python
84 TopicsHost remote MCP servers on Azure Functions
Model Context Protocol (MCP) servers allow AI agents to access external tools, data, and systems, greatly extending the capability and power of agents. When you’re ready to expose your MCP servers externally, within your organization or to the world, it’s important that the servers are run in a secure, scalable, and reliable environment. Azure Functions provides such a robust platform for hosting your remote MCP servers, offering high scalability with the Flex Consumption plan, built‑in authentication feature for Microsoft Entra and OAuth, and a serverless billing model. The platform also offers two hosting options for added flexibility and convenience. The options allow for hosting of MCP servers built with Azure Functions MCP extension or the official MCP SDKs. Azure Functions MCP Extension (GA) The MCP extension allows you to build and host servers using Azure Functions programming model, i.e. using triggers and bindings. The MCP tool trigger allows you to focus on implementing tools you want to expose, instead of worrying about handling protocol and server logistics. The MCP extension launched as public preview back in April and is now generally available, with support for .NET, Java, JavaScript, Python, and Typescript. New features in the extension Support for streamable-http transport Support for the newer streamable-http transport is added to the extension. Unless your client specifically requires the older Server-Sent Events (SSE) transport, you should use the streamable-http. The two transports have different endpoints in the extension: Transport Endpoint Streamable HTTP /runtime/webhooks/mcp Server-Sent Events (SSE) /runtime/webhooks/mcp/sse Defining server information You can use the extensions.mcp section in host.json to define MCP server information. { "version": "2.0", "extensions": { "mcp": { "instructions": "Some test instructions on how to use the server", "serverName": "TestServer", "serverVersion": "2.0.0", "encryptClientState": true, "messageOptions": { "useAbsoluteUriForEndpoint": false }, "system": { "webhookAuthorizationLevel": "System" } } } } Built-in server authentication and authorization The built-in feature implements the requirements of the MCP authorization protocol, such as issuing 401 challenge and hosting the Protected Resource Metadata document. You can configure it to use identity providers like Microsoft Entra for server authentication. In addition to server authenticating, you can also leverage this feature to implement on-behalf-of (OBO) auth flows where the client invokes a tool that accesses some downstream services on-behalf-of the user. Learn more about the built-in authentication and authorization feature. Mavin Build Plugin for Java For Java applications, the Maven Build Plugin (version 1.40.0) parses and verifies MCP tool annotations during build time. This process automatically generates the correct MCP extension configuration, ensuring that the MCP tool defined by the user is properly set up. The build-time analysis is especially beneficial for Java apps, as it allows developers to utilize the MCP extension without concerns about increased cold start times. We'll continuously enhance the plugin’s capabilities. Upcoming improvements, such as property type inference, will reduce manual configuration and make it even easier to use the McpToolTrigger. Get started Checkout the quickstarts to get an MCP extension server deployed in minutes: C# (.NET) remote-mcp-functions-dotnet Python remote-mcp-functions-python TypeScript (Node.js) remote-mcp-functions-typescript Java remote-mcp-functions-java References Learn more about the MCP extension and tool trigger in official documentations. Self‑hosted MCP server (public preview) In addition to the MCP extension, Azure Functions also supports hosting MCP servers implemented with the official SDKs. This is a suitable option for teams that have existing SDK‑based servers or who favor the SDK experience over the Functions programming model. There is no need to modify your server code; you can lift and shift these MCP servers to Azure Functions— which is why they are termed self‑hosted. The hosting capability supports the following features: Stateless servers that use the streamable-http transport. If you need your server to be stateful, consider using the Functions MCP extension for now. Servers implemented with Python, TypeScript, C#, or Java MCP SDK. Built-in server authentication and authorization like the MCP extension Hosting requirement Self-hosted MCP servers are deployed to the Azure Functions platform as custom handlers. You can think of custom handlers as lightweight web servers that receive events from the Functions host. The only requirement for hosting the MCP server is a file called host.json. Add this file to your project root to tell Functions how to run the server. An example host.json for a Python server looks like: { "version": "2.0", "configurationProfile": "mcp-custom-handler", "customHandler": { "description": { "defaultExecutablePath": "python", "arguments": ["path to main python script, e.g. hello.py"] }, "port": "8000" } } Get started Check out quickstarts to get your self-hosted MCP server deployed in minutes: C# (.NET) mcp-sdk-functions-hosting-dotnet Python mcp-sdk-functions-hosting-python TypeScript (Node.js) mcp-sdk-functions-hosting-node Java Coming soon! References Read the official documentation of self-hosted MCP servers and learn about integrations with Azure services like Foundry and API Center. For .NET developers - check out the overview of self-hosted MCP servers from the recent .NET Conference! We’d love to hear from you! Let us know your thoughts about hosting remote MCP server on Azure Functions. Does either of the options meet your needs? What other MCP features are you looking for? Let us know what you’d like us to prioritize next!650Views3likes1CommentAzure App Service AI Scenarios: Complete Sample with AI Foundry Integration
This blog demonstrates how to implement AI scenarios on Azure App Service using Azure AI Foundry. It provides a complete sample for developers to integrate conversational AI, reasoning models, structured outputs, and multimodal processing (image and audio) into existing Flask applications. The guide includes quick-start deployment steps with Azure Developer CLI (azd), recommended models like GPT-4o-mini, and best practices for enterprise-grade AI integration. Ideal for developers seeking to modernize web apps with agentic capabilities, OpenAPI-based tools, and secure, scalable AI workflows.505Views0likes0CommentsFaster Python on Azure Functions with uvloop
Python 3.13+ apps on Azure Functions are now faster by default. By replacing the standard event loop with uvloop, the Functions Python worker delivers higher throughput and lower latency for asynchronous workloads — no code changes required. Introduction Azure Functions powers millions of customer scenarios, from real-time APIs to event-driven automation. For Python developers, scalability often comes down to how efficiently the runtime handles I/O, concurrency, and asynchronous workloads. That’s why, starting with Python 3.13, the Azure Functions Python worker now uses uvloop as its default event loop. Built on top of libuv (the same library behind Node.js), uvloop provides a drop-in replacement for Python’s standard asyncio loop with measurable performance improvements. For customers, this means faster request handling and more responsive serverless applications — without having to update a single line of app code. Why Event Loops Matter The event loop is the backbone of any asynchronous Python application. It schedules coroutines, manages I/O events, and drives concurrency. In serverless workloads like Azure Functions, this loop runs continuously to: Handle incoming HTTP requests Dispatch and complete async tasks (like database queries or service calls) Manage parallel event processing (Event Hubs, Service Bus, etc.) The default Python event loop (UnixSelectorEventLoop) is reliable, but it wasn’t designed for high-throughput scenarios at massive scale. Uvloop, by contrast, is a high-performance reimplementation in Cython that consistently outperforms the built-in loop in both throughput and latency. How It Works in Azure Functions In Python 3.13+, the Azure Functions Python worker sets uvloop as the default event loop policy at startup: import uvloop, asyncio asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) This means any async workload — whether you’re using async def in your functions, calling external APIs, or parallelizing work with asyncio.gather — benefits immediately from uvloop’s faster scheduling and I/O