performance
114 TopicsUnlocking AI-Driven Data Access: Azure Database for MySQL Support via the Azure MCP Server
Step into a new era of data-driven intelligence with the fusion of Azure MCP Server and Azure Database for MySQL, where your MySQL data is no longer just stored, but instantly conversational, intelligent and action-ready. By harnessing the open-standard Model Context Protocol (MCP), your AI agents can now query, analyze and automate in natural language, accessing tables, surfacing insights and acting on your MySQL-driven business logic as easily as chatting with a colleague. It’s like giving your data a voice and your applications a brain, all within Azure’s trusted cloud platform. We are excited to announce that we have added support for Azure Database for MySQL in Azure MCP Server. The Azure MCP Server leverages the Model Context Protocol (MCP) to allow AI agents to seamlessly interact with various Azure services to perform context-aware operations such as querying databases and managing cloud resources. Building on this foundation, the Azure MCP Server now offers a set of tools that AI agents and apps can invoke to interact with Azure Database for MySQL - enabling them to list and query databases, retrieve schema details of tables, and access server configurations and parameters. These capabilities are delivered through the same standardized interface used for other Azure services, making it easier to the adopt the MCP standard for leveraging AI to work with your business data and operations across the Azure ecosystem. Before we delve into these new tools and explore how to get started with them, let’s take a moment to refresh our understanding of MCP and the Azure MCP Server - what they are, how they work, and why they matter. MCP architecture and key components The Model Context Protocol (MCP) is an emerging open protocol designed to integrate AI models with external data sources and services in a scalable, standardized, and secure manner. MCP dictates a client-server architecture with four key components: MCP Host, MCP Client, MCP Server and external data sources, services and APIs that provide the data context required to enhance AI models. To explain briefly, an MCP Host (AI apps and agents) includes an MCP client component that connects to one or more MCP Servers. These servers are lightweight programs that securely interface with external data sources, services and APIs and exposes them to MCP clients in the form of standardized capabilities called tools, resources and prompts. Learn more: MCP Documentation What is Azure MCP Server? Azure offers a multitude of cloud services that help developers build robust applications and AI solutions to address business needs. The Azure MCP Server aims to expose these powerful services for agentic usage, allowing AI systems to perform operations that are context-aware of your Azure resources and your business data within them, while ensuring adherence to the Model Context Protocol. It supports a wide range of Azure services and tools including Azure AI Search, Azure Cosmos DB, Azure Storage, Azure Monitor, Azure CLI and Developer CLI extensions. This means that you can empower AI agents, apps and tools to: Explore your Azure resources, such as listing and retrieving details on your Azure subscriptions, resource groups, services, databases, and tables. Search, query and analyze your data and logs. Execute CLI and Azure Developer CLI commands directly, and more! Learn more: Azure MCP Server GitHub Repository Introducing new Azure MCP Server tools to interact with Azure Database for MySQL The Azure MCP Server now includes the following tools that allow AI agents to interact with Azure Database for MySQL and your valuable business data residing in these servers, in accordance with the MCP standard: Tool Description Example Prompts azmcp_mysql_server_list List all MySQL servers in a subscription & resource group "List MySQL servers in resource group 'prod-rg'." "Show MySQL servers in region 'eastus'." azmcp_mysql_server_config_get Retrieve the configuration of a MySQL server "What is the backup retention period for server 'my-mysql-server'?" "Show storage allocation for server 'my-mysql-server'." azmcp_mysql_server_param_get Retrieve a specific parameter of a MySQL server "Is slow_query_log enabled on server my-mysql-server?" "Get innodb_buffer_pool_size for server my-mysql-server." azmcp_mysql_server_param_set Set a specific parameter of a MySQL server to a specific value "Set max_connections to 500 on server my-mysql-server." "Set wait_timeout to 300 on server my-mysql-server." azmcp_mysql_table_list List all tables in a MySQL database "List tables starting with 'tmp_' in database 'appdb'." "How many tables are in database 'analytics'?" azmcp_mysql_table_schema_get Get the schema of a specific table in a MySQL database "Show indexes for table 'transactions' in database 'billing'." "What is the primary key for table 'users' in database 'auth'?" azmcp_mysql_database_query Executes a SELECT query on a MySQL Database. The query must start with SELECT and cannot contain any destructive SQL operations for security reasons. “How many orders were placed in the last 30 days in the salesdb.orders table?” “Show the number of new users signed up in the last week in appdb.users grouped by day.” These interactions are secured using Microsoft Entra authentication, which enables seamless, identity-based access to Azure Database for MySQL - eliminating the need for password storage and enhancing overall security. How are these new tools in the Azure MCP Server different from the standalone MCP Server for Azure Database for MySQL? We have integrated the key capabilities of the Azure Database for MySQL MCP server into the Azure MCP Server, making it easier to connect your agentic