microsoft defender for office 365
16 TopicsGenAI vs Cyber Threats: Why GenAI Powered Unified SecOps Wins
Cybersecurity is evolving faster than ever. Attackers are leveraging automation and AI to scale their operations, so how can defenders keep up? The answer lies in Microsoft Unified Security Operations powered by Generative AI (GenAI). This opens the Cybersecurity Paradox: Attackers only need one successful attempt, but defenders must always be vigilant, otherwise the impact can be huge. Traditional Security Operation Centers (SOCs) are hampered by siloed tools and fragmented data, which slows response and creates vulnerabilities. On average, attackers gain unauthorized access to organizational data in 72 minutes, while traditional defense tools often take on average 258 days to identify and remediate. This is over eight months to detect and resolve breaches, a significant and unsustainable gap. Notably, Microsoft Unified Security Operations, including GenAI-powered capabilities, is also available and supported in Microsoft Government Community Cloud (GCC) and GCC High/DoD environments, ensuring that organizations with the highest compliance and security requirements can benefit from these advanced protections. The Case for Unified Security Operations Unified security operations in Microsoft Defender XDR consolidates SIEM, XDR, Exposure management, and Enterprise Security Posture into a single, integrated experience. This approach allows the following: Breaks down silos by centralizing telemetry across identities, endpoints, SaaS apps, and multi-cloud environments. Infuses AI natively into workflows, enabling faster detection, investigation, and response. Microsoft Sentinel exemplifies this shift with its Data Lake architecture (see my previous post on Microsoft Sentinel’s New Data Lake: Cut Costs & Boost Threat Detection), offering schema-on-read flexibility for petabyte-scale analytics without costly data rehydration. This means defenders can query massive datasets in real time, accelerating threat hunting and forensic analysis. GenAI: A Force Multiplier for Cyber Defense Generative AI transforms security operations from reactive to proactive. Here’s how: Threat Hunting & Incident Response GenAI enables predictive analytics and anomaly detection across hybrid identities, endpoints, and workloads. It doesn’t just find threats—it anticipates them. Behavioral Analytics with UEBA Advanced User and Entity Behavior Analytics (UEBA) powered by AI correlates signals from multi-cloud environments and identity providers like Okta, delivering actionable insights for insider risk and compromised accounts. [13 -Micros...s new UEBA | Word] Automation at Scale AI-driven playbooks streamline repetitive tasks, reducing manual workload and accelerating remediation. This frees analysts to focus on strategic threat hunting. Microsoft Innovations Driving This Shift For SOC teams and cybersecurity practitioners, these innovations mean you spend less time on manual investigations and more time leveraging actionable insights, ultimately boosting productivity and allowing you to focus on higher-value security work that matters most to your organization. Plus, by making threat detection and response faster and more accurate, you can reduce stress, minimize risk, and demonstrate greater value to your stakeholders. Sentinel Data Lake: Unlocks real-time analytics at scale, enabling AI-driven threat detection without rehydration costs. Microsoft Sentinel data lake overview UEBA Enhancements: Multi-cloud and identity integrations for unified risk visibility. Sentinel UEBA’s Superpower: Actionable Insights You Can Use! Now with Okta and Multi-Cloud Logs! Security Copilot & Agentic AI: Harnesses AI and global threat intelligence to automate detection, response, and compliance across the security stack, enabling teams to scale operations and strengthen Zero Trust defenses defenders. Security Copilot Agents: The New Era of AI, Driven Cyber Defense Sector-Specific Impact All sectors are different, but I would like to focus a bit on the public sector at this time. This sector and critical infrastructure organizations face unique challenges: talent shortages, operational complexity, and nation-state threats. GenAI-centric platforms help these sectors shift from reactive defense to predictive resilience, ensuring mission-critical systems remain secure. By leveraging advanced AI-driven analytics and automation, public sector organizations can streamline incident detection, accelerate response times, and proactively uncover hidden risks before they escalate. With unified platforms that bridge data silos and integrate identity, endpoint, and cloud telemetry, these entities gain a holistic security posture that supports compliance and operational continuity. Ultimately, embracing generative AI not only helps defend against sophisticated cyber adversaries but also empowers public sector teams to confidently protect the services and infrastructure their communities rely on every day. Call to Action Artificial intelligence is driving unified cybersecurity. Solutions like Microsoft Defender XDR and Sentinel now integrate into a single dashboard, consolidating alerts, incidents, and data from multiple sources. AI swiftly correlates information, prioritizes threats, and automates investigations, helping security teams respond quickly with less manual work. This shift enables organizations to proactively manage cyber risks and strengthen their resilience against evolving challenges. Picture a single pane of glass where all your XDRs and Defenders converge, AI instantly shifts through the noise, highlighting what matters most so teams can act with clarity and speed. That may include: Assess your SOC maturity and identify silos. Use the Security Operations Self-Assessment Tool to determine your SOC’s maturity level and provide actionable recommendations for improving processes and tooling. Also see Security Maturity Model from the Well-Architected Framework Explore Microsoft Sentinel, Defender XDR, and Security Copilot for AI-powered security. Explains progressive security maturity levels and strategies for strengthening your security posture. What is Microsoft Defender XDR? - Microsoft Defender XDR and What is Microsoft Security Copilot? Design Security in Solutions from Day One! Drive embedding security from the start of solution design through secure-by-default configurations and proactive operations, aligning with Zero Trust and MCRA principles to build resilient, compliant, and scalable systems. Design Security in Solutions from Day One! Innovate boldly, Deploy Safely, and Never Regret it! Upskill your teams on GenAI tools and responsible AI practices. Guidance for securing AI apps and data, aligned with Zero Trust principles Build a strong security posture for AI About the Author: Hello Jacques "Jack” here! I am a Microsoft Technical Trainer focused on helping organizations use advanced security and AI solutions. I create and deliver training programs that combine technical expertise with practical use, enabling teams to adopt innovations like Microsoft Sentinel, Defender XDR, and Security Copilot for stronger cyber resilience. #SkilledByMTT #MicrosoftLearnMVP Champ Spotlight- Pierre Thoor