handling. It is already available in the Functions runtime environment. No configuration changes, no requirements.txt edits, and no feature flags. If you’re running Functions on Python 3.13 or higher, uvloop is already in play. Measuring the Performance Gains We tested uvloop against the existing Unix event loop across several realistic workloads. For testing with Flex Consumption on Azure, the app with no uvloop is on Python 3.12, while the app with uvloop is on Python 3.13. The Flex Consumption app has an instance size of 2048 MB. Results were measured by taking the median of three runs for each test case. Test 1: 10k Requests, 50 Virtual Users Environment Event Loop Average HTTP Request Time (ms) Requests per second % Diff vs unix Local unix 96.95 515 - uvloop 87.99 565 +9.7% Azure unix 54.34 882 - uvloop 51.77 923 +4.8% Test 2: Sustained Load, 100 Virtual Users (5 min) Environment Event Loop Number of Requests Requests per second % Diff vs unix Local unix 157,580 525 - uvloop 167,928 560 +6.4% Azure unix 571,797 1,898 - uvloop 588,458 1,961 +2.9% Test 3: Heavy Concurrency, 500 Virtual Users + 5 async tasks per request Environment Event Loop Number of Requests Requests per second % Diff vs unix Local unix 216,212 720 - uvloop 231,878 772 +7% Azure unix 1,791,600 5,696 - uvloop 1,806,750 6,020 +1% The Unix Event Loop started showing failures in both environments in ~2% of requests. Across the board, uvloop delivered measurable improvements in throughput and latency — especially under high concurrency. Why Only Python 3.13+? While uvloop works with older versions of Python, we rolled it out as the default starting in 3.13 because: It ensured the change was strictly a net positive in performance and stability Easier rollout for all available Azure Functions SKUs, avoiding breaking existing customers Python 3.13 for the Azure Functions Worker introduces a Proxy Worker, so this is an additional performance boost to help with the extra overhead introduced Older runtimes remain on the standard event loop to minimize compatibility risks. Challenges and Lessons Learned Integrating uvloop into the Functions Python worker surfaced a few interesting challenges: Compatibility: Ensuring uvloop worked seamlessly across Linux environments at scale Observability: Updating logs to confirm which event loop policy was active Benchmark design: Testing realistic workloads (HTTP requests, async fan-out) to validate improvements beyond microbenchmarks Through this process, we confirmed uvloop consistently improved throughput and latency without regressions. Future Directions Switching to uvloop is just one step in making Azure Functions Python faster and more scalable. Looking ahead, we’re exploring: Deeper async optimizations: further tuning around asyncio and gRPC handling Serialization improvements: building on work like orjson for faster data processing Cold start performance: reducing startup overhead in Python workers Conclusion By adopting uvloop as the default event loop for Python 3.13+, Azure Functions makes async workloads faster, more reliable, and more scalable — all without requiring customers to change their code. If you’re upgrading to Python 3.13 for your Functions apps, uvloop is already running under the hood to give you better performance out of the box. Further Reading Azure Functions Azure Functions Python Developer Reference Guide Azure Functions Performance Optimizer Azure Functions Python Worker Azure Functions Python Library Azure Loading Testing Overview210Views0likes0CommentsCommon Misconceptions When Running Locally vs. Deploying to Azure Linux-based Web Apps
TOC Introduction Environment Variable Build Time Compatible Memory Conclusion 1. Introduction One of the most common issues during project development is the scenario where “the application runs perfectly in the local environment but fails after being deployed to Azure.” In most cases, deployment logs will clearly reveal the problem and allow you to fix it quickly. However, there are also more complicated situations where "due to the nature of the error itself" relevant logs may be difficult to locate. This article introduces several common categories of such problems and explains how to troubleshoot them. We will demonstrate them using Python and popular AI-related packages, as these tend to exhibit compatibility-related behavior. Before you begin, it is recommended that you read Deployment and Build from Azure Linux based Web App | Microsoft Community Hub on how Azure Linux-based Web Apps perform deployments so you have a basic understanding of the build process. 2. Environment Variable Simulating a Local Flask + sklearn Project First, let’s simulate a minimal Flask + sklearn project in any local environment (VS Code in this example). For simplicity, the sample code does not actually use any sklearn functions; it only displays plain text. app.py from flask import Flask app = Flask(__name__) @app.route("/") def index(): return "hello deploy environment variable" if __name__ == "__main__": app.run(host="0.0.0.0", port=8000) We also preset the environment variables required during Azure deployment, although these will not be used when running locally. .deployment [config] SCM_DO_BUILD_DURING_DEPLOYMENT=false As you may know, the old package name sklearn has long been deprecated in favor of scikit-learn. However, for the purpose of simulating a compatibility error, we will intentionally specify the outdated package name. requirements.txt Flask==3.1.0 gunicorn==23.0.0 sklearn After running the project locally, you can open a browser and navigate to the target URL to verify the result. python3 -m venv .venv source .venv/bin/activate pip install -r requirements.txt python app.py Of course, you may encounter the same compatibility issue even in your local environment. Simply running the following command resolves it: export SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True We will revisit this error and its solution shortly. For now, create a Linux Web App running Python 3.12 and configure the following environment variables. We will define Oryx Build as the deployment method. SCM_DO_BUILD_DURING_DEPLOYMENT=false WEBSITE_RUN_FROM_PACKAGE=false ENABLE_ORYX_BUILD=true After deploying the code and checking the Deployment Center, you should see an error similar to the following. From the detailed error message, the cause is clear: sklearn is deprecated and replaced by scikit-learn, so additional compatibility handling is now required by the Python runtime. The error message suggests the following solutions: Install the newer scikit-learn package directly. If your project is deeply coupled to the old sklearn package and cannot be refactored yet, enable compatibility by setting an environment variable to allow installation of the deprecated package. Typically, this type of “works locally but fails on Azure” behavior happens because the deprecated package was installed in the local environment a long time ago at the start of the project, and everything has been running smoothly since. Package compatibility issues like this are very common across various languages on Linux. When a project becomes tightly coupled to an outdated package, you may not be able to upgrade it immediately. In these cases, compatibility workarounds are often the only practical short-term solution. In our example, we will add the environment variable: SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True However, here comes the real problem: This variable is needed during the build phase, but the environment variables set in Azure Portal’s Application Settings only take effect at runtime. So what should we do? The answer is simple, shift the Oryx Build process from build-time to runtime. First, open Azure Portal → Configuration and disable Oryx Build. ENABLE_ORYX_BUILD=false Next, modify the project by adding a startup script. run.sh #!/bin/bash export SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True python -m venv .venv source .venv/bin/activate pip install -r requirements.txt python app.py The startup script works just like the commands you run locally before executing the application. The difference is that you can inject the necessary compatibility environment variables before running pip install or starting the app. After that, return to Azure Portal and add the following Startup Command under Stack Settings. This ensures that your compatibility environment variables and build steps run before the runtime starts. bash run.sh Your overall project structure will now look like this. Once redeployed, everything should work correctly. 