apps not only to Azure Database for MySQL but also to other Azure services through one unified and secure interface! How to get started Installing and running the Azure MCP Server is quick and easy! Use GitHub Copilot in Visual Studio Code to gain meaningful insights from your business data in Azure Database for MySQL. Pre-requisites Install Visual Studio Code. Install GitHub Copilot and GitHub Copilot Chat extensions. An Azure Database for MySQL with Microsoft Entra authentication enabled. Ensure that the MCP Server is installed on a system with network connectivity and credentials to connect to Azure Database for MySQL. Installation and Testing Please use this guide for installation: Azure MCP Server Installation Guide Try the following prompts with your Azure Database for MySQL: Azure Database for MySQL tools for Azure MCP Server Try it out and share your feedback! Start using Azure MCP Server with the MySQL tools today and let our cloud services become your AI agent’s most powerful ally. We’re counting on your feedback - every comment, suggestion, or bug-report helps us build better tools together. Stay tuned: more features and capabilities are on the horizon! Feel free to comment below or write to us with your feedback and queries at AskAzureDBforMySQL@service.microsoft.com.142Views1like0CommentsIgnite 2025: Advancing Azure Database for MySQL with Powerful New Capabilities
At Ignite 2025, we’re introducing a wave of powerful new capabilities for Azure Database for MySQL, designed to help organizations modernize, scale, and innovate faster than ever before. From enhanced high availability and seamless serverless integrations to AI-powered insights and greater flexibility for developers, these advancements reflect our commitment to delivering a resilient, intelligent data platform. Join us as we unveil what’s next for MySQL on Azure - and discover how industry leaders are already building the future with confidence. Enhanced Failover Performance with Dedicated SLB for High-Availability Servers We’re excited to announce the General Availability of Dedicated Standard Load Balancer (SLB) for HA-enabled servers in Azure Database for MySQL. This enhancement introduces a dedicated SLB to High Availability configurations for servers created with public access or private link. By managing the MySQL data traffic path, SLB eliminates the need for DNS updates during failover, significantly reducing failover time. Previously, failover relied on DNS changes, which caused delays due to DNS TTL (30 seconds) and client-side DNS caching. What’s new with GA: The FQDN consistently resolves to the SLB IP address before and after failover. Load-balancing rules automatically route traffic to the active node. Removes DNS cache dependency, delivering faster failovers. Note: This feature is not supported for servers using private access with VNet integration. Learn more Build serverless, event-driven apps at scale – now GA with Trigger Bindings for Azure Functions We’re excited to announce the General Availability of Azure Database for MySQL Trigger bindings for Azure Functions, completing the full suite of Input, Output, and Trigger capabilities. This feature lets you build real-time, event-driven applications by automatically invoking Azure Functions when MySQL table rows are created or updated - eliminating custom polling and boilerplate code. With native support across multiple languages, developers can now deliver responsive, serverless solutions that scale effortlessly and accelerate innovation. Learn more Enable AI agents to query Azure Database for MySQL using Azure MCP Server We’re excited to announce that Azure MCP Server now supports Azure Database for MySQL, enabling AI agents to query and manage MySQL data using natural language through the open Model Context Protocol (MCP). Instead of writing SQL, you can simply ask questions like “Show the number of new users signed up in the last week in appdb.users grouped by day.”, all secured with Microsoft Entra authentication for enterprise-grade security. This integration delivers a unified, secure interface for building intelligent, context-aware workflows across Azure services - accelerating insights and automation. Learn more Greater networking flexibility with Custom Port Support Custom port support for Azure Database for MySQL is now generally available, giving organizations the flexibility to configure a custom port (between 25001 and 26000) during new server creation. This enhancement streamlines integration with legacy applications, supports strict network security policies, and helps avoid port conflicts in complex environments. Supported across all network configurations - including public access, private access, and Private Link - custom port provisioning ensures every new MySQL server can be tailored to your needs. The managed experience remains seamless, with all administrative capabilities and integrations working as before. Learn more Streamline migrations and compatibility with Lower Case Table Names support Azure Database for MySQL now supports configuring lower_case_table_names server parameter during initial server creation for MySQL 8.0 and above, ensuring seamless alignment with your organization’s naming conventions. This setting is automatically inherited for restores and replicas, and cannot be modified. Key Benefits: Simplifies migrations by aligning naming conventions and reducing complexity. Enhances compatibility with legacy systems that depend on case-insensitive table names. Minimizes support dependency, enabling faster and smoother onboarding. Learn more Unlock New Capabilities with Private Preview Features at Ignite 2025 We’re excited to announce that you can now explore two powerful capabilities in early access - Reader Endpoint for seamless read scaling