pamela fox
6 TopicsEntity extraction with Azure OpenAI Structured Outputs
📺 Tune into our live stream on this topic on December 3rd! Have you ever wanted to extract some details from a large block of text, like to figure out the topics of a blog post or the location of a news article? In the past, I've had to use specialized models and domain-specific packages for entity extraction. But now, we can do entity extraction with large language models and get equally impressive results. 🎉 When we use the OpenAI gpt-4o model along with the structured outputs mode, we can define a schema for the details we'd like to extract and get a response that conforms to that schema. Here's the most basic example from the Azure OpenAI tutorial about structured outputs: class CalendarEvent(BaseModel): name: str date: str participants: list[str] completion = client.beta.chat.completions.parse( model="MODEL_DEPLOYMENT_NAME", messages=[ {"role": "system", "content": "Extract the event information."}, {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."}, ], response_format=CalendarEvent, ) output = completion.choices[0].message.parsed The code first defines the CalendarEvent class, an instance of a Pydantic model. Then it sends a request to the GPT model specifying a response_format of CalendarEvent . The parsed output will be a dictionary containing a name , date , and participants . We can even go a step farther and turn the parsed output into a CalendarEvent instance, using the Pydantic model_validate method: event = CalendarEvent.model_validate(event) With this structured outputs capability, it's easier than ever to use GPT models for "entity extraction" tasks: give it some data, tell it what sorts of entities to extract from that data, and constrain it as needed. Extracting from GitHub READMEs Let's see an example of a way that I actually used structured outputs, to help me summarize the submissions that we got to a recent hackathon. I can feed the README of a repository to the GPT model and ask for it to extract key details like project title and technologies used. First I define the Pydantic models: class Language(str, Enum): JAVASCRIPT = "JavaScript" PYTHON = "Python" DOTNET = ".NET" class Framework(str, Enum): LANGCHAIN = "Langchain" SEMANTICKERNEL = "Semantic Kernel" LLAMAINDEX = "Llamaindex" AUTOGEN = "Autogen" SPRINGBOOT = "Spring Boot" PROMPTY = "Prompty" class RepoOverview(BaseModel): name: str summary: str = Field(..., description="A 1-2 sentence description of the project") languages: list[Language] frameworks: list[Framework] In the code above, I asked for a list of a Python enum, which will constrain the model to return only options matching that list. I could have also asked for a list[str] to give it more flexibility, but I wanted to constrain it in this case. I also annoted the description using the Pydantic Field class so that I could specify the length of the description. Without that annotation, the descriptions are often much longer. We can use that description whenever we want to give additional guidance to the model about a field. Next, I fetch the GitHub readme, storing it as a string: url = "https://api.github.com/repos/shank250/CareerCanvas-msft-raghack/contents/README.md" response = requests.get(url) readme_content = base64.b64decode(response.json()["content"]).decode("utf-8") Finally, I send off the request and convert the result into a RepoOverview instance: completion = client.beta.chat.completions.parse( model=os.getenv("AZURE_OPENAI_GPT_DEPLOYMENT"), messages=[ { "role": "system", "content": "Extract info from the GitHub issue markdown about this hack submission.", }, {"role": "user", "content": readme_content}, ], response_format=RepoOverview, ) output = completion.choices[0].message.parsed repo_overview = RepoOverview.model_validate(output) You can see the full code in extract_github_repo.py That gives back an object like this one: RepoOverview( name='Job Finder Chatbot with RAG', description='This project is a chatbot application aimed at helping users find job opportunities and get relevant answers to questions about job roles, leveraging Retrieval-Augmented Generation (RAG) for personalized recommendations and answers.', languages=[<Language.JAVASCRIPT: 'JavaScript'>], azure_services=[<AzureService.AISEARCH: 'AI Search'>, <AzureService.POSTGRESQL: 'PostgreSQL'>], frameworks=[<Framework.SPRINGBOOT: 'Spring Boot'>] ) Extracting from PDFs I talk to many customers that want to extract details from PDF, like locations and dates, often to store as metadata in their RAG search index. The first step is to extract the PDF as text, and we have a few options: a hosted service like Azure Document Intelligence, or a local Python package like pymupdf. For this example, I'm using the latter, as I wanted to try out their specialized pymupdf4llm package that converts the PDF to LLM-friendly markdown. First I load in a PDF of an order receipt and convert it to markdown: md_text = pymupdf4llm.to_markdown("example_receipt.pdf") Then I define the Pydantic models for a receipt: class Item(BaseModel): product: str price: float quantity: int class Receipt(BaseModel): total: float shipping: float payment_method: str items: list[Item] order_number: int In this example, I'm using a nested Pydantic model Item for each item in the receipt, so that I can get detailed information about each item. And then, as before, I send the text off to the GPT