memory store for their AI agents and applications. Specifically, this package adds support for: Microsoft Entra ID (formerly Azure AD) authentication when connecting to your Azure Database for PostgreSQL instances, and, DiskANN indexing algorithm when indexing your (semantic) vectors. This package makes it easy to connect LangChain to your Azure-hosted PostgreSQL instances whether you're building intelligent agents, semantic search, or retrieval-augmented generation (RAG) systems. Read more at https://aka.ms/azpg-agent-frameworks Active-Active Replication Guide We have published a new blog article that guides you through setting up active-active replication in Azure Database for PostgreSQL using the pglogical extension. This walkthrough covers the fundamentals of active-active replication, key prerequisites for enabling bi-directional replication, and step-by-step demo scripts for the setup. It also compares native and pglogical approaches helping you choose the right strategy for high availability, and multi-region resilience in production environments. Read more about the active-active replication guide on this blog. Azure Postgres Learning Bytes 🎓 Enabling Zone-Redundant High Availability for Azure Database for PostgreSQL Flexible Server Using APIs. High availability (HA) is essential for ensuring business continuity and minimizing downtime in production workloads. With Zone-Redundant HA, Azure Database for PostgreSQL Flexible Server automatically provisions a standby replica in a different availability zone, providing stronger fault tolerance against zone-level failures. This section will guide you on how to enable Zone-Redundant HA using REST APIs. Using REST APIs gives you clear visibility into the exact requests and responses, making it easier to debug issues and validate configurations as you go. You can use any REST API client tool of your choice to perform these operations including Postman, Thunder Client (VS Code extension), curl, etc. to send requests and inspect the results directly. Before enabling Zone-Redundant HA, make sure your server is on the General Purpose or Memory Optimized tier and deployed in a region that supports it. If your server is currently using Same-Zone HA, you must first disable it before switching to Zone-Redundant. Steps to Enable Zone-Redundant HA: Get an ARM Bearer token: Run this in a terminal where Azure CLI is signed in (or use Azure Cloud Shell) az account get-access-token --resource https://management.azure.com --query accessToken -o tsv Paste token in your API client tool Authorization: `Bearer <token>` </token> Inspect the server (GET) using the following URL: https://management.azure.com/subscriptions/{{subscriptionId}}/resourceGroups/{{resourceGroup}}/providers/Microsoft.DBforPostgreSQL/flexibleServers/{{serverName}}?api-version={{apiVersion}} In the JSON response, note: sku.tier → must be 'GeneralPurpose' or 'MemoryOptimized' properties.availabilityZone → '1' or '2' or '3' (depends which availability zone that was specified while creating the primary server, it will be selected by system if the availability zone is not specified) properties.highAvailability.mode → 'Disabled', 'SameZone', or 'ZoneRedundant' properties.highAvailability.state → e.g. 'NotEnabled','CreatingStandby', 'Healthy' If HA is currently SameZone, disable it first (PATCH) using API. Use the same URL in Step 3, in the Body header insert: { "properties": { "highAvailability": { "mode": "Disabled" } } } Enable Zone Redundant HA (PATCH) using API: Use the same URL in Step 3, in the Body header insert: { "properties": { "highAvailability": { "mode": "ZoneRedundant" } } } Monitor until HA is Healthy: Re-run the GET from Step 3 every 30-60 seconds until you see: "highAvailability": { "mode": "ZoneRedundant", "state": "Healthy" } Conclusion That’s all for our August 2025 feature updates! We’re committed to making Azure Database for PostgreSQL better with every release, and your feedback plays a key role in shaping what’s next. 💬 Have ideas, questions, or suggestions? Share them with us: https://aka.ms/pgfeedback 📢 Want to stay informed about the latest features and best practices? Follow us here for the latest announcements, feature releases, and best practices: Azure Database for PostgreSQL Blog More exciting improvements are on the way—stay tuned for what’s coming next!1.1KViews2likes0CommentsModel Context Protocol (MCP) Server for Azure Database for MySQL
We are excited to introduce a new MCP Server for integrating your AI models with data hosted in Azure Database for MySQL. By utilizing this server, you can effortlessly connect any AI application that supports MCP to your MySQL flexible server (using either MySQL password-based authentication or Microsoft Entra authentication methods), enabling you to provide your business data as meaningful context in a standardized and secure manner.2.3KViews2likes0Comments