and Server Rename for greater flexibility in server management. Scale reads effortlessly with Reader Endpoint (Private Preview) We’re excited to announce that the Reader Endpoint feature for Azure Database for MySQL is now ready for private preview. Reader Endpoint provides a dedicated read-only endpoint for read replicas, enabling automatic connection-based load balancing of read-only traffic across multiple replicas. This simplifies application architecture by offering a single endpoint for read operations, improving scalability and fault tolerance. Azure Database for MySQL supports up to 10 read replicas per primary server. By routing read-only traffic through the reader endpoint, application teams can efficiently manage connections and optimize performance without handling individual replica endpoints. Reader endpoints continuously monitor the health of replicas and automatically exclude any replica that exceeds the configured replication lag threshold or becomes unavailable. To enroll in the preview, please submit your details using this form. Limitations During Private Preview: Only performance-based routing is supported in this preview. Certain settings such as routing method and the option to attach new replicas to the reader endpoint can only be configured at creation time. Only one reader endpoint can be created per replica group. Including the primary server as a fallback for read traffic when no replicas are available is not supported in this preview. Get flexibility in server management with Server Rename (Private Preview) We’re excited to announce the Private Preview of Server Rename for Azure Database for MySQL. This feature lets you update the name of an existing MySQL server without recreating it, migrating data, or disrupting applications - making it easier to adopt clear, consistent naming. It provides a near zero-downtime path to a new hostname of the server. To enroll in the preview, please submit your details using this form. Limitations During Private Preview: Primary server with read replicas: Renaming a primary server that has read replicas keeps replication healthy. However, the SHOW SLAVE STATUS output on the replicas will still display the old primary server's name. This is a display inconsistency only and does not affect replication. Renaming is currently unsupported for servers using Customer Managed Key (CMK) encryption or Microsoft Entra Authentication (Entra Id). Real-World Success: Azure Database for MySQL Powers Resilient Applications at Scale Factorial Factorial, a leading HR software provider, uses Azure Database for MySQL alongside Azure Kubernetes Service to deliver secure, scalable HR solutions for thousands of businesses worldwide. By leveraging Azure Database for MySQL’s reliability and seamless integration with cloud-native technologies, Factorial ensures high availability and rapid innovation for its customers. Learn more YES (Youth Employment Service) South Africa’s largest youth employment initiative, YES, operates at national scale by leveraging Azure Database for MySQL to deliver a resilient, centralized platform for real-time job matching, learning management, and career services - connecting thousands of young people and employers, and helping nearly 45 percent of participants secure permanent roles within six months. Learn more Nasdaq At Ignite 2025, Nasdaq will showcase how it uses Azure Database for MySQL - alongside Azure Database for PostgreSQL and other Azure products - to power a secure, resilient architecture that safeguards confidential data while unlocking new agentic AI capabilities. Learn more These examples demonstrate that Azure Database for MySQL is trusted by industry leaders to build resilient, scalable applications - empowering organizations to innovate and grow with confidence. We Value Your Feedback Azure Database for MySQL is built for scale, resilience, and performance - ready to support your most demanding workloads. With every update, we’re focused on simplifying development, migration, and management so you can build with confidence. Explore the latest features and enhancements to see how Azure Database for MySQL meets your data needs today and in the future. We welcome your feedback and invite you to share your experiences or suggestions at AskAzureDBforMySQL@service.microsoft.com Stay up to date by visiting What's new in Azure Database for MySQL, and follow us on YouTube | LinkedIn | X for ongoing updates. Thank you for choosing Azure Database for MySQL!Build Smarter with Azure HorizonDB
By: Maxim Lukiyanov, PhD, Principal PM Manager; Abe Omorogbe, Senior Product Manager; Shreya R. Aithal, Product Manager II; Swarathmika Kakivaya, Product Manager II Today, at Microsoft Ignite, we are announcing a new PostgreSQL database service - Azure HorizonDB. You can read the announcement here, and in this blog you can learn more about HorizonDB’s AI features and development tools. Azure HorizonDB is designed for the full spectrum of modern database needs - from quickly building new AI applications, to scaling enterprise workloads to unprecedented levels of performance and availability, to managing your databases efficiently and securely. To help with building new AI applications we are introducing 3 features: DiskANN Advanced Filtering, built-in AI model management, and integration with Microsoft Foundry. To help with database management we are introducing a set of new capabilities in PostgreSQL extension for Visual Studio Code, as well as announcing General Availability of the extension. Let’s dive into AI features first. DiskANN Advanced Filtering We are excited to announce a new enhancement in the Microsoft’s state of the art vector indexing algorithm DiskANN – DiskANN Advanced Filtering. Advanced Filtering addresses a common problem in vector search – combining vector search with filtering. In real-world applications where queries often include constraints like price ranges, ratings, or categories, traditional vector search approaches, such as pgvector’s HNSW, rely on multiple step retrieval and post-filtering, which can make search extremely slow. DiskANN Advanced Filtering solves this by combining filter and search into one operation - while the graph of vectors is traversed during the vector search, each vector is also checked for filter predicate match, ensuring that only the correct vectors are retrieved. Under the hood, it works in a 3-step process: first creating a bitmap of relevant rows using indexes on attributes such as price or rating, then performing a filter-aware graph traversal against the bitmap, and finally, validating and ordering the results for accuracy. This integrated approach delivers dramatically faster and more efficient filtered vector searches. Initial benchmarks show that enabling Advanced Filtering on DiskANN reduces query latency by up to 3x, depending on filter selectivity. AI Model Management Another exciting feature of HorizonDB is AI Model Management. This feature automates Microsoft Foundry model provisioning during database deployment and instantly activates database semantic operators. This eliminates tens of setup and configuration steps and simplifies the development of new AI apps and agents. AI Model Management elevates the experience of using semantic operators within PostgreSQL. When activated, it provisions key models for embedding, semantic ranking and generation via Foundry, installs and configures the azure_ai extension to enable the operators, establishes secure connections, integrates model management, monitoring and cost management within HorizonDB. What would otherwise require significant manual effort and context-switching between Foundry and PostgreSQL for configuration, management, and monitoring is now possible with just a few clicks, all without leaving the PostgreSQL environment. You can also continue to bring your own Foundry models, with a simplified and enhanced process for registering your custom model endpoints in the azure_ai extension. Microsoft Foundry Integration Microsoft Foundry offers a comprehensive technology stack for building AI apps and agents. But building modern agents capable of reasoning, acting, and collaborating is impossible without connection to data. To facilitate that connection, we are excited to announce a new PostgreSQL connector in Microsoft Foundry. The connector is designed using a new standard in data connectivity – Model Context Protocol (MCP). It enables Foundry agents to interact with HorizonDB securely and intelligently, using natural language instead of SQL, and leveraging Microsoft Entra ID to ensure secure connection. In addition to HorizonDB this connector also supports Azure Database for PostgreSQL (ADP). This integration allows Foundry agents to perform tasks like: Exploring database schemas Retrieving records and insights Performing analytical queries Executing vector similarity searches for semantic search use cases All through natural language, without compromising enterprise security or compliance. To get started with Foundry Integration, follow these setup steps to deploy your own HorizonDB (requires participation in Private Preview) or ADP and connect it to Foundry in just a few steps. PostgreSQL extension for VS Code is Generally Available We’re excited to announce that the PostgreSQL extension for Visual Studio Code is now Generally Available. This extension garnered significant popularity within the PostgreSQL community since it’s preview in May’25 reaching more than 200K installs. It is the easiest way to connect to a PostgreSQL database from your favorite editor, manage your databases, and take advantage of built-in AI capabilities without ever leaving VS Code. The extension works with any PostgreSQL whether it's on-premises or in the cloud, and also supports unique features of Azure HorizonDB and Azure Database for PostgreSQL (ADP). One of the key new capabilities is Metrics Intelligence, which uses Copilot and real-time telemetry of HorizonDB or ADP to help you diagnose and fix performance issues in seconds. Instead of digging through logs and query plans, you can open the Performance Dashboard, see a CPU spike, and ask Copilot to investigate. The extension sends a rich prompt that tells Copilot to analyze live metrics, identify the root cause, and propose an actionable fix. For example, Copilot might find a full table scan on a large table, recommend a composite index on the filter columns, create that index, and confirm the query plan now uses it. The result is dramatic: you can investigate and resolve the CPU spike in seconds, with no manual scripting or guesswork, and with no prior PostgreSQL expertise required. The extension also makes it easier to work with graph data. HorizonDB and ADP support open-source graph extension Apache AGE. This turns these services into fully managed graph databases. You can run graph queries against HorizonDB and immediately visualize the results as an interactive graph inside VS Code. This helps you understand relationships in your data faster, whether you’re exploring customer journeys, network topologies, or knowledge graphs - all without switching tools. In Conclusion Azure HorizonDB brings together everything teams need to build, run, and manage modern, AI-powered applications on PostgreSQL. With DiskANN Advanced Filtering, you can deliver low-latency, filtered vector search at scale. With built-in AI Model Management and Microsoft Foundry integration, you can provision models, wire up semantic operators, and connect agents to your data with far fewer steps and far less complexity. And with the PostgreSQL extension for Visual Studio Code, you get an intuitive, AI-assisted experience for performance tuning and graph visualization, right inside the tools you already use. HorizonDB is now available in private preview. If you’re interested in building AI apps and agents on a fully managed, PostgreSQL-compatible service with built-in AI and rich developer tooling, sign-up for Private Preview: https://aka.ms/PreviewHorizonDB.851Views4likes0CommentsBuilding brighter futures: How YES tackles youth unemployment with Azure Database for MySQL