model and convert the response back to a Receipt instance: completion = client.beta.chat.completions.parse( model=os.getenv("AZURE_OPENAI_GPT_DEPLOYMENT"), messages=[ {"role": "system", "content": "Extract the information from the blog post"}, {"role": "user", "content": md_text}, ], response_format=Receipt, ) output = completion.choices[0].message.parsed receipt = Receipt.model_validate(output) You can see the full code in extract_pdf_receipt.py Extracting from images Since the gpt-4o model is also a multimodal model, it can accept both images and text. That means that we can send it an image and ask it for a structured output that extracts details from that image. Pretty darn cool! First I load in a local image as a base-64 encoded data URI: def open_image_as_base64(filename): with open(filename, "rb") as image_file: image_data = image_file.read() image_base64 = base64.b64encode(image_data).decode("utf-8") return f"data:image/png;base64,{image_base64}" image_url = open_image_as_base64("example_graph_treecover.png") For this example, my image is a graph, so I'm going to have it extract details about the graph. Here are the Pydantic models: class Graph(BaseModel): title: str description: str = Field(..., description="1 sentence description of the graph") x_axis: str y_axis: str legend: list[str] Then I send off the base-64 image URI to the GPT model, inside a "image_url" type message, and convert the response back to a Graph object: completion = client.beta.chat.completions.parse( model=os.getenv("AZURE_OPENAI_GPT_DEPLOYMENT"), messages=[ {"role": "system", "content": "Extract the information from the graph"}, { "role": "user", "content": [ {"image_url": {"url": image_url}, "type": "image_url"}, ], }, ], response_format=Graph, ) output = completion.choices[0].message.parsed graph = Graph.model_validate(output) More examples You can use this same general approach for entity extraction across many file types, as long as they can be represented in either a text or image form. See more examples in my azure-openai-entity-extraction repository. As always, remember that large language models are probabilistic next-word-predictors that won't always get things right, so definitely evaluate the accuracy of the outputs before you use this approach for a business-critical task.1.7KViews5likes2CommentsGPT-5: Will it RAG?
OpenAI released the GPT-5 model family last week, with an emphasis on accurate tool calling and reduced hallucinations. For those of us working on RAG (Retrieval-Augmented Generation), it's particularly exciting to see a model specifically trained to reduce hallucination. There are five variants in the family: gpt-5 gpt-5-mini gpt-5-nano gpt-5-chat: Not a reasoning model, optimized for chat applications gpt-5-pro: Only available in ChatGPT, not via the API As soon as GPT-5 models were available in Azure AI Foundry, I deployed them and evaluated them inside our most popular open source RAG template. I was immediately impressed - not by the model's ability to answer a question, but by it's ability to admit it could not answer a question! You see, we have one test question for our sample data (HR documents for a fictional company's) that sounds like it should be an easy question: "What does a Product Manager do?" But, if you actually look at the company documents, there's no job description for "Product Manager", only related jobs like "Senior Manager of Product Management". Every other model, including the reasoning models, has still pretended that it could answer that question. For example, here's a response from o4-mini: However, the gpt-5 model realizes that it doesn't have the information necessary, and responds that it cannot answer the question: As I always say: I would much rather have an LLM admit that it doesn't have enough information instead of making up an answer. Bulk evaluation But that's just a single question! What we really need to know is whether the GPT-5 models will generally do a better job across the board, on a wide range of questions. So I ran bulk evaluations using the azure-ai-evaluations SDK, checking my favorite metrics: groundedness (LLM-judged), relevance (LLM-judged), and citations_matched (regex based off ground truth citations). I didn't bother evaluating gpt-5-nano, as I did some quick manual tests and wasn't impressed enough - plus, we've never used a nano sized model for our RAG scenarios. Here are the results for 50 Q/A pairs: metric stat gpt-4.1-mini gpt-4o-mini gpt-5-chat gpt-5 gpt-5-mini o3-mini groundedness pass % 94% 86% 96% 100% 🏆 94% 96% ↑ mean score 4.76 4.50 4.86 5.00 🏆 4.82 4.80 relevance pass % 94% 🏆 84% 90% 90% 74% 90% ↑ mean score 4.42 🏆 4.22 4.06 4.20 4.02 4.00 answer_length mean 829 919 549 844 940 499 latency mean 2.9 4.5 2.9 9.6 7.5 19.4 citations_matched % 52% 49% 52% 47% 49% 51% For the LLM-judged metrics of groundedness and relevance , the LLM awards a score of 1-5, and both 4 and 5 are considered passing scores. That's why you see both a "pass %" (percentage with 4 or 5 score) and an average score in the table above. For the groundedness metric, which measures whether an answer is grounded in the retrieved search results, the gpt-5 model does the best (100%), while the other gpt-5 models do quite well as well, on par with our current default model of gpt-4.1-mini. For the relevance metric, which measures whether an answer fully answers a question, the gpt-5 models don't score