Pierre is recognized as a Most Valued Professional (MVP) by Microsoft as an exceptional community leader for their technical expertise, leadership, speaking experience, online influence, and commitment to solving real-world problems. Learn more about MVPs and what it takes to become one here: FAQ | Most Valuable Professionals. Within our Security MVPs, Microsoft has hand-selected some of our top collaborative MVPs with a passion for working directly with the Product Group to share community insights with Microsoft and co-create content to help address the community needs. Read the interview below! Picture of Pierre celebrating the publication of his book: Microsoft Defender for Identity in Depth. Link to check it out: https://www.amazon.com/Microsoft-Defender-Identity-Depth-cyberattack/dp/B0DK1HW2KX Personal Story and Credibility Q: Tell us a bit about your role and background: how did you become focused on email security and Microsoft Defender for Office? A: I began my career in 3rd line Windows Server support, where I first developed an interest in cybersecurity through Windows patch management. A few years later, I became more focused on Microsoft Exchange Server and securing mail flow. As the industry moved into Office 365 and Exchange Online, email protection kept improving, but it also became clear to me that email remained the number one attack vector. Most incident response cases I was involved in had a phishing or malicious email component. That’s when I realized that strengthening defenses around email could reduce a huge percentage of overall risk. Microsoft Defender for Office (MDO) naturally became my focus, not just because it protects email, but because it connects detection, protection, and response across the Microsoft 365 ecosystem. Over time, I’ve worked with everything from MDO deployment strategies and securing Microsoft 365 and Azure services to building SOC playbooks, and it’s grown into a real passion area for me. Q: What’s been your proudest moment as a security practitioner where MDO played a critical role? A: My proudest moments are when I can clearly see that MDO has stopped something dangerous before it reached users. For example, watching a phishing campaign get blocked at scale and being able to trace that in the reporting gives real proof that the protections are working as intended. It’s not about one single incident, but about seeing the technology deliver measurable protection in day-to-day use. Blueprint 1: Deployment and Adoption Strategy Q: When organizations are just starting with MDO, what are the first three steps you recommend for a successful rollout? A: I usually recommend three key steps for a successful rollout: Start with email authentication and baseline hygiene. Make sure SPF, DKIM, and DMARC are properly configured, and that your MX records point to Exchange Online. This ensures that MDO has the right signals to work effectively. Run a pilot with Preset Security Policies. Use Microsoft’s Preset Security Policies (Standard or Strict) instead of relying on the default built-in protections. The defaults are often mistaken for being “secure enough”, but they leave important gaps. Start with a smaller pilot group, validate the impact, and make sure you as an admin understand the order of precedence between preset and custom policies. This prevents misconfigurations when you scale out. Leverage hunting and reporting early. Get familiar with the hunting tables in advanced hunting and the reporting capabilities in MDO. Even in the first 30–60 days, learning how to use Threat Explorer, submission reports, and campaign views will give you strong visibility and confidence in the rollout. Q: What common mistakes or misconceptions do you see teams make when deploying MDO? A: One of the most common mistakes I see is treating MDO as a “set it and forget it” product. As an SOC analyst or security administrator, you really need to understand the settings and continuously monitor what types of emails are entering your organization. Another common gap is not using the submission process effectively. Submitting false positives and false negatives is critical, because those signals feed directly back into Microsoft’s protection systems. The machine learning models behind MDO are continuously retrained on customer submissions, which means your input not only improves your own tenant’s protection but also strengthens detections globally. I also see organizations overlook the threat hunting side of MDO. Knowing the advanced hunting tables connected to email, such as EmailEvents, EmailUrlInfo, and EmailAttachmentInfo, is key for proactive defense. These give you the ability to trace campaigns, investigate suspicious patterns, and connect email telemetry with other Defender signals. Finally, many organizations still rely only on the Default Built-in Protection, instead of moving to Preset Security Policies (Standard or Strict) or creating custom ones. On top of that, administrators often don’t understand the policy precedence, and that lack of awareness can leave real gaps in how email is filtered and protected. Q: Can you share your own checklist or framework for configuring MDO to get quick wins in the first 30–60 days? A: In the first 30–60 days, I focus on quick wins that build a strong foundation and give early visibility. My checklist looks like this: Establish the foundation Configure email authentication: SPF, DKIM, and DMARC. Enable Preset Security Policies (Standard at minimum). If you’re using custom policies instead, make sure quarantine policies are in place. Understand policy precedence and configure the Tenant Allow/Block List (TABL). Secure collaboration and file sharing Enable Safe Links and Safe Attachments for all users. Turn on Zero-hour Auto Purge (ZAP) for Teams. Prevent users from downloading malicious files in OneDrive, Teams, and SharePoint Online. Set up administration and controls Enable and understand Unified RBAC to control who can manage MDO and investigate emails in Threat Explorer. Use Configuration Analyzer or the ORCA PowerShell module to validate your setup against best practices. Build operational processes Establish a clear submission process for false positives and false negatives. Review Threat Explorer weekly to build familiarity with reporting and investigation. Expand into hunting and alerting Learn the key advanced hunting tables related to email. Build custom KQL-based alerts in Defender XDR to fit your organization’s workflows. Blueprint 2: Operational Excellence Q: What features or policies have given your SOC team the biggest efficiency gains? A: The features that have given the biggest efficiency gains are Automated Investigation and Response (AIR) and adopting the Strict Preset Security Policies. With AIR, user-reported phishing emails automatically trigger an investigation playbook. The system checks details such as the sender, sending infrastructure, whether similar messages exist in the tenant, and if the campaign is already known. Safe submissions are automatically cleared, while risky ones are enriched with recommended remediation steps. This greatly reduces noise and makes investigations faster and more consistent. Moving to Strict Preset Policies also had a major impact. Instead of relying on the weaker default protections, Strict presets raise the security baseline and block more threats up front, which reduces the overall number of alerts and investigations needed. Q: Could you walk us through one or two “playbooks” that your team uses to detect, respond, and remediate email threats? A: One of our main playbooks is for a compromised user or mailbox. It starts with an incident in Defender XDR, and then we trigger our automation built on Azure Durable Functions. The automation checks for unusual sign-ins in Entra ID, forces a password reset, revokes active tokens, and resets MFA methods. It also reviews mailbox rules for suspicious changes and if the user is blocked from sending email, sends an SMS to the end user with next steps, and finally logs all actions back into the incident for visibility. Blueprint 3: Driving Business Outcomes Q: How do you measure and report the value of MDO back to business stakeholders? A: We highlight MDO’s business value using the Microsoft Defender for Office 365 Overview dashboard, which provides clear, visual metrics, like threats blocked before delivery, items purged post-delivery via ZAP, and any “uncaught” threats. The dashboard also gives insights into phishing, malware, spam, impersonation detections, and risky allows. These visuals help business stakeholders quickly understand how email threats are being prevented, and where improvements are needed. Q: What metrics or KPIs should every MDO practitioner track to prove success? A: For me, the most important KPIs in MDO are: Efficacy – percentage of malicious emails blocked before delivery vs. those removed after delivery. User resilience – phishing click rate and volume of user-reported messages. Operational performance – mean time to detect and remediate email threats. Quality of tuning – false positive and false negative rates. Blueprint 4: Scaling and Maturing Use Q: Once the basics are in place, what’s the path to advanced adoption? A: Once the basics are in place, the path to advanced adoption usually looks like this: Move from presets to custom policies – Microsoft recommends Preset Security Policies, but if your organization requires customization, make sure every user is still covered and protected. Enable Automated Investigation and Response (AIR) – to take advantage of Microsoft’s built-in automation for user-reported phishing and other alerts. Build additional automation playbooks – for example, in Logic Apps (or use Azure Functions), to integrate MDO signals into wider incident response workflows. Use Attack Simulation Training – to measure user resilience and strengthen awareness against phishing. Develop a SecOps guide for MDO – either adopt Microsoft’s guidance or create your own playbook for how to operate MDO in daily security operations. Q: How do you expand MDO’s impact across other tools or workflows (e.g., integration with SIEM, automation)? A: I expand MDO by treating it as a signal source in a SOAR pattern. MDO alerts/events flow into Defender XDR/Sentinel, which trigger Durable Functions. We fan-out to parallel tasks (enrichment, checks, and lookups), then fan-in to make a single decision and take actions. This turns MDO from just email protection into part of an automated response pipeline that also touches identity, endpoints, and collaboration tools. Q: What’s one advanced scenario you’ve implemented that other practitioners could replicate? A: One advanced scenario I’ve implemented is using MDO alerts to trigger an automated workflow in Azure Durable Functions. When a suspected phishing campaign is detected, the workflow enriches the signal with external intelligence sources like PhishTank for URL reputation and VirusTotal for file and hash lookups. From there, it decides on actions such as bulk-removing similar emails, updating the Tenant Allow/Block List, or notifying the SOC in Teams. Other practitioners could easily replicate this pattern, and even extend it with tools like ANY.RUN for sandboxing suspicious attachments. Blueprint 5: Community and Advocacy Q: Why do you want to share your experiences with the wider community? A: I believe sharing is caring – knowledge should be shared. Products like MDO can be complex, and it’s not always obvious how the settings actually work in practice. By sharing my own experiences and lessons learned, I try to make it easier for others to understand the product and configure it the right way. And at the same time, I also learn from the community. In the end, sharing is caring, if I can make MDO easier for someone else, then we all win. Q: One “field lesson” for every new MDO user? A: One field lesson I’d share is: don’t just turn MDO on and leave it. Take the time to understand how the features and settings really work, and share that knowledge with others. The product is powerful, but the real value comes when we as practitioners explain the ins and outs so others can avoid common mistakes. For me, sharing those lessons is just as important as learning them. Q: How can others follow your blueprint to adopt MDO effectively and become champions? A: To adopt MDO effectively, start simple: enable Preset Security Policies, make sure email authentication is in place, and build a process for handling submissions. From there, grow step by step, learn the product, get familiar with the hunting tables, and refine policies so they fit your organization. To become a champion, don’t keep that knowledge to yourself. Share your experiences, what worked and what didn’t, and help others avoid the same mistakes. Whether it’s inside your own company or with the wider community, that sharing is what makes you a go-to person others trust. In my view, that’s how you move from just being a practitioner to being a champion. Looking Forward Q: What feature are you most excited about in the roadmap? A: The feature I’m most excited about is the new ability to take actions directly from Advanced Hunting, submitting messages, adding to the Tenant Allow/Block List, and even triggering AIR investigations. For me, submissions and hunting are key parts of getting the most out of MDO, so bringing those actions together in one place will make it much easier to close the loop between detection and response. It’s a real step toward making MDO not just a filter, but an integrated part of SecOps workflows. Link: Microsoft 365 Roadmap | Microsoft 365 Q: One piece of feedback to influence MDO’s future? A: One piece of feedback I would give is around quarantine policies in Preset Security Policies. Today, if you use presets, you’re locked into Microsoft’s default quarantine settings and can’t attach your own custom quarantine policies. I would like to see more flexibility here, so that organizations can still benefit from the simplicity and strength of presets, but adjust the quarantine experience to fit their own needs. Q: Where do you see the biggest opportunities for Champs like you? A: The biggest opportunity for Champs is to be a bridge – sharing real-world lessons with the community and feedback with Microsoft. In the end, it’s about turning experience into progress for everyone.Introducing Microsoft Security Store
Security is being reengineered for the AI era—moving beyond static, rulebound controls and after-the-fact response toward platform-led, machine-speed defense. We recognize that defending against modern threats requires the full strength of an ecosystem, combining our unique expertise and shared threat intelligence. But with so many options out there, it’s tough for security professionals to cut through the noise, and even tougher to navigate long procurement cycles and stitch together tools and data before seeing meaningful improvements. That’s why we built Microsoft Security Store - a storefront designed for security professionals to discover, buy, and deploy security SaaS solutions and AI agents from our ecosystem partners such as Darktrace, Illumio, and BlueVoyant. Security SaaS solutions and AI agents on Security Store integrate with Microsoft Security products, including Sentinel platform, to enhance end-to-end protection. These integrated solutions and agents collaborate intelligently, sharing insights and leveraging AI to enhance critical security tasks like triage, threat hunting, and access management. In Security Store, you can: Buy with confidence – Explore solutions and agents that are validated to integrate with Microsoft Security products, so you know they’ll work in your environment. Listings are organized to make it easy for security professionals to find what’s relevant to their needs. For example, you can filter solutions based on how they integrate with your existing Microsoft Security products. You can also browse listings based on their NIST Cybersecurity Framework functions, covering everything from network security to compliance automation — helping you quickly identify which solutions strengthen the areas that matter most to your security posture. Simplify purchasing – Buy solutions and agents with your existing Microsoft billing account without any additional payment setup. For Azure benefit-eligible offers, eligible purchases contribute to your cloud consumption commitments. You can also purchase negotiated deals through private offers. Accelerate time to value – Deploy agents and their dependencies in just a few steps and start getting value from AI in minutes. Partners offer ready-to-use AI agents that can triage alerts at scale, analyze and retrieve investigation insights in real time, and surface posture and detection gaps with actionable recommendations. A rich ecosystem of solutions and AI agents to elevate security posture In Security Store, you’ll find solutions covering every corner of cybersecurity—threat protection, data security and governance, identity and device management, and more. To give you a flavor of what is available, here are some of the exciting solutions on the store: Darktrace’s ActiveAI Security SaaS solution integrates with Microsoft Security to extend self-learning AI across a customer's entire digital estate, helping detect anomalies and stop novel attacks before they spread. The Darktrace Email Analysis Agent helps SOC teams triage and threat hunt suspicious