3. Build Time Build-Time Errors Caused by AI-Related Packages Many build-time failures are caused by AI-related packages, whose installation processes can be extremely time-consuming. You can investigate these issues by reviewing the deployment logs at the following maintenance URL: https://<YOUR_APP_NAME>.scm.azurewebsites.net/newui Compatible Let’s simulate a Flask + numpy project. The code is shown below. app.py from flask import Flask app = Flask(__name__) @app.route("/") def index(): return "hello deploy compatible" if __name__ == "__main__": app.run(host="0.0.0.0", port=8000) We reuse the same environment variables from the sklearn example. .deployment [config] SCM_DO_BUILD_DURING_DEPLOYMENT=false This time, we simulate the incompatibility between numpy==1.21.0 and Python 3.10. requirements.txt Flask==3.1.0 gunicorn==23.0.0 numpy==1.21.0 We will skip the local execution part and move directly to creating a Linux Web App running Python 3.10. Configure the same environment variables as before, and define the deployment method as runtime build. SCM_DO_BUILD_DURING_DEPLOYMENT=false WEBSITE_RUN_FROM_PACKAGE=false ENABLE_ORYX_BUILD=false After deployment, Deployment Center shows a successful publish. However, the actual website displays an error. At this point, you must check the deployment log files mentioned earlier. You will find two key logs: 1. docker.log Displays real-time logs of the platform creating and starting the container. In this case, you will see that the health probe exceeded the default 230-second startup window, causing container startup failure. This tells us the root cause is container startup timeout. To determine why it timed out, we must inspect the second file. 2. default_docker.log Contains the internal execution logs of the container. Not generated in real time, usually delayed around 15 minutes. Therefore, if docker.log shows a timeout error, wait at least 15 minutes to allow the logs to be written here. In this example, the internal log shows that numpy was being compiled during pip install, and the compilation step took too long. We now have a concrete diagnosis: numpy 1.21.0 is not compatible with Python 3.10, which forces pip to compile from source. The compilation exceeds the platform’s startup time limit (230 seconds) and causes the container to fail. We can verify this by checking numpy’s official site: numpy · PyPI numpy 1.21.0 only provides wheels for cp37, cp38, cp39 but not cp310 (which is python 3.10). Thus, compilation becomes unavoidable. Possible Solutions Set the environment variable WEBSITES_CONTAINER_START_TIME_LIMIT to increase the allowed container startup time. Downgrade Python to 3.9 or earlier. Upgrade numpy to 1.21.0+, where suitable wheels for Python 3.10 are available. In this example, we choose this option. After upgrading numpy to version 1.25.0 (which supports Python 3.10) from specifying in requirements.txt and redeploying, the issue is resolved. numpy · PyPI requirements.txt Flask==3.1.0 gunicorn==23.0.0 numpy==1.25.0 Memory The final example concerns the App Service SKU. AI packages such as Streamlit, PyTorch, and others require significant memory. Any one of these packages may cause the build process to fail due to insufficient memory. The error messages vary widely each time. If you repeatedly encounter unexplained build failures, check Deployment Center or default_docker.log for Exit Code 137, which indicates that the system ran out of memory during the build. The only solution in such cases is to scale up. 4. Conclusion This article introduced several common troubleshooting techniques for resolving Linux Web App issues caused during the build stage. Most of these problems relate to package compatibility, although the symptoms may vary greatly. By understanding the debugging process demonstrated in these examples, you will be better prepared to diagnose and resolve similar issues in future deployments.386Views0likes1CommentBulletproof agents with the durable task extension for Microsoft Agent Framework
Today, we're thrilled to announce the public preview of the durable task extension for Microsoft Agent Framework. This extension transforms how you build production-ready, resilient and scalable AI agents by bringing the proven durable execution (survives crashes and restarts) and distributed execution (runs across multiple instances) capabilities of Azure Durable Functions directly into the Microsoft Agent Framework. Now you can deploy stateful, resilient AI agents to Azure that automatically handle session management, failure recovery, and scaling, freeing you to focus entirely on your agent logic. Whether you're building customer service agents that maintain context across multi-day conversations, content pipelines with human-in-the-loop approval workflows, or fully automated multi-agent systems coordinating specialized AI models, the durable task extension gives you production-grade reliability, scalability and coordination with serverless simplicity. Key features of the durable task extension include: Serverless Hosting: Deploy agents on Azure Functions with auto-scaling from thousands of instances to zero, while retaining full control in a serverless architecture. Automatic Session Management: Agents maintain persistent sessions with full conversation context that survives process crashes, restarts, and distributed execution across instances Deterministic Multi-Agent Orchestrations: Coordinate specialized durable agents with predictable, repeatable, code-driven execution patterns Human-in-the-Loop with Serverless Cost Savings: Pause for human input without consuming compute resources or incurring costs Built-in Observability with Durable Task Scheduler: Deep visibility into agent operations and orchestrations through the Durable Task Scheduler UI dashboard Click here to create and run a durable agent # Python endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") deployment_name = os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME", "gpt-4o-mini") # Create an AI agent following the standard Microsoft Agent Framework pattern agent = AzureOpenAIChatClient( endpoint=endpoint, deployment_name=deployment_name, credential=AzureCliCredential() ).create_agent( instructions="""You are a professional content writer who creates engaging, well-structured documents for any given topic. When given a topic, you will: 1. Research the topic using the web search tool 2. Generate an outline for the document 3. Write a compelling document with proper formatting 4. Include relevant examples and citations""", name="DocumentPublisher", tools=[ AIFunctionFactory.Create(search_web), AIFunctionFactory.Create(generate_outline) ] ) # Configure the function app to host the agent with durable session management app = AgentFunctionApp(agents=[agent]) app.run() // C# var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT"); var deploymentName = Environment.GetEnvironmentVariable("AZURE_OPENAI_DEPLOYMENT") ?? "gpt-4o-mini"; // Create an AI agent following the standard Microsoft Agent Framework pattern AIAgent agent = new AzureOpenAIClient(new Uri(endpoint), new DefaultAzureCredential()) .GetChatClient(deploymentName) .CreateAIAgent( instructions: """You are a professional content writer who creates engaging, well-structured documents for any given topic. When given a topic, you will: 1. Research the topic using the web search tool 2. Generate an outline for the document 3. Write a compelling document with proper formatting 4. Include relevant examples and citations""", name: "DocumentPublisher", tools: [ AIFunctionFactory.Create(SearchWeb), AIFunctionFactory.Create(GenerateOutline) ]); // Configure the function app to host the agent with durable thread management // This automatically creates HTTP endpoints and manages state persistence using IHost app = FunctionsApplication .CreateBuilder(args) .ConfigureFunctionsWebApplication() .ConfigureDurableAgents(options => options.AddAIAgent(agent) ) .Build(); app.Run(); Why the durable task extension? As AI agents evolve from simple chatbots to sophisticated systems handling complex, long-running tasks, new challenges emerge: Conversations span multiple days and weeks, requiring persistent state across process restarts, crashes, and disruptions. Tool calls might take longer than typical timeouts allow, needing automatic checkpointing and recovery. High-volume workloads require elastic scaling across distributed instances to handle thousands of concurrent agent conversations. Multiple specialized agents need coordination with predictable, repeatable execution for reliable business processes. Agents sometimes must wait for human approval before proceeding, ideally without consuming resources. The Durable Extension addresses these challenges by extending Microsoft Agent Framework with capabilities from Azure