as highly as gpt-4.1-mini. I looked into the discrepancies there, and I think that's actually due to gpt-5 being less willing to give an answer when it's not fully confident in it - it would rather give a partial answer instead. That's a good thing for RAG apps, so I am comfortable with that metric being less than 100%. The latency metric is generally higher for the gpt-5 reasoning models, as would be expected, but is also variable based on on deployment region, region capacity, etc, assuming you're not using a "provisioned thoroughput" deployment. Also note that the latency here records the total time taken, from first token to last token, whereas the most important metric for a user-facing streaming chat is the time to first token. For the gpt-5 reasoning models in this evaluation, I set the reasoning_effort to "minimal", which means the model chooses whether to use reasoning tokens. I have never seen it actually use any reasoning tokens when I set the effort to minimal, so maybe that means that a higher reasoning effort is really only needed for longer or more complex tasks, and RAG answering is a non-reasoning task. A higher reasoning effort would definitely affect the latency and likely also affect the answer quality. I did not test that out, since the "minimal" effort setting already results in high quality answers. Answer differences Now that we've seen the overall metrics, let's dig into some actual answers, and see some of the key ways that GPT-5 model answers differ. Quicker to say "I don't know" 🤷🏻 Let's start with the first thing I noticed: gpt-5 was happy to admit when it couldn't fully answer a question. In the 50 questions evaluated, the gpt-5 model started off their answer with "I don't know" for 3 of the answers, while gpt-5-mini started that way for 10 of the answers. In table form: gpt-4.1-mini gpt-5 gpt-5-mini gpt-5-chat 1 (1.6%) 3 (6%) 10 (20%) 1 (1.6%) Here's an example of a gpt-4.1-mini answer versus a gpt-5 answer: Q: Explain the eligibility criteria for the Northwind Standard plan offered to Contoso employees? gpt-4.1-mini gpt-5 The eligibility criteria for the Northwind Standard plan for Contoso employees are not explicitly detailed in the provided sources. However, it is mentioned that prior-authorization may be required for certain services or treatments, which involves approval from Northwind Health based on medical necessity and coverage under the plan. Employees must have their physician submit a request for prior-authorization, and in some cases, meet specific criteria such as medical tests, treatments, or lifestyle changes to be approved. Preventive care, emergency services, mental health, and substance abuse coverage do not require prior-authorization. Out-of-network services do require prior-authorization and may incur additional costs [Northwind_Standard_Benefits_Details.pdf#page=63][Northwind_Standard_Benefits_Details.pdf#page=102]. If you need information on basic eligibility (such as employment status or tenure), that is not provided in these sources. I don’t know. The provided sources describe compliance (ERISA, COBRA, HIPAA, ACA) and note that Northwind Standard is a group plan covering “all eligible employees of Contoso and their spouses or dependents,” but they do not define the specific eligibility criteria (e.g., hours worked, waiting period, employment class). [Northwind_Standard_Benefits_Details.pdf#page=88][Northwind_Standard_Benefits_Details.pdf#page=85][Northwind_Standard_Benefits_Details.pdf#page=86] Both of the answers admit some degree of not-knowing, but gpt-5 comes right out with it at the start of the answer. Notably, our system prompt includes this instruction: Answer ONLY with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. So what we may be seeing is a combination of two factors: 1) the gpt-5 reasoning models are generally better at following instructions, 2) the gpt-5 reasoning models went through a specific alignment process to reduce hallucination. Notably, however, the gpt-5-chat model rarely responded with "I don't know", so it is not as affected by whatever factors are increasing the likelihood of the reasoning models to answer that way. You may be wondering why I have questions in the evaluation set that aren't fully answerable - it's hard to generate a good set of ground truth for evaluation, and my ground truth data is not the optimal set of questions. Ideally, I would do a separate evaluation for all the fully knowable questions versus all the unknowable questions - and I even have a specific custom metric for "don't-know-ness" that I run on those - but a few partially knowable questions snuck into this ground truth data set. Requests for clarification 🙋🏻♀️ Our system prompt also encourages the model to ask clarifying questions when necessary: If asking a clarifying question to the user would help, ask the question. But I had never actually seen a clarifying question from a model until gpt-5-chat, which replied with a question to 2 of the 50 questions. Example: Q: What should I do if I need healthcare services outside Washington with Northwind Health? gpt-4.1-mini gpt-5-chat If you have Northwind Standard and need healthcare services outside Washington, you must meet these criteria for coverage: be outside Washington for no more than 12 consecutive months, be more than 100 miles away from your primary care provider, and have had your plan in effect for at least 6 