YES leverages Azure Database for MySQL to power South Africa’s largest youth employment initiative, delivering scalable, reliable systems that connect thousands of young people to jobs and learning opportunities.138Views0likes0CommentsExciting things on the horizon for PostgreSQL fans @ Ignite 2025
If you’re passionate about PostgreSQL or just curious about what’s new, you’ll want to join us at Microsoft Ignite 2025. We have a packed lineup, including sessions exploring cutting-edge features and exclusive giveaways at the PostgreSQL on Azure booth. Haven’t registered yet? Now’s the time – sign up for Microsoft Ignite and start building your schedule. Below are the must-see PostgreSQL on Azure activities, with highlights of what you’ll learn at each. Add these to your agenda today. Sessions can fill up fast! Theater sessions: get a first look, fast I know from experience that attention spans can start to wane after hours-long keynotes, content-rich sessions, and conference socializing. Luckily, we have a couple of theater sessions that offer snackable but substantial information in less time than it will take to grab lunch. And they’re located conveniently on the main conference floor. PostgreSQL on Azure: Your launchpad for intelligent apps and agents (THR705) - See how we’re making PostgreSQL AI-aware for developers to drive app and agent innovation. Includes a demo of vector similarity search, semantic operators baked into Postgres, and more! Simplifying scale-out of PostgreSQL for performant multi-tenant apps (THR706) - Discover a smarter, simpler way to scale PostgreSQL using the new Elastic Clusters feature. If your app or service is growing fast (or you want it to!), add this breakout to learn how Azure makes it easier to scale Postgres and keep it reliable. These talks are a great way to sample what’s new and decide where to dive deeper. Plus, they’re fun and demo-heavy, and who doesn’t love a good demo? Breakout sessions: a deep dive into Postgres innovations Led by Azure product leaders and executives from organizations driving innovation backed by PostgreSQL, these breakout sessions will dive into the coolest new capabilities and real-world use cases. If you want rich, technical content and more live demos, these are for you. Build mission-critical apps that scale with PostgreSQL on Azure (BRK127) - Get a closer look at the next generation of PostgreSQL on Azure. Add this session, if you’re curious about how we’re taking Postgres to the next level to support your mission-critical AI workloads. Modern data, modern apps: Innovation with Microsoft Databases (BRK134) - Gain insider knowledge on the latest innovations across open-source, SQL, and NoSQL databases, and understand how Microsoft’s integrated database portfolio supports next-gen innovation. Nasdaq Boardvantage: AI-driven governance on PostgreSQL and AI Foundry (BRK137) - Discover how a Fortune 100 merges trust with cutting-edge AI leveraging Azure’s AI-enriched and enterprise-ready solutions, including Azure Database for PostgreSQL, Azure Database for MySQL, Azure AI Foundry, Azure Kubernetes Service (AKS), and API Management. AI-assisted migration: The path to powerful performance on PostgreSQL (BRK123) - A before and after migration journey from Oracle to Azure Database for PostgreSQL. See how the new AI-assisted migration experience delivers conversion in a few clicks and minimal downtime. The blueprint for intelligent AI agents backed by PostgreSQL (BRK130) - If you’re into AI development, this session will spark ideas on bridging the gap between raw data and AI reasoning. You’ll leave with practical tips to turbocharge your AI agents with PostgreSQL. Each breakout session is 45 minutes with live demos and Q&A, so you’ll get plenty of detail and interaction with Postgres experts. Hands-on lab: experience coding with Azure superpowers Do you learn best by doing? Then our guided workshop, Build advanced AI agents with PostgreSQL (Lab515), is for you. In each 75-minute session, you’ll get to create a fully functional AI-powered application backed by PostgreSQL on Azure with step-by-step guidance and expert insight on the latest innovations enabling intelligent app development. All the tools and instructions you’ll need are provided. Labs have limited capacity, so be sure to reserve your seat for any of the four labs in advance. This lab is a great way to understand how all the pieces come together on Azure. And you’ll gain practical skills you can apply to your own projects, whether it’s customer support bots, intelligent search in your app, or any scenario where PostgreSQL + AI collide. Expert meet-up booth: meet the team, grab some swag If you still want more Postgres (or a little Postgres souvenir), you can stop by the PostgreSQL on Azure Expert Meetup booth in the Ignite Hub. This will be our homebase on the show floor, where you can: Meet the team: I’ll be there in person, along with engineers, program managers, cloud solution architects, and advocates from our team. Whether you have a burning technical question, want to share feedback, or need guidance for your specific use case, come chat with us. Get a quick demo re-run: Sometimes a 5-minute demo is worth a thousand words, especially after you’ve sat through all those