python
49 TopicsGenerative AI for Beginners - Full Videos Series Released!
With so many new technologies, tools and terms in the world of Generative AI, it can be hard to know where to start or what to learn next. "Generative AI for Beginners" is designed to help you on your learning journey no matter where you are now. We are happy announce that the "Generative AI for Beginners" course has received a major refresh - 18 new videos for each lesson.Learn how to build MCP servers with Python and Azure
We just concluded Python + MCP, a three-part livestream series where we: Built MCP servers in Python using FastMCP Deployed them into production on Azure (Container Apps and Functions) Added authentication, including Microsoft Entra as the OAuth provider All of the materials from our series are available for you to keep learning from, and linked below: Video recordings of each stream Powerpoint slides Open-source code samples complete with Azure infrastructure and 1-command deployment If you're an instructor, feel free to use the slides and code examples in your own classes. Spanish speaker? We've got you covered- check out the Spanish version of the series. 🙋🏽♂️Have follow up questions? Join our weekly office hours on Foundry Discord: Tuesdays @ 11AM PT → Python + AI Thursdays @ 8:30 AM PT → All things MCP Building MCP servers with FastMCP 📺 Watch YouTube recording In the intro session of our Python + MCP series, we dive into the hottest technology of 2025: MCP (Model Context Protocol). This open protocol makes it easy to extend AI agents and chatbots with custom functionality, making them more powerful and flexible. We demonstrate how to use the Python FastMCP SDK to build an MCP server running locally. Then we consume that server from chatbots like GitHub Copilot in VS Code, using it's tools, resources, and prompts. Finally, we discover how easy it is to connect AI agent frameworks like Langchain and Microsoft agent-framework to the MCP server. Slides for this session Code repository with examples: python-mcp-demos Deploying MCP servers to the cloud 📺 Watch YouTube recording In our second session of the Python + MCP series, we deploy MCP servers to the cloud! We walk through the process of containerizing a FastMCP server with Docker and deploying to Azure Container Apps. Then we instrument the MCP server with OpenTelemetry and observe the tool calls using Azure Application Insights and Logfire. Finally, we explore private networking options for MCP servers, using virtual networks that restrict external access to internal MCP tools and agents. Slides for this session Code repository with examples: python-mcp-demos Authentication for MCP servers 📺 Watch YouTube recording In our third session of the Python + MCP series, we explore the best ways to build authentication layers on top of your MCP servers. We start off simple, with an API key to gate access, and demonstrate a key-restricted FastMCP server deployed to Azure Functions. Then we move on to OAuth-based authentication for MCP servers that provide user-specific data. We dive deep into MCP authentication, which is built on top of OAuth2 but with additional requirements like PRM and DCR/CIMD, which can make it difficult to implement fully. We demonstrate the full MCP auth flow in the open-souce identity provider KeyCloak, and show how to use an OAuth proxy pattern to implement MCP auth on top of Microsoft Entra. Slides for this session Code repository with Container Apps examples: python-mcp-demos Code repository with Functions examples: python-mcp-demos5.1KViews2likes2CommentsMicrosoft AI Agents Hack April 8-30th 2025
Build, Innovate, and #Hacktogether Learn from 20+ expert-led sessions streamed live on YouTube, covering top frameworks like Semantic Kernel, Autogen, the new Azure AI Agents SDK and the Microsoft 365 Agents SDK. Get hands-on experience, unleash your creativity, and build powerful AI agents—then submit your hack for a chance to win amazing prizes! Key Dates Expert sessions: April 8th 2025 – April 30th 2025 Hack submission deadline: April 30th 2025, 11:59 PM PST Don't miss out — join us and start building the future of AI! Registration Register now! That form will register you for the hackathon. Afterwards, browse through the live stream schedule below and register for the sessions you're interested in. Once you're registered, introduce yourself and look for teammates! Project Submission Once your hack is ready, follow the