months before receiving out-of-area care. You must contact Northwind Health in advance and obtain prior authorization for the care; otherwise, you may be responsible for the full cost. Emergency services outside Washington are covered, but non-emergency services are not unless these conditions are met [Northwind_Standard_Benefits_Details.pdf#page=59][Northwind_Standard_Benefits_Details.pdf#page=60]. If you have Northwind Health Plus, first ensure the provider is in the nationwide network by checking the online directory or calling customer service. Keep receipts and documentation for any out-of-state services, as you may need to submit claims for reimbursement. Contact Northwind Health Plus before receiving services to confirm coverage, as not all services outside Washington are covered [Northwind_Health_Plus_Benefits_Details.pdf#page=62]. Which plan do you have — Northwind Standard or Northwind Health Plus? Like in the example above, other models typically avoid asking a clarifying question by instead addressing every possible scenario (covering all their bases!), resulting in a fairly long answer. Arguably, it's a better user experience to ask the clarifying question, so that the user can get an answer tailored to their specific situation and not get confused by other possibilities. The primary drawback is the additional back-and-forth for the final answer. I did not personally see clarifying questions from the GPT-5 reasoning models, but my colleagues noticed an increase in such questions when using gpt-5 with GitHub Copilot Agent mode, so it's possible that every model in the family has an increased likelihood to ask for clarification when faced with ambiguity. Reasoning models ❤️ lists I saw a definite tendency of the GPT-5 reasoning models to output the answer as a list, even though there's nothing in the RAG system prompt that tells it to use lists. Out of the 50 questions evaluated, here are the number with answers formatted as a top-level bulleted list: gpt-4.1-mini gpt-5 gpt-5-mini gpt-5-chat 0 36 (72%) 26 (52%) 0 Here's an example of a gpt-4.1-mini answer (paragraph) versus a gpt-5 answer (list): Q: What are the coverage limitations of the Northwind Standard plan regarding clinical trials? gpt-4.1-mini gpt-5 The Northwind Standard plan covers certain clinical trial services such as diagnostic testing, treatment of the condition being studied, medications, lab services, and imaging services. However, it does not cover travel expenses associated with attending clinical trials. Additionally, any experimental treatments or services not part of the clinical trial are not covered. Coverage for other clinical trial services not explicitly listed may be considered on a case-by-case basis. Members should contact Northwind Health customer service for more details [Northwind_Standard_Benefits_Details.pdf#page=23][Northwind_Standard_Benefits_Details.pdf#page=24]. Travel expenses for attending clinical trials are not covered [Northwind_Standard_Benefits_Details.pdf#page=23][Northwind_Standard_Benefits_Details.pdf#page=24]. Experimental treatments or services that are not part of the clinical trial are not covered [Northwind_Standard_Benefits_Details.pdf#page=24]. Services or treatments deemed experimental or investigational are not covered by the plan [Northwind_Standard_Benefits_Details.pdf#page=53]. Now, is it a bad thing that the gpt-5 reasoning models use lists? Not necessarily! But if that's not the style you're looking for, then you either want to consider the gpt-5-chat model or add specific messaging in the system prompt to veer the model away from top level lists. Longer answers As we saw in overall metrics above, there was an impact of the answer length (measured in the number of characters, not tokens). Let's isolate those stats: gpt-4.1-mini gpt-5 gpt-5-mini gpt-5-chat 829 844 990 549 The gpt-5 reasoning models are generating answers of similar length to the current baseline of gpt-4.1-mini, though the gpt-5-mini model seems to be a bit more verbose. The API now has a new parameter to control verbosity for those models, which defaults to "medium". I did not try an evaluation with that set to "low" or "high", which would be an interesting evaluation to run. The gpt-5-chat model outputs relatively short answers, which are actually closer in length to the answer length that I used to see from gpt-3.5-turbo. What answer length is best? A longer answer will take longer to finish rendering to the user (even when streaming), and will cost the developer more tokens. However, sometimes answers are longer due to better formatting that is easier to skim, so longer does not always mean less readable. For the user-facing RAG chat scenario, I generally think that shorter answers are better. If I was putting these gpt-5 reasoning models in production, I'd probably try out the "low" verbosity value, or put instructions in the system prompt, so that users get their answers more quickly. They can always ask follow-up questions as needed. Fancy punctuation This is a weird difference that I discovered while researching the other differences: the GPT-5 models are more likely to use “smart” quotes instead of standard ASCII quotes. Specifically: Left single: ‘ (U+2018) Right single / apostrophe: ’ (U+2019) Left double: “ (U+201C) Right double: ” (U+201D) For example, the gpt-5 model actually responded with " I don’t know ", not with " I don't know ". It's a subtle difference, but if you are doing any sort of post-processing or analysis, it's good to know. I've also seen the models using the smart quotes incorrectly in coding contexts (like GitHub Copilot Agent mode), so that's another potential issue to look out for. I assumed that the models were trained on data that tended to use smart quotes more often, perhaps synthetic data or book text. I know that as a normal human, I rarely use them, given the extra effort required to type them. Query rewriting to the extreme Our RAG flow makes two LLM calls: the second answers the question, as you’d expect, but the first rewrites the user’s query into a strong search query. This step can fix spelling mistakes, but it’s even more important for filling in missing context in multi-turn conversations—like when the user simply asks, “what else?” A well-crafted rewritten query leads to better search results, and ultimately, a more complete and accurate answer. During my manual tests, I noticed that the rewritten queries from the GPT-5 models are much longer, filled to the brim with synonyms. For example: Q: What does a Product Manager do? gpt-4.1-mini gpt-5-mini product manager responsibilities Product Manager role responsibilities duties skills day-to-day tasks product management overview Are these new rewritten queries better or worse than the previous short ones? It's hard to tell, since they're just one factor in the overall answer output, and I haven't set up a retrieval-specific metric. The closest metric is citations_matched , since the new answer from the app can only match the citations in the ground truth if the app managed to retrieve all the same citations. That metric was generally high for these models, and when I looked into the cases where the citations didn't match, I typically thought the gpt-5 family of responses were still good answers. I suspect that the rewritten query does not have a huge effect either way, since our retrieval step uses hybrid search from Azure AI Search, and the combined power of both hybrid and vector search generally compensates for differences in search query wording. It's worth evaluating this further however, and considering using a different model for the query rewriting step. Developers often choose to use a smaller, faster model for that stage, since query rewriting is an easier task than answering a question. So, are the answers accurate? Even with a 100% groundedness score from an LLM judge, it's possible that a RAG app can be producing inaccurate answers, like if the LLM judge is biased or the retrieved context is incomplete. The only way to really know if RAG answers are accurate is to send them to a human expert. For the sample data in this blog, there is no human expert available, since they're based off synthetically generated documents. Despite two years of staring at those documents and running dozens of evaluations, I still am not an expert in the HR benefits of the fictional Contoso company. That's why I also ran the same evaluations on the same RAG codebase, but with data that I know intimately: my own personal blog. I looked through 200 answers from gpt-5, and did not notice any inaccuracies in the answers. Yes, there are times when it says "I don't know" or asks a clarifying question, but I consider those to be accurate answers, since they do not spread misinformation. I imagine that I could find some way to trick up the gpt-5 model, but on the whole, it looks like a model with a high likelihood of generating accurate answers when given relevant context. Evaluate for yourself! I share my evaluations on our sample RAG app as a way to share general learnings on model differences, but I encourage every developer to evaluate these models for your specific domain, alongside domain experts that can reason about the correctness of the answers. How can you evaluate? If you are using the same open source RAG project for Azure, deploy the GPT-5 models and follow the steps in the evaluation guide. If you have your own solution, you can use an open-source SDK for evaluating, like azure-ai-evaluation (the one that I use), DeepEval, promptfoo, etc. If you are using an observability platform like Langfuse, Arize, or Langsmith, they have evaluation strategies baked in. Or if you're using an agents framework like Pydantic AI, those also often have built-in eval mechanisms. If you can share what you learn from evaluations, please do! We are all learning about the strange new world of LLMs together.1.4KViews2likes0CommentsRAG Deep Dive: 10-part live stream series
Our most popular RAG solution for Azure has now been deployed thousands of times by developers using it across myriad domains, like meeting transcripts, research papers, HR documents, and industry manuals. Based on feedback from the community (and often, thanks to pull requests from the community!), we've added the most hotly requested features: support for multiple document types, chat history with Cosmos DB, user account and login, data access control, multimodal media ingestion, private deployment, and more. This open-source RAG solution is powerful, but it can be intimidating to dive into the code yourself, especially now that it has so many optional features. That's why we're putting on a 10-part live series in January/February, diving deep into the solution and showing you all the ways you can use it. Register for the whole series on Reactor or scroll down to learn about each session and register for individual sessions. We look forward to seeing you in the live chat and hearing how you're using the RAG solution for your own domain. See you in the streams! 