Durable Functions, enabling you to build AI agents that survive failures, scale elastically, and execute predictably through durable and distributed execution. The extension is built on four foundational value pillars, which we refer to as the 4D’s: Durability Every agent state change (messages, tool calls, decisions) is durably checkpointed automatically. Agents survive and automatically resume from infrastructure updates, crashes, and can be unloaded from memory during long waiting periods without losing context. This is essential for agents that orchestrate long-running operations or wait for external events. Distributed Agent execution is accessible across all instances, enabling elastic scaling and automatic failover. Healthy nodes seamlessly take over work from failed instances, ensuring continuous operation. This distributed execution model allows thousands of stateful agents to scale up and run in parallel. Deterministic Agent orchestrations execute predictably using imperative logic written as ordinary code. Define the execution path, enabling automated testing, verifiable guardrails, and business-critical workflows that stakeholders can trust. This complements agent-directed workflows by providing explicit control flow when needed. Debuggability Use familiar development tools (IDEs, debuggers, breakpoints, stack traces, and unit tests) and programming languages to develop and debug. Your agent and agent orchestrations are expressed as code, making them easily testable, debuggable, and maintainable. Features in action Serverless hosting Deploy agents to Azure Functions (with expansion to other Azure computes soon) with automatic scaling to thousands of instances or down to zero when not in use. Pay only for the compute resources you consume. This code-first deployment approach gives you full control over the compute environment while maintaining the benefits of a serverless architecture. # Python endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") deployment_name = os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME", "gpt-4o-mini") # Create an AI agent following the standard Microsoft Agent Framework pattern agent = AzureOpenAIChatClient( endpoint=endpoint, deployment_name=deployment_name, credential=AzureCliCredential() ).create_agent( instructions="""You are a professional content writer who creates engaging, well-structured documents for any given topic. When given a topic, you will: 1. Research the topic using the web search tool 2. Generate an outline for the document 3. Write a compelling document with proper formatting 4. Include relevant examples and citations""", name="DocumentPublisher", tools=[ AIFunctionFactory.Create(search_web), AIFunctionFactory.Create(generate_outline) ] ) # Configure the function app to host the agent with durable session management app = AgentFunctionApp(agents=[agent]) app.run() Automatic session management Agent sessions are automatically checkpointed in durable storage that you configure in your function app, enabling durable and distributed execution across multiple instances. Any instance can resume an agent's execution after interruptions or process failures, ensuring continuous operation. Under the hood, agents are implemented as durable entities. These are stateful objects that maintain their state across executions. This architecture enables each agent session to function as a reliable, long-lived entity with preserved conversation history and context. Example scenario: A customer service agent handling a complex support case over multiple days and weeks. The conversation history, context, and progress are preserved even if the agent is redeployed or moves to a different instance. # First interaction - start a new thread to create a document curl -X POST https://your-function-app.azurewebsites.net/api/agents/DocumentPublisher/threads \ -H "Content-Type: application/json" \ -d '{"message": "Create a document about the benefits of Azure Functions"}' # Response includes thread ID and initial document outline/draft # {"threadId": "doc789", "response": "I'll create a comprehensive document about Azure Functions benefits. Let me search for the latest information... [Document Draft] # Benefits of Azure Functions\n\n## Introduction\nAzure Functions is a serverless compute service that enables you to run event-driven code without managing infrastructure...\n\n## Cost Efficiency\n- Pay only for execution time\n- No charges for idle resources\n- Automatic scaling reduces over-provisioning...\n\n## Developer Productivity\n- Multiple language support (C#, Python, JavaScript, Java)\n- Integrated development tools and CI/CD...\n\n## Scalability\n- Automatic scaling based on demand\n- Handle millions of requests seamlessly...\n\nReferences: [Azure documentation, serverless computing studies]"} # Second interaction - continue the same thread to refine the document curl -X POST https://your-function-app.azurewebsites.net/api/agents/DocumentPublisher/threads/doc789 \ -H "Content-Type: application/json" \ -d '{"message": "Can you add a section about integration with other Azure services?"}' # Agent remembers the Azure Functions document context and adds the requested section # {"threadId": "doc789", "response": "I've added a comprehensive integration section to your Azure Functions document:\n\n## Integration with Azure Services\n\n### Azure Storage\nSeamless triggers and bindings for Blob Storage, Queue Storage, and Table Storage enable event-driven architectures...\n\n### Azure Event Grid & Event Hubs\nProcess real-time event streams and implement publish-subscribe patterns at scale...\n\n### Azure Cosmos DB\nBuilt-in bindings for document database operations with automatic change feed processing...\n\n### Azure Service Bus\nReliable message processing with enterprise messaging features...\n\n### Azure AI Services\nEasily integrate OpenAI, Cognitive Services, and AI Search for intelligent applications...\n\nThe document now includes this section after the Scalability section. Would you like me to add use cases or deployment best practices?"} Deterministic multi-agent orchestrations Coordinate multiple specialized durable agents using imperative code where you define the control flow. This differs from agent-directed workflows where the agent decides the next steps. Deterministic Orchestrations provide predictable, repeatable execution patterns with automatic checkpointing and recovery. Example scenario: An email processing system that uses a spam detection agent, then conditionally routes to different specialized agents based on the classification. The orchestration automatically recovers if any step fails and completed agent calls are not re-executed. # Python app.orchestration_trigger(context_name="context") def document_publishing_orchestration(context: DurableOrchestrationContext): """Deterministic orchestration coordinating multiple specialized agents.""" doc_request = context.get_input() # Get specialized agents from the orchestration context research_agent = context.get_agent("ResearchAgent") writer_agent = context.get_agent("DocumentPublisherAgent") # Step 1: Research the topic using web search research_result = yield research_agent.run( messages=f"Research the following topic and gather key information: {doc_request.topic}", response_schema=ResearchResult ) # Step 2: Generate outline based on research findings outline = yield context.call_activity("generate_outline", { "topic": doc_request.topic, "research_data": research_result.findings }) # Step 3: Write the document with the research and outline document = yield writer_agent.run( messages=f"""Create a comprehensive document about {doc_request.topic}. Research findings: {research_result.findings} Outline: {outline} Write a well-structured, engaging document with proper formatting and citations.""", response_schema=DocumentResponse ) # Step 4: Save and publish the generated document return yield context.call_activity("publish_document", { "title": doc_request.topic, "content": document.text, "citations": document.citations }) Human-in-the-loop Orchestrations and agents can pause for human input, approval, or review without consuming compute resources. Durable execution enables orchestrations to wait for days or even weeks while waiting for human responses, even if the app crashes or restarts. When combined with serverless hosting, all compute resources are spun down during the wait period, eliminating compute costs until the human provides their input. Example scenario: A content publishing agent that generates drafts, sends them to human reviewers, and waits days for approval without running (or paying for) compute resources during the review period. When the human response