emails by automating detection of risky attachments, links, and user behaviors using Darktrace Self-Learning AI, integrated with Microsoft Defender and Security Copilot. This unified approach highlights anomalous properties and indicators of compromise, enabling proactive threat hunting and faster, more accurate response. Illumio for Microsoft Sentinel combines Illumio Insights with Microsoft Sentinel data lake and Security Copilot to enhance detection and response to cyber threats. It fuses data from Illumio and all the other sources feeding into Sentinel to deliver a unified view of threats across millions of workloads. AI-driven breach containment from Illumio gives SOC analysts, incident responders, and threat hunters unified visibility into lateral traffic threats and attack paths across hybrid and multi-cloud environments, to reduce alert fatigue, prioritize threat investigation, and instantly isolate workloads. Netskope’s Security Service Edge (SSE) platform integrates with Microsoft M365, Defender, Sentinel, Entra and Purview for identity-driven, label-aware protection across cloud, web, and private apps. Netskope's inline controls (SWG, CASB, ZTNA) and advanced DLP, with Entra signals and Conditional Access, provide real-time, context-rich policies based on user, device, and risk. Telemetry and incidents flow into Defender and Sentinel for automated enrichment and response, ensuring unified visibility, faster investigations, and consistent Zero Trust protection for cloud, data, and AI everywhere. PERFORMANTA Email Analysis Agent automates deep investigations into email threats, analyzing metadata (headers, indicators, attachments) against threat intelligence to expose phishing attempts. Complementing this, the IAM Supervisor Agent triages identity risks by scrutinizing user activity for signs of credential theft, privilege misuse, or unusual behavior. These agents deliver unified, evidence-backed reports directly to you, providing instant clarity and slashing incident response time. Tanium Autonomous Endpoint Management (AEM) pairs realtime endpoint visibility with AI-driven automation to keep IT environments healthy and secure at scale. Tanium is integrated with the Microsoft Security suite—including Microsoft Sentinel, Defender for Endpoint, Entra ID, Intune, and Security Copilot. Tanium streams current state telemetry into Microsoft’s security and AI platforms and lets analysts pivot from investigation to remediation without tool switching. Tanium even executes remediation actions from the Sentinel console. The Tanium Security Triage Agent accelerates alert triage, enabling security teams to make swift, informed decisions using Tanium Threat Response alerts and real-time endpoint data. Walkthrough of Microsoft Security Store Now that you’ve seen the types of solutions available in Security Store, let’s walk through how to find the right one for your organization. You can get started by going to the Microsoft Security Store portal. From there, you can search and browse solutions that integrate with Microsoft Security products, including a dedicated section for AI agents—all in one place. If you are using Microsoft Security Copilot, you can also open the store from within Security Copilot to find AI agents - read more here. Solutions are grouped by how they align with industry frameworks like NIST CSF 2.0, making it easier to see which areas of security each one supports. You can also filter by integration type—e.g., Defender, Sentinel, Entra, or Purview—and by compliance certifications to narrow results to what fits your environment. To explore a solution, click into its detail page to view descriptions, screenshots, integration details, and pricing. For AI agents, you’ll also see the tasks they perform, the inputs they require, and the outputs they produce —so you know what to expect before you deploy. Every listing goes through a review process that includes partner verification, security scans on code packages stored in a secure registry to protect against malware, and validation that integrations with Microsoft Security products work as intended. Customers with the right permissions can purchase agents and SaaS solutions directly through Security Store. The process is simple: choose a partner solution or AI agent and complete the purchase in just a few clicks using your existing Microsoft billing account—no new payment setup required. Qualifying SaaS purchases also count toward your Microsoft Azure Consumption Commitment (MACC), helping accelerate budget approvals while adding the security capabilities your organization needs. Security and IT admins can deploy solutions directly from Security Store in just a few steps through a guided experience. The deployment process automatically provisions the resources each solution needs—such as Security Copilot agents and Microsoft Sentinel data lake notebook jobs—so you don’t have to do so manually. Agents are deployed into Security Copilot, which is built with security in mind, providing controls like granular agent permissions and audit trails, giving admins visibility and governance. Once deployment is complete, your agent is ready to configure and use so you can start applying AI to expand detection coverage, respond faster, and improve operational efficiency. Security and IT admins can view and manage all purchased solutions from the “My Solutions” page and easily navigate to Microsoft Cost Management tools to track spending and manage subscriptions. Partners: grow your business with Microsoft For security partners, Security Store opens a powerful new channel to reach customers, monetize differentiated solutions, and grow with Microsoft. We will showcase select solutions across relevant Microsoft Security experiences, starting with Security Copilot, so your offerings appear in the right context for the right audience. You can monetize both SaaS solutions and AI agents through built-in commerce capabilities, while tapping into Microsoft’s go-to-market incentives. For agent builders, it’s even simpler—we handle the entire commerce lifecycle, including billing and entitlement, so you don’t have to build any infrastructure. You focus on embedding your security expertise into the agent, and we take care of the rest to deliver a seamless purchase experience for customers. Security Store is built on top of Microsoft Marketplace, which means partners publish their solution or agent through the Microsoft Partner Center - the central hub for managing all marketplace offers. From there, create or update your offer with details about how your solution integrates with Microsoft Security so customers can easily discover it in Security Store. Next, upload your deployable package to the Security Store registry, which is encrypted for protection. Then define your license model, terms, and pricing so customers know exactly what to expect. Before your offer goes live, it goes through certification checks that include malware and virus scans, schema validation, and solution validation. These steps help give customers confidence that your solutions meet Microsoft’s integration standards. Get started today By creating a storefront optimized for security professionals, we are making it simple to find, buy, and deploy solutions and AI agents that work together. Microsoft Security Store helps you put the right AI‑powered tools in place so your team can focus on what matters most—defending against attackers with speed and confidence. Get started today by visiting Microsoft Security Store. If you’re a partner looking to grow your business with Microsoft, start by visiting Microsoft Security Store - Partner with Microsoft to become a partner. Partners can list their solution or agent if their solution has a qualifying integration with Microsoft Security products, such as a Sentinel connector or Security Copilot agent, or another qualifying MISA solution integration. You can learn more about qualifying integrations and the listing process in our documentation here.Cybersecurity: What Every Business Leader Needs to Know Now