👋🏻 The RAG solution for Azure 13 January, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor Join us for the kick-off session, where we'll do a live demo of the RAG solution and explain how it all works. We'll step through the RAG flow from Azure AI Search to Azure OpenAI, deploy the app to Azure, and discuss the Azure architecture. Customizing our RAG solution 15 January, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor In our second session, we'll show you how to customize the RAG solution for your own domain - adding your own data, modifying the prompts, and personalizing the UI. Plus, we'll give you tips for local development for faster feature iteration. Optimal retrieval with Azure AI Search 20 January, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor Our RAG solution uses Azure AI Search to find matching documents, using state-of-the-art retrieval mechanisms. We'll dive into the mechanics of vector embeddings, hybrid search with RRF, and semantic ranking. We'll also discuss the data ingestion process, highlighting the differences between manual ingestion and integrated vectorization Multimedia data ingestion 22 January, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor Do your documents contain images or charts? Our RAG solution has two different approaches to handling multimedia documents, and we'll dive into both approaches in this session. The first approach is purely during ingestion time, where it replaces media in the documents with LLM-generated descriptions. The second approach stores images of the media alongside vector embeddings of the images, and sends both text and images to a multimodal LLM for question answering. Learn about both approaches in this session so that you can decide what to use for your app. User login and data access control 27 January, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor In our RAG flow, the app first searches a knowledge base for relevant matches to a user's query, then sends the results to the LLM along with the original question. What if you have documents that should only be accessed by a subset of your users, like a group or a single user? Then you need data access controls to ensure that document visibility is respected during the RAG flow. In this session, we'll show an approach using Azure AI Search with data access controls to only search the documents that can be seen by the logged in user. We'll also demonstrate a feature for user-uploaded documents that uses data access controls along with Azure Data Lake Storage Gen2. Storing chat history 29 January, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor Learn how we store chat history using either IndexedDB for client-side storage or Azure Cosmos DB for persistent storage. We'll discuss the API architecture and data schema choices, doing both a live demo of the app and a walkthrough of the code. Adding speech input and output 3 February, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor Our RAG solution includes optional features for speech input and output, powered either by the free browser SDKs or by the powerful Azure Speech API. We also offer a tight integration with the VoiceRAG solution, for those of you who want a real-time voice interface. Learn about all the ways you can add speech to your RAG chat in this session! Private deployment 5 February, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor To ensure that the RAG app can only be accessed within your enterprise network, you can deploy it to an Azure virtual network with private endpoints for each Azure service used. In this session, we'll show how to deploy the app to a virtual network that includes AI Search, OpenAI, Document Intelligence, and Blob storage. Then we'll log in to the virtual network using Azure Bastion with a virtual machine to demonstrate that we can access the RAG app from inside the network, and only inside the network. Evaluating RAG answer quality 10 February, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor How can you be sure that the RAG chat app answers are accurate, clear, and well formatted? Evaluation! In this session, we'll show you how to generate synthetic data and run bulk evaluations on your RAG app, using the azure-ai-evaluation SDK. Learn about GPT metrics like groundedness and fluency, and custom metrics like citation matching. Plus, discover how you can run evaluations on CI/CD, to easily verify that new changes don't introduce quality regressions. Monitoring and tracing LLM calls 12 February, 2025 | 11:30 PM UTC | 3:30 PM PT Register for the stream on Reactor When your RAG app is in production, observability is crucial. You need to know about performance issues, runtime errors, and LLM-specific issues like Content Safety filter violations. In this session, learn how to use Azure Monitor along with OpenTelemetry SDKs to monitor the RAG application.1.5KViews2likes0CommentsAdd speech input & output to your app with the free browser APIs