submission process. Prizes and Categories Projects will be evaluated by a panel of judges, including Microsoft engineers, product managers, and developer advocates. Judging criteria will include innovation, impact, technical usability, and alignment with corresponding hackathon category. Each winning team in the categories below will receive a prize. Best Overall Agent - $20,000 Best Agent in Python - $5,000 Best Agent in C# - $5,000 Best Agent in Java - $5,000 Best Agent in JavaScript/TypeScript - $5,000 Best Copilot Agent (using Microsoft Copilot Studio or Microsoft 365 Agents SDK) - $5,000 Best Azure AI Agent Service Usage - $5,000 Each team can only win in one category. All participants who submit a project will receive a digital badge. Stream Schedule The series starts with a kick-off for all developers, and then dives into specific tracks for Python, Java, C#, and JavaScript developers. The Copilots track will focus on building intelligent copilots with Microsoft 365 and Copilot Studio. English Week 1: April 8th-11th Day/Time Topic Track 4/8 09:00 AM PT AI Agents Hackathon Kickoff All 4/9 09:00 AM PT Build your code-first app with Azure AI Agent Service Python 4/9 12:00 PM PT AI Agents for Java using Azure AI Foundry Java 4/9 03:00 PM PT Build your code-first app with Azure AI Agent Service Python 4/10 04:00 AM PT Building Secure and Intelligent Copilots with Microsoft 365 Copilots 4/10 09:00 AM PT Overview of Microsoft 365 Copilot Extensibility Copilots 4/10 12:00 PM PT Transforming business processes with multi-agent AI using Semantic Kernel Python 4/10 03:00 PM PT Build your code-first app with Azure AI Agent Service (.NET) C# Week 2: April 14th-18th Day/Time Topic Track 4/15 07:00 AM PT Your first AI Agent in JS with Azure AI Agent Service JS 4/15 09:00 AM PT Building Agentic Applications with AutoGen v0.4 Python 4/15 12:00 PM PT AI Agents + .NET Aspire C# 4/15 03:00 PM PT Prototyping AI Agents with GitHub Models Python 4/16 04:00 AM PT Multi-agent AI apps with Semantic Kernel and Azure Cosmos DB C# 4/16 06:00 AM PT Building declarative agents with Microsoft Copilot Studio & Teams Toolkit Copilots 4/16 09:00 AM PT Building agents with an army of models from the Azure AI model catalog Python 4/16 12:00 PM PT Multi-Agent API with LangGraph and Azure Cosmos DB Python 4/16 03:00 PM PT Mastering Agentic RAG Python 4/17 06:00 AM PT Build your own agent with OpenAI, .NET, and Copilot Studio C# 4/17 09:00 AM PT Building smarter Python AI agents with code interpreters Python 4/17 12:00 PM PT Building Java AI Agents using LangChain4j and Dynamic Sessions Java 4/17 03:00 PM PT Agentic Voice Mode Unplugged Python Week 3: April 21st-25th Day/Time Topic Track 4/21 12:00 PM PT Knowledge-augmented agents with LlamaIndex.TS JS 4/22 06:00 AM PT Building a AI Agent with Prompty and Azure AI Foundry Python 4/22 09:00 AM PT Real-time Multi-Agent LLM solutions with SignalR, gRPC, and HTTP based on Semantic Kernel Python 4/22 10:30 AM PT Learn Live: Fundamentals of AI agents on Azure - 4/22 12:00 PM PT Demystifying Agents: Building an AI Agent from Scratch on Your Own Data using Azure SQL C# 4/22 03:00 PM PT VoiceRAG: talk to your data Python 4/14 06:00 AM PT Prompting is the New Scripting: Meet GenAIScript JS 4/23 09:00 AM PT Building Multi-Agent Apps on top of Azure PostgreSQL Python 4/23 12:00 PM PT Agentic RAG with reflection Python 4/23 03:00 PM PT Multi-source data patterns for modern RAG apps C# 4/24 09:00 AM PT Extending AI Agents with Azure Functions Python, C# 4/24 12:00 PM PT Build real time voice agents with Azure Communication Services Python 4/24 03:00 PM PT Bringing robots to life: Real-time interactive experiences with Azure OpenAI GPT-4o Python Week 4: April 28th-30th Day/Time Topic Track 4/29, 01:00 PM UTC / 06:00 AM PT Irresponsible AI Agents Java 4/29, 04:00 PM UTC / 09:00 AM PT Securing AI agents on Azure Python Spanish / Español See all our Spanish sessions on the Spanish landing page. Consulta todas nuestras sesiones en español en la página de inicio en español. Portuguese / Português See our Portuguese sessions on the Portuguese landing page. Veja nossas sessões em português na página de entrada em português. Chinese / 简体字 See our Chinese sessions on the Chinese landing page. 请查看我们的中文课程在中文登录页面. Office Hours For additional help with your hacks, you can drop by Office Hours in our AI Discord channel. Here are the Office Hours scheduled so far: Day/Time Topic/Hosts Every Thursday, 12:30 PM PT Python + AI (English) Every Monday, 03:00 PM PT Python + AI (Spanish) Learning Resources Access resources here! Join TheSource EHub to explore top picks including trainings, livestreams, repositories, technical guides, blogs, downloads, certifications, and more, all updated monthly. The AI Agent section offers essential resources for creating AI Agents, while other sections provide insights into AI, development tools, and programming languages. You can also post questions in our discussions forum, or chat with attendees in the Discord channel.Introducing Azure AI Travel Agents: A Flagship MCP-Powered Sample for AI Travel Solutions