words already in a keynote. The booth will have a monitor and a live environment so we can walk you through select use cases if you have questions - no appointment needed. Swag and giveaways: Ah yes, the goodies! We know conference swag is part of the fun, so we’ve got some special PostgreSQL-themed giveaways at the booth. I won’t spoil all the surprises, but rumor has it there are some limited-edition items up for grabs. Network with peers: The expert meet-up area is also a magnet for PostgreSQL enthusiasts. You might bump into other attendees at the booth who are tackling similar projects or challenges. Ignite is about community as much as content, so come by and spark up a conversation. Meet you there? Ignite is our largest event of the year. We love sharing what we’ve been working on and, most of all, hearing from you, the community. So, on behalf of the Azure for PostgreSQL team, thank you for your interest and support. We can’t wait to show you what’s new and to help you continue to succeed with Postgres. See you in San Francisco!440Views2likes0CommentsLessons Learned #537: Copilot Prompts for Troubleshooting on Azure SQL Database
We had the opportunity to share our experience in several community sessions how SSMS Copilot can help across multiple phases of troubleshooting. In this article, I would like to share a set of prompts we found in those sessions and show how to apply them to an example query. During a performance incident, we captured the following query, generated by PowerBI. SELECT TOP (1000001) * FROM ( SELECT [t2].[Fiscal Month Label] AS [c38], SUM([t5].[Total Excluding Tax]) AS [a0], SUM([t5].[Total Including Tax]) AS [a1] FROM ( SELECT [$Table].[Sale Key] as [Sale Key], [$Table].[City Key] as [City Key], [$Table].[Customer Key] as [Customer Key], [$Table].[Bill To Customer Key] as [Bill To Customer Key], [$Table].[Stock Item Key] as [Stock Item Key], [$Table].[Invoice Date Key] as [Invoice Date Key], [$Table].[Delivery Date Key] as [Delivery Date Key], [$Table].[Salesperson Key] as [Salesperson Key], [$Table].[WWI Invoice ID] as [WWI Invoice ID], [$Table].[Description] as [Description], [$Table].[Package] as [Package], [$Table].[Quantity] as [Quantity], [$Table].[Unit Price] as [Unit Price], [$Table].[Tax Rate] as [Tax Rate], [$Table].[Total Excluding Tax] as [Total Excluding Tax], [$Table].[Tax Amount] as [Tax Amount], [$Table].[Profit] as [Profit], [$Table].[Total Including Tax] as [Total Including Tax], [$Table].[Total Dry Items] as [Total Dry Items], [$Table].[Total Chiller Items] as [Total Chiller Items], [$Table].[Lineage Key] as [Lineage Key] FROM [Fact].[Sale] as [$Table] ) AS [t5] INNER JOIN ( SELECT [$Table].[Date] as [Date], [$Table].[Day Number] as [Day Number], [$Table].[Day] as [Day], [$Table].[Month] as [Month], [$Table].[Short Month] as [Short Month], [$Table].[Calendar Month Number] as [Calendar Month Number], [$Table].[Calendar Month Label] as [Calendar Month Label], [$Table].[Calendar Year] as [Calendar Year], [$Table].[Calendar Year Label] as [Calendar Year Label], [$Table].[Fiscal Month Number] as [Fiscal Month Number], [$Table].[Fiscal Month Label] as [Fiscal Month Label], [$Table].[Fiscal Year] as [Fiscal Year], [$Table].[Fiscal Year Label] as [Fiscal Year Label], [$Table].[ISO Week Number] as [ISO Week Number] FROM [Dimension].[Date] as [$Table] ) AS [t2] ON [t5].[Delivery Date Key] = [t2].[Date] GROUP BY [t2].[Fiscal Month Label] ) AS [MainTable] WHERE ( NOT([a0] IS NULL) OR NOT([a1] IS NULL) ) I structure the investigation in three areas: Analysis – understand the data model, sizes, and relationships. List all tables in the 'Fact' and 'Dimension' schemas with space usage in MB and number of rows. The name of the tables and their relations among them. Please, provide a textual representation for all relations. List all foreign key relationships between tables in the 'Fact' and 'Dimension' schemas, showing the cardinality and referenced columns. Could you please let me know what is the meaning of every table? Describe all schemas in this database, listing the number of tables and views per schema. Create a textual data model (ER-style) representation showing how all Fact and Dimension tables are connected. Maintenance Plan Check – verify statistics freshness, index health/fragmentation, partition layout, and data quality. List all statistics in the database that have not been updated in the last 7 days, showing table name, number of rows, and last update date. List all indexes in the database with fragmentation higher than 30%, including table name, index name, and page count. Please, provide the T-SQL to rebuild all indexes in ONLINE mode and UPDATE STATISTICS for all tables that are automatic statistics. Check for fact table rows that reference dimension keys which no longer exist (broken foreign key integrity). Find queries that perform table scans on large tables where no indexes are used, based on recent execution plans. Performance Improvements – simplify/reshape the query and consider indexed views, columnstore, partitioning, and missing indexes. In this part, I would like to spend more time about these prompts, for example the following ones, help me to understand the performance issue, simplify the query text and also, explains what the query is doing. Identify the longest-running query in the last 24 hours provide the full text of the query Please simplify the query Explain me the query Explain in plain language what the following SQL query does, including the purpose of each subquery and the final WHERE clause. Show a histogram of data distribution for key columns used in joins or filters, such as SaleDate, ProductCategory, or Region. Finally, using this prompt I could find a lot of useful information how to improve the execution of this query: Analyze the following SQL query and provide a detailed performance review tailored for Azure SQL Database Hyperscale and Power BI DirectQuery scenarios. For each recommendation, estimate the potential performance improvement as a percentage (e.g. query runtime reduction, I/O savings, etc.). 