One of the amazing benefits of modern machine learning is that computers can reliably turn text into speech, or transcribe speech into text, across multiple languages and accents. We can then use those capabilities to make our web apps more accessible for anyone who has a situational, temporary, or chronic issue that makes typing difficult. That describes so many people - for example, a parent holding a squirmy toddler in their hands, an athlete with a broken arm, or an individual with Parkinson's disease. There are two approaches we can use to add speech capabilities to our apps: Use the built-in browser APIs: the SpeechRecognition API and SpeechSynthesis API. Use a cloud-based service, like the Azure Speech API. Which one to use? The great thing about the browser APIs is that they're free and available in most modern browsers and operating systems. The drawback of the APIs is that they're often not as powerful and flexible as cloud-based services, and the speech output often sounds more robotic. There are also a few niche browser/OS combos where the built-in APIs don't work. That's why we decided to add both options to our most popular RAG chat solution, to give developers the option to decide for themselves. However, in this post, I'm going to show you how to add speech capabilities using the free built-in browser APIs, since free APIs are often easier to get started with and it's important to do what we can to improve the accessibility of our apps. The GIF below shows the end result, a chat app with both speech input and output buttons: All of the code described in this post is part of openai-chat-vision-quickstart, so you can grab the full code yourself after seeing how it works. Speech input with SpeechRecognition API To make it easier to add a speech input button to any app, I'm wrapping the functionality inside a custom HTML element, SpeechInputButton . First I construct the speech input button element with an instance of the SpeechRecognition API, making sure to use the browser's preferred language if any are set: class SpeechInputButton extends HTMLElement { constructor() { super(); this.isRecording = false; const SpeechRecognition = window.SpeechRecognition || window.webkitSpeechRecognition; if (!SpeechRecognition) { this.dispatchEvent( new CustomEvent("speecherror", { detail: { error: "SpeechRecognition not supported" }, }) ); return; } this.speechRecognition = new SpeechRecognition(); this.speechRecognition.lang = navigator.language || navigator.userLanguage; this.speechRecognition.interimResults = false; this.speechRecognition.continuous = true; this.speechRecognition.maxAlternatives = 1; } Then I define the connectedCallback() method that will be called whenever this custom element has been added to the DOM. When that happens, I define the inner HTML to render a button and attach event listeners for both mouse and keyboard events. Since we want this to be fully accessible, keyboard support is important. connectedCallback() { this.innerHTML = ` <button class="btn btn-outline-secondary" type="button" title="Start recording (Shift + Space)"> <i class="bi bi-mic"></i> </button>`; this.recordButton = this.querySelector('button'); this.recordButton.addEventListener('click', () => this.toggleRecording()); document.addEventListener('keydown', this.handleKeydown.bind(this)); } handleKeydown(event) { if (event.key === 'Escape') { this.abortRecording(); } else if (event.key === ' ' && event.shiftKey) { // Shift + Space event.preventDefault(); this.toggleRecording(); } } toggleRecording() { if (this.isRecording) { this.stopRecording(); } else { this.startRecording(); } } The majority of the code is in the startRecording function. It sets up a listener for the "result" event from the SpeechRecognition instance, which contains the transcribed text. It also sets up a listener for the "end" event, which is triggered either automatically after a few seconds of silence (in some browsers) or when the user ends the recording by clicking the button. Finally, it sets up a listener for any "error" events. Once all listeners are ready, it calls start() on the SpeechRecognition instance and styles the button to be in an active state. startRecording() { if (this.speechRecognition == null) { this.dispatchEvent( new CustomEvent("speech-input-error", { detail: { error: "SpeechRecognition not supported" }, }) ); } this.speechRecognition.onresult = (event) => { let input = ""; for (const result of event.results) { input += result[0].transcript; } this.dispatchEvent( new CustomEvent("speech-input-result", { detail: { transcript: input }, }) ); }; this.speechRecognition.onend = () => { this.isRecording = false; this.renderButtonOff(); this.dispatchEvent(new Event("speech-input-end")); }; this.speechRecognition.onerror = (event) => { if (this.speechRecognition) { this.speechRecognition.stop(); if (event.error == "no-speech") { this.dispatchEvent( new CustomEvent("speech-input-error", { detail: {error: "No speech was detected. Please check your system audio settings and try again."