arrives, the orchestration automatically resumes with full conversation context and execution state intact. # Python app.orchestration_trigger(context_name="context") def content_approval_workflow(context: DurableOrchestrationContext): """Human-in-the-loop workflow with zero-cost waiting.""" topic = context.get_input() # Step 1: Generate content using an agent content_agent = context.get_agent("ContentGenerationAgent") draft_content = yield content_agent.run(f"Write an article about {topic}") # Step 2: Send for human review yield context.call_activity("notify_reviewer", draft_content) # Step 3: Wait for approval - no compute resources consumed while waiting approval_event = context.wait_for_external_event("ApprovalDecision") timeout_task = context.create_timer(context.current_utc_datetime + timedelta(hours=24)) winner = yield context.task_any([approval_event, timeout_task]) if winner == approval_event: timeout_task.cancel() approved = approval_event.result if approved: result = yield context.call_activity("publish_content", draft_content) return result else: return "Content rejected" else: # Timeout - escalate for review result = yield context.call_activity("escalate_for_review", draft_content) return result Built-in agent observability Configure your Function App with the Durable Task Scheduler as the durable backend (what persists agents and orchestration state). The Durable Task Scheduler is the recommended durable backend for your durable agents, offering the best throughput performance, fully managed infrastructure, and built-in observability through a UI dashboard. The Durable Task Scheduler dashboard provides deep visibility into your agent operations: Conversation history: View complete conversation threads for each agent session, including all messages, tool calls, and conversation context at any point in time Multi-agent visualization: See the execution flow when calling multiple specialized agents with visual representation of agent handoffs, parallel executions, and conditional branching Performance metrics: Monitor agent response times, token usage, and orchestration duration Execution history: Access detailed execution logs with full replay capability for debugging Demo Video Language support The Durable Extension supports: C# (.NET 8.0+) with Azure Functions Python (3.10+) with Azure Functions Support for additional computes coming soon. Get started today Click here to create and run a durable agent Learn more Overview documentation C# Samples Python Samples6.2KViews3likes7CommentsAzure Functions Ignite 2025 Update
Azure Functions is redefining event-driven applications and high-scale APIs in 2025, accelerating innovation for developers building the next generation of intelligent, resilient, and scalable workloads. This year, our focus has been on empowering AI and agentic scenarios: remote MCP server hosting, bulletproofing agents with Durable Functions, and first-class support for critical technologies like OpenTelemetry, .NET 10 and Aspire. With major advances in serverless Flex Consumption, enhanced performance, security, and deployment fundamentals across Elastic Premium and Flex, Azure Functions is the platform of choice for building modern, enterprise-grade solutions. Remote MCP Model Context Protocol (MCP) has taken the world by storm, offering an agent a mechanism to discover and work deeply with the capabilities and context of tools. When you want to expose MCP/tools to your enterprise or the world securely, we recommend you think deeply about building remote MCP servers that are designed to run securely at scale. Azure Functions is uniquely optimized to run your MCP servers at scale, offering serverless and highly scalable features of Flex Consumption plan, plus two flexible programming model options discussed below. All come together using the hardened Functions service plus new authentication modes for Entra and OAuth using Built-in authentication. Remote MCP Triggers and Bindings Extension GA Back in April, we shared a new extension that allows you to author MCP servers using functions with the MCP tool trigger. That MCP extension is now generally available, with support for C#(.NET), Java, JavaScript (Node.js), Python, and Typescript (Node.js). The MCP tool trigger allows you to focus on what matters most: the logic of the tool you want to expose to agents. Functions will take care of all the protocol and server logistics, with the ability to scale out to support as many sessions as you want to throw at it. [Function(nameof(GetSnippet))] public object GetSnippet( [McpToolTrigger(GetSnippetToolName, GetSnippetToolDescription)] ToolInvocationContext context, [BlobInput(BlobPath)] string snippetContent ) { return snippetContent; } New: Self-hosted MCP Server (Preview) If you’ve built servers with official MCP SDKs and want to run them as remote cloud‑scale servers without re‑writing any code, this public preview is for you. You can now self‑host your MCP server on Azure Functions—keep your existing Python, TypeScript, .NET, or Java code and get rapid 0 to N scaling, built-in server authentication and authorization, consumption-based billing, and more from the underlying Azure Functions service. This feature complements the Azure Functions MCP extension for building MCP servers using the Functions programming model (triggers & bindings). Pick the path that fits your scenario—build with the extension or standard MCP SDKs. Either way you benefit from the same scalable, secure, and serverless platform. Use the official MCP SDKs: # MCP.tool() async def get_alerts(state: str) -> str: """Get weather alerts for a US state. Args: state: Two-letter US state code (e.g. CA, NY) """ url = f"{NWS_API_BASE}/alerts/active/area/{state}" data = await make_nws_request(url) if not data or "features" not in data: return "Unable to fetch alerts or no alerts found." if not data["features"]: return "No active alerts for this state." alerts = [format_alert(feature) for feature in data["features"]] return "\n---\n".join(alerts) Use Azure Functions Flex Consumption Plan's serverless compute using Custom Handlers in host.json: { "version": "2.0", "configurationProfile": "mcp-custom-handler", "customHandler": { "description": { "defaultExecutablePath": "python", "arguments": ["weather.py"] }, "http": { "DefaultAuthorizationLevel": "anonymous" }, "port": "8000" } } Learn more about MCPTrigger and self-hosted MCP servers at https://aka.ms/remote-mcp Built-in MCP server authorization (Preview) The built-in authentication and authorization feature can now be used for MCP server authorization, using a new preview option. You can quickly define identity-based access control for your MCP servers with Microsoft Entra ID or other OpenID Connect providers. Learn more at https://aka.ms/functions-mcp-server-authorization. Better together with Foundry agents Microsoft Foundry is the starting point for building intelligent agents, and Azure Functions is the natural next step for extending those agents with remote MCP tools. Running your tools on Functions gives you clean separation of concerns, reuse across multiple agents, and strong security isolation. And with built-in authorization, Functions enables enterprise-ready authentication patterns, from calling downstream services with the agent’s identity to operating on behalf of end users with their delegated permissions. Build your first remote MCP server and connect it to your Foundry agent at https://aka.ms/foundry-functions-mcp-tutorial. Agents Microsoft Agent Framework 2.0 (Public Preview Refresh) We’re excited about the preview refresh 2.0 release of Microsoft Agent Framework that builds on battle hardened work from Semantic Kernel and AutoGen. Agent Framework is an outstanding solution for building multi-agent orchestrations that are both simple and powerful. Azure Functions is a strong fit to host Agent Framework with the service’s extreme scale, serverless billing, and enterprise grade features like VNET networking and built-in auth. Durable Task Extension for Microsoft Agent Framework (Preview) The durable task extension for Microsoft Agent Framework transforms how you build production-ready, resilient and scalable AI agents by bringing the proven durable execution (survives crashes and restarts) and distributed execution (runs across multiple instances) capabilities of Azure Durable Functions directly into the Microsoft Agent Framework. Combined with Azure Functions for hosting and event-driven execution, you can now deploy stateful, resilient AI agents that automatically handle session management, failure recovery, and scaling, freeing you to focus entirely on your agent logic. Key features of the durable task extension include: Serverless Hosting: Deploy agents on Azure Functions with auto-scaling from thousands of instances to zero, while retaining full control in a serverless architecture. Automatic Session Management: Agents maintain persistent sessions with full conversation context that survives process crashes, restarts, and distributed execution across instances Deterministic Multi-Agent Orchestrations: Coordinate specialized durable agents with predictable, repeatable, code-driven execution patterns Human-in-the-Loop with Serverless Cost Savings: Pause for human input without consuming compute resources or incurring costs Built-in Observability with Durable Task Scheduler: Deep visibility into agent operations and orchestrations through the Durable Task Scheduler UI dashboard Create a durable agent: endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") deployment_name = os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME", "gpt-4o-mini") # Create an AI agent following the standard Microsoft Agent Framework pattern agent = AzureOpenAIChatClient( endpoint=endpoint, deployment_name=deployment_name, credential=AzureCliCredential() ).create_agent( instructions="""You are a professional content writer who creates engaging, well-structured documents for any given topic. When given a topic, you will: 1. Research the topic using the web search tool 2. Generate an outline for the document 3. Write a compelling document with proper formatting 4. Include relevant examples and citations""", name="DocumentPublisher", tools=[ AIFunctionFactory.Create(search_web), AIFunctionFactory.Create(generate_outline) ] ) # Configure the function app to host the agent with durable session management app = AgentFunctionApp(agents=[agent]) app.run() Durable Task Scheduler dashboard for agent and agent workflow observability and debugging For more information on the durable task extension for Agent Framework, see the announcement: https://aka.ms/durable-extension-for-af-blog. Flex Consumption Updates As you know, Flex Consumption means serverless without compromise. It combines elastic scale and pay‑for‑what‑you‑use pricing with the controls you expect: per‑instance concurrency, longer executions, VNet/private networking, and Always Ready instances to minimize cold starts. Since launching GA at Ignite 2024 last year, Flex Consumption has had tremendous growth with over 1.5 billion function executions per day and nearly 40 thousand apps. Here’s what’s new for Ignite 2025: 512 MB instance size (GA). Right‑size lighter workloads, scale farther within default quota. Availability Zones (GA). Distribute instances across zones. Rolling updates (Public Preview). Unlock zero-downtime deployments of code or config by setting a single configuration. See below for more information. Even more improvements including: new diagnostic settingsto route logs/metrics, use Key Vault App Config references, new regions, and Custom Handler support. To get started, review Flex Consumption samples, or dive into the documentation to see how Flex can support your workloads. Migrating to Azure Functions Flex Consumption Migrating to Flex Consumption is simple with our step-by-step guides and agentic tools. Move your Azure Functions apps or AWS Lambda workloads, update your code and configuration, and take advantage of new automation tools. With Linux Consumption retiring, now is the time to switch. For more information, see: Migrate Consumption plan apps to the Flex Consumption plan Migrate AWS Lambda workloads to Azure Functions Durable Functions Durable Functions introduces powerful new features to help you build resilient, production-ready workflows: Distributed Tracing: lets you track requests across components and systems, giving you deep visibility into orchestration and activities with support for App Insights and OpenTelemetry. Extended Sessions support in .NET isolated: improves performance by caching orchestrations in memory, ideal for fast sequential activities and large fan-out/fan-in patterns. Orchestration versioning (public preview): enables zero-downtime deployments and backward compatibility, so you can safely roll out changes without disrupting in-flight workflows Durable Task Scheduler Updates Durable Task Scheduler Dedicated SKU (GA): Now generally available, the Dedicated SKU offers advanced orchestration for complex workflows and intelligent apps. It provides predictable pricing for steady workloads, automatic checkpointing, state protection, and advanced monitoring for resilient, reliable execution. Durable Task Scheduler Consumption SKU (Public Preview): The new Consumption SKU brings serverless, pay-as-you-go orchestration to dynamic and variable workloads. It delivers the same orchestration capabilities with flexible billing, making it easy to scale intelligent applications as needed. For more information see: https://aka.ms/dts-ga-blog OpenTelemetry support in GA Azure Functions OpenTelemetry is now generally available, bringing unified, production-ready observability to serverless applications. Developers can now export logs, traces, and metrics using open standards—enabling consistent monitoring and troubleshooting across every workload. Key capabilities include: Unified observability: Standardize logs, traces, and metrics across all your serverless workloads for consistent monitoring and troubleshooting. Vendor-neutral telemetry: Integrate seamlessly with Azure Monitor or any OpenTelemetry-compliant backend, ensuring flexibility and choice. Broad language support: Works with .NET (isolated), Java, JavaScript, Python, PowerShell, and TypeScript. Start using OpenTelemetry in Azure Functions today to unlock standards-based observability for your apps. For step-by-step guidance on enabling OpenTelemetry and configuring exporters for your preferred backend, see the documentation. Deployment with Rolling Updates (Preview) Achieving zero-downtime deployments has never been easier. The Flex Consumption plan now offers rolling updates as a site update strategy. Set a single property, and all future code deployments and configuration changes will be released with zero-downtime. Instead of restarting all instances at once, the platform now drains existing instances in batches while scaling out the latest version to match real-time demand. This ensures uninterrupted in-flight executions and resilient throughput across your HTTP, non-HTTP, and Durable workloads – even during intensive scale-out scenarios. Rolling updates are now in public preview. Learn more at https://aka.ms/functions/rolling-updates. Secure Identity and Networking Everywhere By Design Security and trust are paramount. Azure Functions incorporates proven best practices by design, with full support for managed identity—eliminating secrets and simplifying secure authentication and authorization. Flex Consumption and other plans offer enterprise-grade networking features like VNETs, private endpoints, and NAT gateways for deep protection. The Azure Portal streamlines secure function creation, and updated scenarios and samples showcase these identity and networking capabilities in action. Built-in authentication (discussed above) enables inbound client traffic to use identity as well. Check out our updated Functions Scenarios page with quickstarts or our secure samples gallery to see these identity and networking best practices in action. .NET 10 Azure Functions now supports .NET 10, bringing in a great suite of new features and performance benefits for your code. .NET 10 is supported on the isolated worker model, and it’s available for all plan types except Linux Consumption. As a reminder, support ends for the legacy in-process model on November 10, 2026, and the in-process model is not being updated with .NET 10. To stay supported and take advantage of the latest features, migrate to the isolated worker model. Aspire Aspire is an opinionated stack that simplifies development of distributed applications in the cloud. The Azure Functions integration for Aspire enables you to develop, debug, and orchestrate an Azure Functions .NET project as part of an Aspire solution. Aspire publish directly deploys to your functions to Azure Functions on Azure Container Apps. Aspire 13 includes an updated preview version of the Functions integration that acts as a release candidate with go-live support. The package will be moved to GA quality with Aspire 13.1. Java 25, Node.js 24 Azure Functions now supports Java 25 and Node.js 24 in preview. You can now develop functions using these versions locally and deploy them to Azure Functions plans. Learn how to upgrade your apps to these versions here In Summary Ready to build what’s next? Update your Azure Functions Core Tools today and explore the latest samples and quickstarts to unlock new capabilities for your scenarios. The guided quickstarts run and deploy in under 5 minutes, and incorporate best practices—from architecture to security to deployment. We’ve made it easier than ever to scaffold, deploy, and scale real-world solutions with confidence. The future of intelligent, scalable, and secure applications starts now—jump in and see what you can create!1.9KViews0likes0CommentsWhat's New in Azure App Service at #MSIgnite 2025