1. Could this query benefit from a schemabound indexed view or a materialized view? Estimate the performance gain if implemented. 2. Is there any missing index on the involved tables that would improve join or filter efficiency? Include the suggested index definition and expected benefit. 3. Would using a clustered or nonclustered columnstore index on the main fact table improve performance? Estimate the potential gain in query time or storage. 4. Could partitioning the fact table improve performance by enabling partition elimination? If so, suggest the partition key and scheme, and estimate improvement. 5. Are current statistics sufficient for optimal execution plans? Recommend updates if needed and estimate impact. 6. Does this query preserve query folding when used with Power BI DirectQuery? If not, identify what breaks folding and suggest how to fix it. 7. Recommend any query rewrites or schema redesigns, along with estimated performance improvements for each. I got a lot of improvements suggestions about it: Evaluated a schemabound indexed view that pre‑aggregates by month (see Reference Implementations), then pointed Power BI to the view. Ensured clustered columnstore on Fact.Sale; considered a targeted rowstore NCI on [Delivery Date Key] INCLUDE ([Total Excluding Tax], [Total Including Tax]) when columnstore alone wasn’t sufficient. Verified statistics freshness on join/aggregate columns and enabled incremental stats for partitions. Checked partitioning by date to leverage elimination for common slicers.263Views0likes0CommentsSeptember 2025 Recap: Azure Database for MySQL
Join us live on our YouTube channel on October 15, 2025 for an exclusive webinar where we’ll dive deeper into the latest Azure Database for MySQL updates and answer your questions! Watch it live here. Support for In-Place Major Version Upgrade from 8.0 to 8.4 We previously announced that Azure Database for MySQL version 8.4 is now generally available. We’re now happy to share that in-place major version upgrade is supported for MySQL servers from 8.0 to 8.4. If you’re currently on MySQL 5.7, you’ll first need to perform an in-place upgrade from 5.7 to 8.0, and then upgrade from 8.0 to 8.4. Learn more. Near-Zero-Downtime Maintenance - General Availability You can now take advantage of near-zero-downtime maintenance for Azure Database for MySQL with high availability (HA) enabled. This capability is now generally available and is supported by our new HA architecture based on a dedicated Azure Standard Load Balancer design. Thanks to the dedicated Standard Load Balancer design, maintenance is now faster and no longer impacted by client-side DNS caching, which previously caused brief connection drops in some scenarios. This enhancement ensures that your mission-critical workloads remain continuously available, even during infrastructure updates, helping you meet strict uptime requirements and maintain operational continuity. Learn more. We would love your feedback We look forward to your feedback as you explore these enhancements and continue building with Azure Database for MySQL. If you have any suggestions or queries about our service, please let us know by emailing us at AskAzureDBforMySQL@service.microsoft.com. To learn more about what's new with Flexible Server, see What's new in Azure Database for MySQL - Flexible Server. Stay tuned for more updates and announcements by following us on social media: YouTube | LinkedIn | X. Thanks for being part of our community!168Views0likes0CommentsAugust 2025 Recap: Azure Database for MySQL
We're excited to share a summary of the Azure Database for MySQL updates for the month of August 2025. Join us live on our YouTube channel on September 11, 2025 for an exclusive webinar where we’ll dive deeper into these updates and answer your questions! Watch it live here. Azure Database for MySQL 8.4 - General Availability We’re excited to announce that Azure Database for MySQL now supports MySQL 8.4 in General Availability (GA). This means you can create new MySQL 8.4 servers on Azure fully supported for production workloads. MySQL 8.4 is a long-term supported release from the MySQL community, bringing the latest features and improvements while emphasizing stability. With Azure’s managed service, you get these new capabilities backed by Azure’s enterprise-grade reliability and support. In short, MySQL 8.4 GA opens the door for you to upgrade your databases and future-proof your MySQL environment on Azure. Learn more. Cross subscription and cross resource-group placement in restore/replica provisioning workflow You can now restore a server or create a read replica in a different subscription and resource group in Azure Database for MySQL – Flexible Server. This enhancement offers greater flexibility for cross-environment restores, resource organization, and subscription-level separation, helping meet governance and operational requirements. Learn more. Ability to delete on-demand backup You can now delete on-demand backups in Azure Database for MySQL – Flexible Server, giving you greater control over backup management and storage costs. This feature allows you to remove on-demand backups that are no longer needed, helping maintain a cleaner backup inventory and optimize resource usage. Learn more. Unlocking Regional Insights with the Location Based Capabilities REST API Managing MySQL Flexible Server deployments across Azure regions often means choosing the right Azure region for your MySQL deployment is critical. The new Location-Based