}, })); } else if (event.error == "language-not-supported") { this.dispatchEvent( new CustomEvent("speech-input-error", { detail: {error: "The selected language is not supported. Please try a different language.", }})); } else if (event.error != "aborted") { this.dispatchEvent( new CustomEvent("speech-input-error", { detail: {error: "An error occurred while recording. Please try again: " + event.error}, })); } } }; this.speechRecognition.start(); this.isRecording = true; this.renderButtonOn(); } If the user stops the recording using the keyboard shortcut or button click, we call stop() on the SpeechRecognition instance. At that point, anything the user had said will be transcribed and become available via the "result" event. stopRecording() { if (this.speechRecognition) { this.speechRecognition.stop(); } } Alternatively, if the user presses the Escape keyboard shortcut, we instead call abort() on the SpeechRecognition instance, which stops the recording and does not send any previously untranscribed speech over. abortRecording() { if (this.speechRecognition) { this.speechRecognition.abort(); } } Once the custom HTML element is fully defined, we register it with the desired tag name, speech-input-button : customElements.define("speech-input-button", SpeechInputButton); To use the custom speech-input-button element in a chat application, we add it to the HTML for the chat form: <speech-input-button></speech-input-button> <input id="message" name="message" type="text" rows="1"></input> Then we attach an event listener for the custom events dispatched by the element, and we update the input text field with the transcribed text: const speechInputButton = document.querySelector("speech-input-button"); speechInputButton.addEventListener("speech-input-result", (event) => { messageInput.value += " " + event.detail.transcript.trim(); messageInput.focus(); }); You can see the full custom HTML element code in speech-input.js and the usage in index.html. There's also a fun pulsing animation for the button's active state in styles.css. Speech output with SpeechSynthesis API Once again, to make it easier to add a speech output button to any app, I'm wrapping the functionality inside a custom HTML element, SpeechOutputButton . When defining the custom element, we specify an observed attribute named "text", to store whatever text should be turned into speech when the button is clicked. class SpeechOutputButton extends HTMLElement { static observedAttributes = ["text"]; In the constructor, we check to make sure the SpeechSynthesis API is supported, and remember the browser's preferred language for later use. constructor() { super(); this.isPlaying = false; const SpeechSynthesis = window.speechSynthesis || window.webkitSpeechSynthesis; if (!SpeechSynthesis) { this.dispatchEvent( new CustomEvent("speech-output-error", { detail: { error: "SpeechSynthesis not supported" } })); return; } this.synth = SpeechSynthesis; this.lngCode = navigator.language || navigator.userLanguage; } When the custom element is added to the DOM, I define the inner HTML to render a button and attach mouse and keyboard event listeners: connectedCallback() { this.innerHTML = ` <button class="btn btn-outline-secondary" type="button"> <i class="bi bi-volume-up"></i> </button>`; this.speechButton = this.querySelector("button"); this.speechButton.addEventListener("click", () => this.toggleSpeechOutput() ); document.addEventListener('keydown', this.handleKeydown.bind(this)); } The majority of the code is in the toggleSpeechOutput function. If the speech is not yet playing, it creates a new SpeechSynthesisUtterance instance, passes it the "text" attribute, and sets the language and audio properties. It attempts to use a voice that's optimal for the desired language, but falls back to "en-US" if none is found. It attaches event listeners for the start and end events, which will change the button's style to look either active or unactive. Finally, it tells the SpeechSynthesis API to speak the utterance. toggleSpeechOutput() { if (!this.isConnected) { return; } const text = this.getAttribute("text"); if (this.synth != null) { if (this.isPlaying || text === "") { this.stopSpeech(); return; } // Create a new utterance and play it. const utterance = new SpeechSynthesisUtterance(text); utterance.lang = this.lngCode; utterance.volume = 1; utterance.rate = 1; utterance.pitch = 1; let voice = this.synth .getVoices() .filter((voice) => voice.lang === this.lngCode)[0]; if (!voice) { voice = this.synth .getVoices() .filter((voice) => voice.lang === "en-US")[0]; } utterance.voice = voice; if (!utterance) { return; } utterance.onstart = () => { this.isPlaying = true; this.renderButtonOn(); }; utterance.onend = () => { this.isPlaying = false; this.renderButtonOff(); }; this.synth.speak(utterance); } } When the user no longer wants to hear the speech output, indicated either via another press of the button or by pressing the Escape key, we call cancel() from the SpeechSynthesis API. stopSpeech() { if (this.synth) { this.synth.cancel(); this.isPlaying = false; this.renderButtonOff(); } } Once the custom HTML element is fully defined, we register it with the desired tag name, speech-output-button : customElements.define("speech-output-button", SpeechOutputButton); To use this custom speech-output-button element in a chat application, we construct it dynamically each time that we've received a full response from an LLM, and call setAttribute to pass in the text to be spoken: const speechOutput = document.createElement("speech-output-button"); speechOutput.setAttribute("text", answer); messageDiv.appendChild(speechOutput); You can see the full custom HTML element code in speech-output.js and the usage in index.html. This button also uses the same pulsing animation for the active state, defined in styles.css. Acknowledgments I want to give a huge shout-out to John Aziz for his amazing work adding speech input and output to the azure-search-openai-demo, as that was the basis for the code I shared in this blog post.