Azure App Service introduces a new approach to accelerate application migration and modernization at Microsoft Ignite 2025. Known as Managed Instance on Azure App Service, it enables seamless modernization of classic web apps to the cloud with minimal code changes, especially for apps with custom Windows dependencies. Other major updates include enhanced Aspire support for .NET developers on Azure App Service for Linux, new AI integration features, expanded language/runtime support, and improvements in scaling, networking, and developer experience.986Views0likes0CommentsWhat's new in Azure Container Apps at Ignite'25
Azure Container Apps (ACA) is a fully managed serverless container platform that enables developers to design and deploy microservices and modern apps without requiring container expertise or needing infrastructure management. ACA is rapidly emerging as the preferred platform for hosting AI workloads and intelligent agents in the cloud. With features like code interpreter, Serverless GPUs, simplified deployments, and per-second billing, ACA empowers developers to build, deploy, and scale AI-driven applications with exceptional agility. ACA makes it easy to integrate agent frameworks, leverage GPU acceleration, and manage complex, multi-container AI environments - all while benefiting from a serverless, fully managed infrastructure. External customers like Replit, NFL Combine, Coca-Cola, and European Space Agency as well as internal teams like Microsoft Copilot (as well as many others) have bet on ACA as their compute platform for AI workloads. ACA is quickly becoming the leading platform for updating existing applications and moving them to a cloud-native setup. It allows organizations to seamlessly migrate legacy workloads - such as Java and .NET apps - by using AI-powered tools like GitHub Copilot to automate code upgrades, analyze dependencies, and handle cloud transformations. ACA’s fully managed, serverless environment removes the complexity of container orchestration. This helps teams break down monolithic or on-premises applications into robust microservices, making use of features like version control, traffic management, and advanced networking for fast iteration and deployment. By following proven modernization strategies while ensuring strong security, scalability, and developer efficiency, ACA helps organizations continuously innovate and future-proof their applications in the cloud. Customers like EY, London Stock Exchange, Chevron, and Paychex have unlocked significant business value by modernizing their workloads onto ACA. This blog presents the latest features and capabilities of ACA, enhancing its value for customers by enabling the rapid migration of existing workloads and development of new cloud applications, all while following cloud-native best practices. Secure sandboxes for AI compute ACA now supports dynamic shell sessions, currently available in public preview. These shell sessions are platform-managed built-in containers designed to execute common shell commands within an isolated, sandboxed environment. With the addition of empty shell sessions and an integrated MCP server, ACA enables customers to provision secure, isolated sandboxes instantly - ideal for use cases such as code execution, tool testing, and workflow automation. This functionality facilitates seamless integration with agent frameworks, empowering agents to access disposable compute environments as needed. Customers can benefit from rapid provisioning, improved security, and decreased operational overhead when managing agentic workloads. To learn more about how to add secure sandbox shell sessions to Microsoft Foundry agents as a tool, visit the walkthrough at https://aka.ms/aca/dynamic-sessions-mcp-tutorial. Docker Compose for Agents support ACA has added Docker Compose for Agents support in public preview, making it easy for developers to define agentic applications stack-agnostic, with MCP and custom model support. Combined with native serverless GPU support, Docker Compose for Agents allows fast iteration and scaling for AI-driven agents and application using LangGraph, LangChain CrewAI, Spring AI, Vercel AI SDK and Agno. These enhancements provide a developer-focused platform that streamlines the process for modern AI workloads, bringing together both development and production cycles into one unified environment. Additional regional availability for Serverless GPUs Serverless GPU solutions offer capabilities such as automatic scaling with NVIDIA A100 or T4 GPUs, per-second billing, and strict data isolation within container boundaries. ACA Serverless GPUs are now generally available in 11 additional regions, further facilitating developers’ ability to deploy AI inference, model training, and GPU-accelerated workloads efficiently. For further details on supported regions, please visit https://aka.ms/aca/serverless-gpu-regions. New Flexible Workload Profile The Flexible workload profile is a new option that combines the simplicity of serverless Consumption with the performance and control in Dedicated profiles. It offers a familiar pay-per-use model along with enhanced features like scheduled maintenance, dedicated networking, and support for larger replicas to meet demanding application needs. Customers can enjoy the advantages of dedicated resources together with effortless infrastructure management and billing from the Consumption model. Operating on a dedicated compute pool, this profile ensures better predictability and isolation without introducing extra operational complexity. It is designed for users who want the ease of serverless scaling, but also need more control over performance and environmental stability. Confidential Computing Confidential computing support is now available in public preview for ACA, offering hardware-based Trusted Execution Environments (TEEs) to secure data in use. This adds to existing encryption of data at rest and in transit by encrypting memory and verifying the cloud environment before processing. It helps protect sensitive data from unauthorized access, including by cloud operators, and is useful for organizations with high security needs. Confidential computing can be enabled via workload profiles, with the preview limited to certain regions. Extending Network capabilities General Availability of Rule-based Routing Rule-based routing for ACA is now generally available, offering users improved flexibility and easier composition when designing microservice architectures, conducting A/B testing, or implementing blue-green deployments. With this feature, you can route incoming HTTP traffic to specific apps within your environment by specifying host names or paths - including support for custom domains. You no longer need to set up an extra reverse proxy (like NGINX); simply define routing rules for your environment, and traffic will be automatically directed to the appropriate target apps. General Availability of Premium Ingress ACA support for Premium Ingress is now Generally Available. This feature introduces environment-level ingress configuration options, with the primary highlight being customizable ingress scaling. This capability supports the scaling of the ingress proxy, enabling customers to better handle higher demand workloads, such as large performance tests. By configuring your ingress proxy to run on workload profiles, you can scale out more ingress instances to handle more load. Running the ingress proxy on a workload profile will incur associated costs. To further enhance the flexibility of your application, this release includes other ingress-related settings, such as termination grace period, idle request timeout, and header count. Additional Management capabilities Public Preview of Deployment labels ACA now offers deployment labels in public preview, letting you assign names like dev, staging, or prod to container revisions which can be automatically assigned. This makes environment management easier and supports advanced strategies such as A/B testing and blue-green deployments. Labels help route traffic, control revisions, and streamline rollouts or rollbacks with minimal hassle. With deployment labels, you can manage app lifecycles more efficiently