As a Senior Cybersecurity Solution Architect, I’ve had the privilege of supporting organisations across the United Kingdom, Europe, and the United States—spanning sectors from finance to healthcare—in strengthening their security posture. One thing has become abundantly clear: cybersecurity is no longer the sole domain of IT departments. It is a strategic imperative that demands attention at board-level. This guide distils five key lessons drawn from real-world engagements to help executive leaders navigate today’s evolving threat landscape. These insights are not merely technical—they are cultural, operational, and strategic. If you’re a C-level executive, this article is a call to action: reassess how your organisation approaches cybersecurity before the next breach forces the conversation. In this article, I share five lessons (and quotes) from the field that help demystify how to enhance an organisation’s security posture. 1. Shift the Mindset “This has always been our approach, and we’ve never experienced a breach—so why should we change it?” A significant barrier to effective cybersecurity lies not in the sophistication of attackers, but in the predictability of human behaviour. If you’ve never experienced a breach, it’s tempting to maintain the status quo. However, as threats evolve, so too must your defences. Many cyber threats exploit well-known vulnerabilities that remain unpatched or rely on individuals performing routine tasks in familiar ways. Human nature tends to favour comfort and habit—traits that adversaries are adept at exploiting. Unlike many organisations, attackers readily adopt new technologies to advance their objectives, including AI-powered ransomware to execute increasingly sophisticated attacks. It is therefore imperative to recognise—without delay—that the advent of AI has dramatically reduced both the effort and time required to compromise systems. As the UK’s National Cyber Security Centre (NCSC) has stated: “AI lowers the barrier for novice cyber criminals, hackers-for-hire and hacktivists to carry out effective access and information gathering operations. This enhanced access will likely contribute to the global ransomware threat over the next two years.” Similarly, McKinsey & Company observed: “As AI quickly advances cyber threats, organisations seem to be taking a more cautious approach, balancing the benefits and risks of the new technology while trying to keep pace with attackers’ increasing sophistication.” To counter this evolving threat landscape, organisations must proactively leverage AI in their cyber defence strategies. Examples include: Identity and Access Management (IAM): AI enhances IAM by analysing real-time signals across systems to detect risky sign-ins and enforce adaptive access controls. Example: Microsoft Entra Agents for Conditional Access use AI to automate policy recommendations, streamlining access decisions with minimal manual input. Figure 1: Microsoft Entra Agents Threat Detection: AI accelerates detection, response, and recovery, helping organisations stay ahead of sophisticated threats. Example: Microsoft Defender for Cloud’s AI threat protection identifies prompt injection, data poisoning, and wallet attacks in real time. Incident Response: AI facilitates real-time decision-making, removing emotional bias and accelerating containment and recovery during security incidents. Example: Automatic Attack Disruption in Defender XDR, which can automatically contain a breach in progress. AI Security Posture Management AI workloads require continuous discovery, classification, and protection across multi-cloud environments. Example: Microsoft Defender for Cloud’s AI Security Posture Management secures custom AI apps across Azure, AWS, and GCP by detecting misconfigurations, vulnerabilities, and compliance gaps. Data Security Posture Management (DSPM) for AI AI interactions must be governed to ensure privacy, compliance, and insider risk mitigation. Example: Microsoft Purview DSPM for AI enables prompt auditing, applies Data Loss Prevention (DLP) policies to third-party AI apps like ChatGPT, and supports eDiscovery and lifecycle management. AI Threat Protection Organisations must address emerging AI threat vectors, including prompt injection, data leakage, and model exploitation. Example: Defender for AI (private preview) provides model-level security, including governance, anomaly detection, and lifecycle protection. Embracing innovation, automation, and intelligent defence is the secret sauce for cyber resilience in 2026. 2. Avoid One-Off Purchases – Invest with a Strategy “One MDE and one Sentinel to go, please.” Organisations often approach me intending to purchase a specific cybersecurity product—such as Microsoft Defender for Endpoint (MDE)—without a clearly articulated strategic rationale. My immediate question is: what is the broader objective behind this purchase? Is it driven by perceived value or popularity, or does it form part of a well-considered strategy to enhance endpoint security? Cybersecurity investments should be guided by a long-term, holistic strategy that spans multiple years and is periodically reassessed to reflect evolving threats. Strengthening endpoint protection must be integrated into a wider effort to improve the organisation’s overall security posture. This includes ensuring seamless integration between security solutions and avoiding operational silos. For example, deploying robust endpoint protection is of limited value if identities are not safeguarded with multi-factor authentication (MFA), or if storage accounts remain publicly accessible. A cohesive and forward-looking approach ensures that all components of the security architecture work in concert to mitigate risk effectively. Security Adoption Journey (Based on Zero Trust Framework) Assess – Evaluate the threat landscape, attack surface, vulnerabilities, compliance obligations, and critical assets. Align – Link security objectives to broader business goals to ensure strategic coherence. Architect – Design integrated and scalable security solutions, addressing gaps and eliminating operational silos. Activate – Implement tools with robust governance and automation to ensure consistent policy enforcement. Advance – Continuously monitor, test, and refine the security posture to stay ahead of evolving threats. Security tools are not fast food—they work best as part of a long-term plan, not a one-off order. This piecemeal approach runs counter to the modern Zero Trust security model, which assumes no single tool will prevent every breach and instead implements layered defences and integration. 3. Legacy Systems Are Holding You Back “Unfortunately, we are unable to implement phishing-resistant MFA, as our legacy app does not support integration with the required protocols.” A common challenge faced by many organisations I have worked with is the constraint on innovation within their cybersecurity architecture, primarily due to continued reliance on legacy applications—often driven by budgetary or operational necessity. These outdated systems frequently lack compatibility with modern security technologies and may introduce significant vulnerabilities. A notable example is the deployment of phishing-resistant multi-factor authentication (MFA)—such as FIDO2 security keys or certificate-based authentication—which requires advanced identity protocols and conditional access policies. These capabilities are available exclusively through Microsoft Entra ID. To address this issue effectively, it is essential to design security frameworks based on the organisation’s future aspirations rather than its current limitations. By adopting a forward-thinking approach, organisations can remain receptive to emerging technologies that align with their strategic cybersecurity objectives. Moreover, this perspective encourages investment in acquiring the necessary talent, thereby reducing reliance on extensive change management and staff retraining. I advise designing for where you want to be in the next 1–3 years—ideally cloud-first and identity-driven—essentially adopting a Zero Trust architecture, rather than being constrained by the limitations of legacy systems. 