We are excited to introduce AI Travel Agents, a sample application with enterprise functionality that demonstrates how developers can coordinate multiple AI agents (written in multiple languages) to explore travel planning scenarios. It's built with LlamaIndex.TS for agent orchestration, Model Context Protocol (MCP) for structured tool interactions, and Azure Container Apps for scalable deployment. TL;DR: Experience the power of MCP and Azure Container Apps with The AI Travel Agents! Try out live demo locally on your computer for free to see real-time agent collaboration in action. Share your feedback on our community forum. We’re already planning enhancements, like new MCP-integrated agents, enabling secure communication between the AI agents and MCP servers and more. NOTE: This example uses mock data and is intended for demonstration purposes rather than production use. The Challenge: Scaling Personalized Travel Planning Travel agencies grapple with complex tasks: analyzing diverse customer needs, recommending destinations, and crafting itineraries, all while integrating real-time data like trending spots or logistics. Traditional systems falter with latency, scalability, and coordination, leading to delays and frustrated clients. The AI Travel Agents tackles these issues with a technical trifecta: LlamaIndex.TS orchestrates six AI agents for efficient task handling. MCP equips agents with travel-specific data and tools. Azure Container Apps ensures scalable, serverless deployment. This architecture delivers operational efficiency and personalized service at scale, transforming chaos into opportunity. LlamaIndex.TS: Orchestrating AI Agents The heart of The AI Travel Agents is LlamaIndex.TS, a powerful agentic framework that orchestrates multiple AI agents to handle travel planning tasks. Built on a Node.js backend, LlamaIndex.TS manages agent interactions in a seamless and intelligent manner: Task Delegation: The Triage Agent analyzes queries and routes them to specialized agents, like the Itinerary Planning Agent, ensuring efficient workflows. Agent Coordination: LlamaIndex.TS maintains context across interactions, enabling coherent responses for complex queries, such as multi-city trip plans. LLM Integration: Connects to Azure OpenAI, GitHub Models or any local LLM using Foundy Local for advanced AI capabilities. LlamaIndex.TS’s modular design supports extensibility, allowing new agents to be added with ease. LlamaIndex.TS is the conductor, ensuring agents work in sync to deliver accurate, timely results. Its lightweight orchestration minimizes latency, making it ideal for real-time applications. MCP: Fueling Agents with Data and Tools The Model Context Protocol (MCP) empowers AI agents by providing travel-specific data and tools, enhancing their functionality. MCP acts as a data and tool hub: Real-Time Data: Supplies up-to-date travel information, such as trending destinations or seasonal events, via the Web Search Agent using Bing Search. Tool Access: Connects agents to external tools, like the .NET-based customer queries analyzer for sentiment analysis, the Python-based itinerary planning for trip schedules or destination recommendation tools written in Java. For example, when the Destination Recommendation Agent needs current travel trends, MCP delivers via the Web Search Agent. This modularity allows new tools to be integrated seamlessly, future-proofing the platform. MCP’s role is to enrich agent capabilities, leaving orchestration to LlamaIndex.TS. Azure Container Apps: Scalability and Resilience Azure Container Apps powers The AI Travel Agents sample application with a serverless, scalable platform for deploying microservices. It ensures the application handles varying workloads with ease: Dynamic Scaling: Automatically adjusts container