and reduce complexity across environments. General Availability of Durable Task Scheduler support Durable Task Scheduler (DTS) support is now generally available on ACA, empowering users with a robust pro-code workflow solution. With DTS, you can define reliable, containerized workflows as code, benefiting from built-in state persistence and fault-tolerant execution. This enhancement streamlines the creation and administration of complex workflows by boosting scalability, reliability, and enabling efficient monitoring capabilities. What’s next ACA is redefining how developers build and deploy intelligent agents. Agents deployed to Azure Container Apps with Microsoft Agent Framework and Open Telemetry can also be plugged directly into Microsoft Foundry, giving teams a single pane of glass for their agents in Azure. With serverless scale, GPU-on-demand, and enterprise-grade isolation, ACA provides the ideal foundation for hosting AI agents securely and cost-effectively. Utilizing open-source frameworks such as n8n on ACA enables the deployment of no-code automation agents that integrate seamlessly with Azure OpenAI models, supporting intelligent routing, summarization, and adaptive decision-making processes. Similarly, running other agent frameworks like Goose AI Agent on ACA enables it to operate concurrently with model inference workloads (including Ollama and GPT-OSS) within a unified, secure environment. The inclusion of serverless GPU support allows for efficient hosting of large language models such as GPT-OSS, optimizing both cost and scalability for inference tasks. Furthermore, ACA facilitates the remote hosting of Model Context Protocol (MCP) servers, granting agents secure access to external tools and APIs via streamable HTTP transport. Collectively, these features enable organizations to develop, scale, and manage complex agentic workloads - from workflow automation to AI-driven assistants - while leveraging ACA’s enterprise-grade security, autoscaling capabilities, and developer-centric user experience. In addition to these, ACA also enables a wide range of cross-compatibility with various frameworks and services, making it an ideal platform for running Azure Functions on ACA, Distributed Application Runtime (Dapr) microservices, as well as polyglot apps across .NET / Java / JavaScript. As always, we invite you to visit our GitHub page for feedback, feature requests, or questions about Azure Container Apps, where you can open a new issue or up-vote existing ones. If you’re curious about what we’re working on next, check out our roadmap. We look forward to hearing from you!779Views0likes0CommentsLow-Light Image Enhancer (Python + OpenCV) on Azure App Service
Low-light photos are everywhere: indoor team shots, dim restaurant pics, grainy docs. This post shows a tiny Python app (Flask + OpenCV) that fixes them with explainable image processing—not a heavyweight model. We’ll walk the code that does the real work (CLAHE → gamma → brightness → subtle saturation) and deploy it to Azure App Service for Linux. What you’ll build A Flask web app that accepts an image upload, runs a fast enhancement pipeline (CLAHE → gamma → brightness → subtle saturation), and returns base64 data URIs for an instant before/after view in the browser—no storage required for the basic demo. Architecture at a glance Browser → /enhance (multipart form): sends an image + optional tunables (clip_limit, gamma, brightness). Flask → Enhancer: converts the upload to a NumPy RGB array and calls LowLightEnhancer.enhance_image(...). Response: returns JSON with original and enhanced images as base64 PNG data URIs for immediate rendering. Prerequisites An Azure subscription Azure Developer CLI (azd) installed (Optional) Python 3.9+ on your dev box for reading the code or extending it Deploy with azd git clone https://github.com/Azure-Samples/appservice-ai-samples.git cd appservice-ai-samples/lowlight-enhancer azd init azd up When azd up finishes, open the printed URL, upload a low-light photo, and compare the result side-by-side. Code walkthrough (the parts that matter) 1) Flask surface area (app.py) File size guard: app = Flask(__name__) app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16 MB Two routes: GET / - renders the simple UI POST /enhance - the JSON API the UI calls via XHR/fetch Parameter handling with sane defaults: clip_limit = float(request.form.get('clip_limit', 2.0)) gamma = float(request.form.get('gamma', 1.2)) brightness = float(request.form.get('brightness', 1.1)) 2) Zero-temp-file processing + data-URI response (app.py) process_uploaded_image keeps the hot path tight: convert to RGB → enhance → convert both versions to base64 PNG and return them inline. def process_uploaded_image(file_storage, clip_limit=2.0, gamma=1.2, brightness=1.1): # PIL → NumPy (RGB) img_pil = Image.open(file_storage) if img_pil.mode != 'RGB': img_pil = img_pil.convert('RGB') img_array = np.array(img_pil) # Enhance enhanced = LowLightEnhancer().enhance_image( img_array, clip_limit=clip_limit, gamma=gamma, brightness_boost=brightness ) # Back to base64 data URIs for instant display def pil_to_base64(pil_img): buf = io.BytesIO(); pil_img.save(buf, format='PNG') return base64.b64encode(buf.getvalue()).decode('utf-8') enhanced_pil = Image.fromarray(enhanced) return { 'original': f'data:image/png;base64,{pil_to_base64(img_pil)}', 'enhanced': f'data:image/png;base64,{pil_to_base64(enhanced_pil)}' } 3) The enhancement core (enhancer.py) LowLightEnhancer implements a classic pipeline that runs great on CPU: class LowLightEnhancer: def __init__(self): self.clip_limit = 2.0 self.tile_grid_size = (8, 8) def enhance_image(self, image, clip_limit=2.0, gamma=1.2, brightness_boost=1.1): # Normalize to RGB if the input came in as OpenCV BGR is_bgr = self._detect_bgr(image) rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if is_bgr else image # 1) CLAHE on L-channel (LAB) for local contrast without color blowout lab = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB) l, a, b = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=self.tile_grid_size) l = clahe.apply(l) # 2) Gamma correction (perceptual brightness curve) l = self._apply_gamma_correction(l, gamma) # 3) Gentle overall lift l = np.clip(l * brightness_boost, 0, 255).astype(np.uint8) # Recombine + small saturation nudge for a natural look enhanced = cv2.cvtColor(cv2.merge([l, a, b]), cv2.COLOR_LAB2RGB) enhanced = self._boost_saturation(enhanced, factor=1.1) return cv2.cvtColor(enhanced, cv2.COLOR_RGB2BGR) if is_bgr else enhanced CLAHE on L (not RGB) avoids the “oversaturated neon” artifact common with naive histogram equalization. Gamma via LUT (below) is fast and lets you brighten mid-tones without crushing highlights. A tiny brightness multiplier brings the image up just a bit after contrast/curve changes. A +10% saturation helps counter the desaturation that often follows brightening. 4) Fast gamma with a lookup table (enhancer.py) def _apply_gamma_correction(self, image, gamma: float) -> np.ndarray: inv_gamma = 1.0 / gamma table = np.array([((i / 255.0) ** inv_gamma) * 255 for i in range(256)], dtype=np.uint8) return cv2.LUT(image, table) Notes: With gamma = 1.2, inv_gamma ≈ 0.833 → curve brightens mid-tones (exponent < 1). cv2.LUT applies the 256-entry mapping efficiently across the image. 5) Bounded color pop: subtle saturation boost (enhancer.py) def _boost_saturation(self, image: np.ndarray, factor: float) -> np.ndarray: hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32) hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255) return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) Notes: Working in HSV keeps hue and brightness stable while gently lifting color. The clip to [0, 255] prevents out-of-gamut surprises. Tuning cheatsheet (which knob to turn, and when) Too flat / muddy → raise clip_limit from 2.0 → 3.0–4.0 (more local contrast). Still too dark → raise gamma from 1.2 → 1.4–1.6 (brightens mid-tones). Harsh or “crunchy” → lower clip_limit, or drop brightness_boost to 1.05–1.1. Colors feel washed out → increase saturation factor a touch (e.g., 1.1 → 1.15). What to try next Expose more controls in the UI (e.g., tile grid size, saturation factor). Persist originals/results to Azure Blob Storage and add shareable links. Add a background job for batch processing using the CLI helper. Conclusion The complete sample code and deployment templates are available in the appservice-ai-samples repository Ready to build your own Lowlight enhancer app? Clone the repo and run azd up to get started in minutes! For more Azure App Service AI samples and best practices, check out the Azure App Service AI integration documentation142Views0likes0Comments