4. Collaboration Is a Security Imperative “This item will need to be added to the dev team's backlog. Given their current workload, they will do their best to implement GitHub Security in Q3, subject to capacity.” Cybersecurity threats may originate from various parts of an organisation, and one of the principal challenges many face is the fragmented nature of their defence strategies. To effectively mitigate such risks, cybersecurity must be embedded across all departments and functions, rather than being confined to a single team or role. In many organisations, the Chief Information Security Officer (CISO) operates in isolation from other C-level executives, which can limit their influence and complicate the implementation of security measures across the enterprise. Furthermore, some teams may lack the requisite expertise to execute essential security practices. For instance, an R&D lead responsible for managing developers may not possess the necessary skills in DevSecOps. To address these challenges, it is vital to ensure that the CISO is empowered to act without political or organisational barriers and is supported in implementing security measures across all business units. When the CISO has backing from the COO and HR, initiatives such as MFA rollout happen faster and more thoroughly. Cross-Functional Security Responsibilities Role Security Responsibilities R&D - Adopt DevSecOps practices - Identify vulnerabilities early - Manage code dependencies - Detect exposed secrets - Embed security in CI/CD pipelines CIO - Ensure visibility over organizational data - Implement Data Loss Prevention (DLP) - Safeguard sensitive data lifecycle - Ensure regulatory compliance CTO - Secure cloud environments (CSPM) - Manage SaaS security posture (SSPM) - Ensure hardware and endpoint protection COO - Protect digital assets - Secure domain management - Mitigate impersonation threats - Safeguard digital marketing channels and customer PII Support & Vendors - Deliver targeted training - Prevent social engineering attacks - Improve awareness of threat vectors HR - Train employees on AI-related threats - Manage insider risks - Secure employee data - Oversee cybersecurity across the employee lifecycle Empowering the CISO to act across departments helps organisations shift towards a security-first culture—embedding cybersecurity into every function, not just IT. 5. Compliance Is Not Security “We’re compliant, so we must be secure.” Many organisations mistakenly equate passing audits—such as ISO 27001 or SOC 2—with being secure. While compliance frameworks help establish a baseline for security, they are not a guarantee of protection. Determined attackers are not deterred by audit checklists; they exploit gaps, misconfigurations, and human error regardless of whether an organisation is certified. Moreover, due to the rapidly evolving nature of the cyber threat landscape, compliance frameworks often struggle to keep pace. By the time a standard is updated, attackers may already be exploiting new techniques that fall outside its scope. This lag creates a false sense of security for organisations that rely solely on regulatory checkboxes. Security is a continuous risk management process—not a one-time certification. It must be embedded into every layer of the enterprise and treated with the same urgency as other core business priorities. Compliance may be the starting line, not the finish line. Effective security goes beyond meeting regulatory requirements—it demands ongoing vigilance, adaptability, and a proactive mindset. Conclusion: Cybersecurity Is a Continuous Discipline Cybersecurity is not a destination—it is a continuous journey. By embracing strategic thinking, cross-functional collaboration, and emerging technologies, organisations can build resilience against today’s threats and tomorrow’s unknowns. The lessons shared throughout this article are not merely technical—they are cultural, operational, and strategic. If there is one key takeaway, it is this: avoid piecemeal fixes and instead adopt an integrated, future-ready security strategy. Due to the rapidly evolving nature of the cyber threat landscape, compliance frameworks alone cannot keep pace. Security must be treated as a dynamic, ongoing process—one that is embedded into every layer of the enterprise and reviewed regularly. Organisations should conduct periodic security posture reviews, leveraging tools such as Microsoft Secure Score or monthly risk reports, and stay informed about emerging threats through threat intelligence feeds and resources like the Microsoft Digital Defence Report, CISA (Cybersecurity and Infrastructure Security Agency), NCSC (UK National Cyber Security Centre), and other open-source intelligence platforms. As Ann Johnson aptly stated in her blog: “The most prepared organisations are those that keep asking the right questions and refining their approach together.” Cyber resilience demands ongoing investment—in people (through training and simulation drills), in processes (via playbooks and frameworks), and in technology (through updates and adoption of AI-driven defences). To reduce cybersecurity risk over time, resilient organisations must continually refine their approach and treat cybersecurity as an ongoing discipline. The time to act is now. Resources: https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat Defend against cyber threats with AI solutions from Microsoft - Microsoft Industry Blogs Generative AI Cybersecurity Solutions | Microsoft Security Require phishing-resistant multifactor authentication for Microsoft Entra administrator roles - Microsoft Entra ID | Microsoft Learn AI is the greatest threat—and defense—in cybersecurity today. Here’s why. Microsoft Entra Agents - Microsoft Entra | Microsoft Learn Smarter identity security starts with AI https://www.microsoft.com/en-us/security/blog/2025/06/12/cyber-resilience-begins-before-the-crisis/ https://www.microsoft.com/en-us/security/security-insider/threat-landscape/microsoft-digital-defense-report-2023-critical-cybersecurity-challenges https://www.microsoft.com/en-us/security/blog/2025/06/12/cyber-resilience-begins-before-the-crisis/1.3KViews2likes0CommentsHacking Made Easy, Patching Made Optional: A Modern Cyber Tragedy
In today’s cyber threat landscape, the tools and techniques required to compromise enterprise environments are no longer confined to highly skilled adversaries or state-sponsored actors. While artificial intelligence is increasingly being used to enhance the sophistication of attacks, the majority of breaches still rely on simple, publicly accessible tools and well-established social engineering tactics. Another major issue is the persistent failure of enterprises to patch common vulnerabilities in a timely manner—despite the availability of fixes and public warnings. This negligence continues to be a key enabler of large-scale breaches, as demonstrated in several recent incidents. The Rise of AI-Enhanced Attacks Attackers are now leveraging AI to increase the credibility and effectiveness of their campaigns. One notable example is the use of deepfake technology—synthetic media generated using AI—to impersonate individuals in video or voice calls. North Korean threat actors, for instance, have been observed using deepfake videos and AI-generated personas to conduct fraudulent job interviews with HR departments at Western technology companies. These scams are designed to gain insider access to corporate systems or to exfiltrate sensitive intellectual property under the guise of legitimate employment. Social Engineering: Still the Most Effective Entry Point And yet, many recent breaches have begun with classic social engineering techniques. In the cases of Coinbase and Marks & Spencer, attackers impersonated employees through phishing or fraudulent communications. Once they had gathered sufficient personal information, they contacted support desks or mobile carriers, convincingly posing as the victims to request password resets or SIM swaps. This impersonation enabled attackers to bypass authentication controls and gain initial access to sensitive systems, which they then leveraged to escalate privileges and move laterally within the network. Threat groups such as Scattered Spider have demonstrated mastery of these techniques, often combining phishing with SIM swap attacks and MFA bypass to infiltrate telecom and cloud infrastructure. Similarly, Solt Thypoon (formerly DEV-0343), linked