Capability Set – List API helps you: Retrieve real-time, region-specific capabilities. Compare SKUs, storage options, backup retention, and HA configurations. Integrate insights into automation pipelines for smarter deployments. This API empowers architects and developers to make informed decisions, reduce misconfigurations, and accelerate deployment cycles. Learn more. Stay Connected We look forward to your feedback as you explore these enhancements and continue building with Azure Database for MySQL. If you have any suggestions or queries about our service, please let us know by emailing us at AskAzureDBforMySQL@service.microsoft.com. You can also submit product ideas and feedback at Azure Database for MySQL Community forum. To learn more about what's new with Flexible Server, see What's new in Azure Database for MySQL - Flexible Server. Stay tuned for more updates and announcements by following us on social media: YouTube | LinkedIn | X. Take care, and thanks for being part of our community!252Views0likes0CommentsLesson Learned #531: Scalar UDF vs Parallelism
Last week I worked on a support case where our customer reported that the exact same query, executed against two identical databases with the same resources, was taking significantly longer on one of them. Both databases had the same number of rows, up-to-date statistics, and identical indexes. We started by collecting the execution plans, and I’d like to share what we found. Comparing both execution plans, in the XML of the execution plan that is taking more time, we found the following line in <QueryPlan DegreeOfParallelism="0" NonParallelPlanReason="TSQLUserDefinedFunctionsNotParallelizable"> However in the XML of execution plan that is taking less time we found <QueryPlan DegreeOfParallelism="1" ContainsInlineScalarTsqlUdfs="true"> So, based on this difference, it is clear that the query is using a Scalar UDF but in one of the database, based on the definition of this Scalar UDF function is not possible to run the query in parallel. But in the other database even using Scalar UDF it is possible. As both databases are using the same compatibility level of 160, we started to analyze what is different on both that leads to this behavior, sharing with you an example. DROP TABLE IF EXISTS dbo.TestData; GO CREATE TABLE dbo.TestData ( ID INT IDENTITY(1,1) PRIMARY KEY, Value1 INT, Value2 INT ); INSERT INTO dbo.TestData (Value1, Value2) SELECT ABS(CHECKSUM(NEWID()) % 10000), ABS(CHECKSUM(NEWID()) % 10000) FROM sys.all_objects a CROSS JOIN sys.all_objects b WHERE a.object_id < 150 AND b.object_id < 150; Let's create the Scalar function that blocks the parallel execution. CREATE OR ALTER FUNCTION dbo.fn_BlockParallel (@v1 INT) RETURNS INT AS BEGIN DECLARE @x INT; SELECT @x = DATEDIFF(MILLISECOND, GETDATE(), SYSDATETIME()); RETURN ISNULL(@x, 0); END; When I executed the following query I see in the XML file the following - <QueryPlan DegreeOfParallelism="0" NonParallelPlanReason="TSQLUserDefinedFunctionsNotParallelizable" CachedPlanSize="16" CompileTime="1" CompileCPU="1" CompileMemory="216"> SELECT ID, dbo.fn_BlockParallel(Value1) FROM dbo.TestData WHERE Value1 > 100 OPTION (MAXDOP 4); GO If I modified the code for a new Scalar UDF, I see: <QueryPlan DegreeOfParallelism="1" CachedPlanSize="16" CompileTime="1" CompileCPU="1" CompileMemory="272" ContainsInlineScalarTsqlUdfs="true"> CREATE OR ALTER FUNCTION dbo.fn_BlockParallel (@v1 INT) RETURNS INT AS BEGIN DECLARE @x INT; SELECT @x = v1 * 2; RETURN @x; END; So, even when using compatibility level 160, certain constructs inside scalar UDFs can prevent inlining, which in turn blocks query parallelism. When performance varies between environments, one of the things to check is whether scalar UDFs are involved, and if they are eligible for inlining. To detect the issue quickly, look at the execution plan XML and check the attributes DegreeOfParallelism, ContainsInlineScalarTsqlUdfs, and NonParallelPlanReason.Lesson Learned #530: Comparing Execution Plans to Expose a Hidden Performance Anti-Pattern
One of the most powerful features of SSMS Copilot is how it lets you compare execution plans and immediately show you performance issues. In this case, I would like to share with you my lesson learned comparing two queries and how they behave very differently inside the engine. We have the following queries, these are using a table _x_y_z_MS_HighCPU that contains 4 millon of rows. The column TextToSearch is a varchar(200) datatype. -- Query 1 SELECT COUNT(*) FROM [MSxyzTest].[_x_y_z_MS_HighCPU] WHERE TextToSearch = N'Value: 9'; -- Query 2 SELECT COUNT(*) FROM [MSxyzTest].[_x_y_z_MS_HighCPU] WHERE TextToSearch = 'Value: 9'; Since the query texts are different, each will have a different query ID in Query Store. By running the following T-SQL, for example, I can identify the query IDs. SELECT qsqt.query_sql_text, qsq.query_id, qsp.plan_id, qsp.query_plan_hash, qsp.last_execution_time FROM sys.query_store_query_text qsqt JOIN sys.query_store_query qsq ON qsqt.query_text_id = qsq.query_text_id JOIN sys.query_store_plan qsp ON qsq.query_id = qsp.query_id WHERE qsqt.query_sql_text LIKE '%SELECT COUNT(*)%' -- FROM [[MSxyzTest]].[[_x_y_z_MS_HighCPU]]%' ORDER BY qsp.last_execution_time DESC; Queries 1 and 2 can be compared directly. Using Copilot, I ran the following prompt: Compare the execution plans for the two queries (query id 1 and query id 2 using Query Store. Highlight any differences in operators, estimated vs actual row counts, or implicit conversions. Running the following prompt : CPU Usage: Please, show the top resource-consuming queries in the current database using Query Store data. Include query text, execution count, duration, CPU time, and logical reads. We could see the impact of using an antipattern:181Views0likes0Comments