instances based on demand, managing booking surges without downtime. Polyglot Microservices: Supports .NET (Customer Query), Python (Itinerary Planning), Java (Destination Recommandation) and Node.js services in isolated containers. Observability: Integrates tracing, metrics, and logging enabling real-time monitoring. Serverless Efficiency: Abstracts infrastructure, reducing costs and accelerating deployment. Azure Container Apps' global infrastructure delivers low-latency performance, critical for travel agencies serving clients worldwide. The AI Agents: A Quick Look While MCP and Azure Container Apps are the stars, they support a team of multiple AI agents that drive the application’s functionality. Built and orchestrated with Llamaindex.TS via MCP, these agents collaborate to handle travel planning tasks: Triage Agent: Directs queries to the right agent, leveraging MCP for task delegation. Customer Query Agent: Analyzes customer needs (emotions, intents), using .NET tools. Destination Recommendation Agent: Suggests tailored destinations, using Java. Itinerary Planning Agent: Crafts efficient itineraries, powered by Python. Web Search Agent: Fetches real-time data via Bing Search. These agents rely on MCP’s real-time communication and Azure Container Apps’ scalability to deliver responsive, accurate results. It's worth noting though this sample application uses mock data for demonstration purpose. In real worl scenario, the application would communicate with an MCP server that is plugged in a real production travel API. Key Features and Benefits The AI Travel Agents offers features that showcase the power of MCP and Azure Container Apps: Real-Time Chat: A responsive Angular UI streams agent responses via MCP’s SSE, ensuring fluid interactions. Modular Tools: MCP enables tools like analyze_customer_query to integrate seamlessly, supporting future additions. Scalable Performance: Azure Container Apps ensures the UI, backend and the MCP servers handle high traffic effortlessly. Transparent Debugging: An accordion UI displays agent reasoning providing backend insights. Benefits: Efficiency: LlamaIndex.TS streamlines operations. Personalization: MCP’s data drives tailored recommendations. Scalability: Azure ensures reliability at scale. Thank You to Our Contributors! The AI Travel Agents wouldn’t exist without the incredible work of our contributors. Their expertise in MCP development, Azure deployment, and AI orchestration brought this project to life. A special shoutout to: Pamela Fox – Leading the developement of the Python MCP server. Aaron Powell and Justin Yoo – Leading the developement of the .NET MCP server. Rory Preddy – Leading the developement of the Java MCP server. Lee Stott and Kinfey Lo – Leading the developement of the Local AI Foundry Anthony Chu and Vyom Nagrani – Leading Azure Container Apps roadmap Matt Soucoup and Julien Dubois – Leading the ACA DevRel strategy Wassim Chegham – Architected MCP and backend orchestration. And many more! See the GitHub repository for all contributors. Thank you for your dedication to pushing the boundaries of AI and cloud technology! Try It Out Experience the power of MCP and Azure Container Apps with The AI Travel Agents! Try out live demo locally on your computer for free to see real-time agent collaboration in action. Conclusion Developers can explore today the open-source project on GitHub, with setup and deployment instructions. Share your feedback on our community forum. We’re already planning enhancements, like new MCP-integrated agents, enabling secure communication between the AI agents and MCP servers and more. This is still a work in progress and we also welcome all kind of contributions. Please fork and star the repo to stay tuned for updates! ◾️We would love your feedback and continue the discussion in the Azure AI Foundry Discord aka.ms/foundry/discord On behalf of Microsoft DevRel Team.Enhancing Data Security and Digital Trust in the Cloud using Azure Services.
Enhancing Data Security and Digital Trust in the Cloud by Implementing Client-Side Encryption (CSE) using Azure Apps, Azure Storage and Azure Key Vault. Think of Client-Side Encryption (CSE) as a strategy that has proven to be most effective in augmenting data security and modern precursor to traditional approaches. CSE can provide superior protection for your data, particularly if an authentication and authorization account is compromised.2.8KViews0likes0Comments