to North Korean operations, has used AI-generated personas and deepfake content to conduct fraudulent job interviews—gaining insider access under the guise of legitimate employment. These examples underscore the evolving sophistication of social engineering and the need for robust identity verification protocols. Built for Defense, Used for Breach Despite the emergence of AI-driven threats, many of the most successful attacks continue to rely on simple, freely available tools that require minimal technical expertise. These tools are widely used by security professionals for legitimate purposes such as penetration testing, red teaming, and vulnerability assessments. However, they are also routinely abused by attackers to compromise systems Case studies for tools like Nmap, Metasploit, Mimikatz, BloodHound, Cobalt Strike, etc. The dual-use nature of these tools underscores the importance of not only detecting their presence but also understanding the context in which they are being used. From CVE to Compromise While social engineering remains a common entry point, many breaches are ultimately enabled by known vulnerabilities that remain unpatched for extended periods. For example, the MOVEit Transfer vulnerability (CVE-2023-34362) was exploited by the Cl0p ransomware group to compromise hundreds of organizations, despite a patch being available. Similarly, the OpenMetadata vulnerability (CVE-2024-28255, CVE-2024-28847) allowed attackers to gain access to Kubernetes workloads and leverage them for cryptomining activity days after a fix had been issued. Advanced persistent threat groups such as APT29 (also known as Cozy Bear) have historically exploited unpatched systems to maintain long-term access and conduct stealthy operations. Their use of credential harvesting tools like Mimikatz and lateral movement frameworks such as Cobalt Strike highlights the critical importance of timely patch management—not just for ransomware defense, but also for countering nation-state actors. Recommendations To reduce the risk of enterprise breaches stemming from tool misuse, social engineering, and unpatched vulnerabilities, organizations should adopt the following practices: 1. Patch Promptly and Systematically Ensure that software updates and security patches are applied in a timely and consistent manner. This involves automating patch management processes to reduce human error and delay, while prioritizing vulnerabilities based on their exploitability and exposure. Microsoft Intune can be used to enforce update policies across devices, while Windows Autopatch simplifies the deployment of updates for Windows and Microsoft 365 applications. To identify and rank vulnerabilities, Microsoft Defender Vulnerability Management offers risk-based insights that help focus remediation efforts where they matter most. 2. Implement Multi-Factor Authentication (MFA) To mitigate credential-based attacks, MFA should be enforced across all user accounts. Conditional access policies should be configured to adapt authentication requirements based on contextual risk factors such as user behavior, device health, and location. Microsoft Entra Conditional Access allows for dynamic policy enforcement, while Microsoft Entra ID Protection identifies and responds to risky sign-ins. Organizations should also adopt phishing-resistant MFA methods, including FIDO2 security keys and certificate-based authentication, to further reduce exposure. 3. Identity Protection Access Reviews and Least Privilege Enforcement Conducting regular access reviews ensures that users retain only the permissions necessary for their roles. Applying least privilege principles and adopting Microsoft Zero Trust Architecture limits the potential for lateral movement in the event of a compromise. Microsoft Entra Access Reviews automates these processes, while Privileged Identity Management (PIM) provides just-in-time access and approval workflows for elevated roles. Just-in-Time Access and Risk-Based Controls Standing privileges should be minimized to reduce the attack surface. Risk-based conditional access policies can block high-risk sign-ins and enforce additional verification steps. Microsoft Entra ID Protection identifies risky behaviors and applies automated controls, while Conditional Access ensures access decisions are based on real-time risk assessments to block or challenge high-risk authentication attempts. Password Hygiene and Secure Authentication Promoting strong password practices and transitioning to passwordless authentication enhances security and user experience. Microsoft Authenticator supports multi-factor and passwordless sign-ins, while Windows Hello for Business enables biometric authentication using secure hardware-backed credentials. 4. Deploy SIEM and XDR for Detection and Response A robust detection and response capability is vital for identifying and mitigating threats across endpoints, identities, and cloud environments. Microsoft Sentinel serves as a cloud-native SIEM that aggregates and analyses security data, while Microsoft Defender XDR integrates signals from multiple sources to provide a unified view of threats and automate response actions. 5. Map and Harden Attack Paths Organizations should regularly assess their environments for attack paths such as privilege escalation and lateral movement. Tools like Microsoft Defender for Identity help uncover Lateral Movement Paths, while Microsoft Identity Threat Detection and Response (ITDR) integrates identity signals with threat intelligence to automate response. These capabilities are accessible via the Microsoft Defender portal, which includes an attack path analysis feature for prioritizing multicloud risks. 6. Stay Current with Threat Actor TTPs Monitor the evolving tactics, techniques, and procedures (TTPs) employed by sophisticated threat actors. Understanding these behaviours enables organizations to anticipate attacks and strengthen defenses proactively. Microsoft Defender Threat Intelligence provides detailed profiles of threat actors and maps their activities to the MITRE ATT&CK framework. Complementing this, Microsoft Sentinel allows security teams to hunt for these TTPs across enterprise telemetry and correlate signals to detect emerging threats. 7. Build Organizational Awareness Organizations should train staff to identify phishing, impersonation, and deepfake threats. Simulated attacks help improve response readiness and reduce human error. Use Attack Simulation Training, in Microsoft Defender for Office 365 to run realistic phishing scenarios and assess user vulnerability. Additionally, educate users about consent phishing, where attackers trick individuals into granting access to malicious apps. Conclusion The democratization of offensive security tooling, combined with the persistent failure to patch known vulnerabilities, has significantly lowered the barrier to entry for cyber attackers. Organizations must recognize that the tools used against them are often the same ones available to their own security teams. The key to resilience lies not in avoiding these tools, but in mastering them—using them to simulate attacks, identify weaknesses, and build a proactive defense. Cybersecurity is no longer a matter of if, but when. The question is: will you detect the attacker before they achieve their objective? Will you be able to stop them before reaching your most sensitive data? Additional read: Gartner Predicts 30% of Enterprises Will Consider Identity Verification and Authentication Solutions Unreliable in Isolation Due to AI-Generated Deepfakes by 2026 Cyber security breaches survey 2025 - GOV.UK Jasper Sleet: North Korean remote IT workers’ evolving tactics to infiltrate organizations | Microsoft Security Blog MOVEit Transfer vulnerability Solt Thypoon Scattered Spider SIM swaps Attackers exploiting new critical OpenMetadata vulnerabilities on Kubernetes clusters | Microsoft Security Blog Microsoft Defender Vulnerability Management - Microsoft Defender Vulnerability Management | Microsoft Learn Zero Trust Architecture | NIST tactics, techniques, and procedures (TTP) - Glossary | CSRC https://learn.microsoft.com/en-us/security/zero-trust/deploy/overviewLearn more about Microsoft Security Communities.
In the last five years, Microsoft has increased the emphasis on community programs – specifically within the security, compliance, and management space. These communities fall into two categories: Public and Private (or NDA only). In this blog, we will share a breakdown of each community and how to join.Microsoft Security in Action: Zero Trust Deployment Essentials for Digital Security
The Zero Trust framework is widely regarded as a key security model and a commonly referenced standard in modern cybersecurity. Unlike legacy perimeter-based models, Zero Trust assumes that adversaries will sometimes get access to some assets in the organization, and you must build your security strategy, architecture, processes, and skills accordingly. Implementing this framework requires a deliberate approach to deployment, configuration, and integration of tools. What is Zero Trust? At its core, Zero Trust operates on three guiding principles: Assume Breach (Assume Compromise): Assume attackers can and will successfully attack anything (identity, network, device, app, infrastructure, etc.) and plan accordingly. Verify Explicitly: Protect assets against attacker control by explicitly validating that all trust and security decisions use all relevant available information and telemetry. Use Least Privileged Access: Limit access of a potentially compromised asset, typically with just-in-time and just-enough-access (JIT/JEA) and risk-based policies like adaptive access control. Implementing a Zero Trust architecture is essential for organizations to enhance security and mitigate risks. Microsoft's Zero Trust framework essentially focuses on six key technological pillars: Identity, Endpoints, Data, Applications, Infrastructure, & Networks. This blog provides a structured approach to deploying each pillar. 1. Identity: Secure Access Starts Here Ensure secure and authenticated access to resources by verifying and enforcing policies on all user and service identities. Here are some key deployment steps to get started: Implement Strong Authentication: Enforce Multi-Factor Authentication (MFA) for all users to add an extra layer of security. Adopt phishing-resistant methods, such as password less authentication with biometrics or hardware tokens, to reduce reliance on traditional passwords. Leverage Conditional Access Policies: Define policies that grant or deny access based on real-time risk assessments, user roles, and compliance requirements. Restrict access from non-compliant or unmanaged devices to protect sensitive resources. Monitor and Protect Identities: Use tools like Microsoft Entra ID Protection to detect and respond to identity-based threats. Regularly review and audit user access rights to ensure adherence to the principle of least privilege. Integrate threat signals from diverse security solutions to enhance detection and response capabilities. 2. Endpoints: Protect the Frontlines Endpoints are frequent attack targets. A robust endpoint strategy ensures secure, compliant devices across your ecosystem. Here are some key deployment steps to get started: Implement Device Enrollment: Deploy Microsoft Intune for comprehensive device management, including policy enforcement and compliance monitoring. Enable self-service registration for BYOD to maintain visibility. Enforce Device Compliance Policies: Set and enforce policies requiring devices to meet security standards, such as up-to-date antivirus software and OS patches. Block access from devices that do not comply with established security policies. Utilize and Integrate Endpoint Detection and Response (EDR): Deploy Microsoft Defender for Endpoint to detect, investigate, and respond to advanced threats on endpoints and integrate with Conditional Access. Enable automated remediation to quickly address identified issues. Apply Data Loss Prevention (DLP): Leverage DLP policies alongside Insider Risk Management (IRM) to restrict sensitive data movement, such as copying corporate data to external drives, and address potential insider threats with adaptive protection. 3. Data: Classify, Protect, and Govern Data security spans classification, access control, and lifecycle management. Here are some key deployment steps to get started: Classify and Label Data: Use Microsoft Purview Information Protection to discover and classify sensitive information based on predefined or custom policies. Apply sensitivity labels to data to dictate handling and protection requirements. Implement Data Loss Prevention (DLP): Configure DLP policies to prevent unauthorized sharing or transfer of sensitive data. Monitor and control data movement across endpoints, applications, and cloud services. Encrypt Data at Rest and in Transit: Ensure sensitive data is encrypted both when stored and during transmission. Use Microsoft Purview Information Protection for data security. 4. Applications: Manage and Secure Application Access Securing access to applications ensures that only authenticated and authorized users interact with enterprise resources. Here are some key deployment steps to get started: Implement Application Access Controls: Use Microsoft Entra ID to manage and secure access to applications, enforcing Conditional Access policies. Integrate SaaS and on-premises applications with Microsoft Entra ID for seamless authentication. Monitor Application Usage: Deploy Microsoft Defender for Cloud Apps to gain visibility into application usage and detect risky behaviors. Set up alerts for anomalous activities, such as unusual download patterns or access from unfamiliar locations. Ensure Application Compliance: Regularly assess applications for compliance with security policies and regulatory requirements. Implement measures such as Single Sign-On (SSO) and MFA for application access. 5. Infrastructure: Securing the Foundation It’s vital to protect the assets you have today providing business critical services your organization is creating each day. Cloud and on-premises infrastructure hosts crucial assets that are frequently targeted by attackers. Here are some key deployment steps to get started: Implement Security Baselines: Apply secure configurations to VMs, containers, and Azure services using Microsoft Defender for Cloud. Monitor and Protect Infrastructure: Deploy Microsoft Defender for Cloud to monitor infrastructure for vulnerabilities and threats. Segment workloads using Network Security Groups (NSGs). Enforce Least Privilege Access: Implement Just-In-Time (JIT) access and Privileged Identity Management (PIM). Just-in-time (JIT) mechanisms grant privileges on-demand when required. This technique helps by reducing the time exposure of privileges that are required for people, but are only rarely used. Regularly review access rights to align with current roles and responsibilities. 6. Networks: Safeguard Communication and Limit Lateral Movement Network segmentation and monitoring are critical to Zero Trust implementation. Here are some key deployment steps to get started: Implement Network Segmentation: Use Virtual Networks (VNets) and Network Security Groups (NSGs) to segment and control traffic flow. Secure Remote Access: Deploy Azure Virtual Network Gateway and Azure Bastion for secure remote access. Require device and user health verification for VPN access. Monitor Network Traffic: Use Microsoft Defender for Endpoint to analyze traffic and detect anomalies. Taking the First Step Toward Zero Trust Zero Trust isn’t just a security model—it’s a cultural shift. By implementing the six pillars comprehensively, organizations can potentially enhance their security posture while enabling seamless, secure access for users. Implementing Zero Trust can be complex and may require additional deployment approaches beyond those outlined here. Cybersecurity needs vary widely across organizations and deployment isn’t one-size-fits all, so these steps might not fully address your organization’s specific requirements. However, this guide is intended to provide a helpful starting point or checklist for planning your Zero Trust deployment. For a more detailed walkthrough and additional resources, visit Microsoft Zero Trust Implementation Guidance. The Microsoft Security in Action blog series is an evolving collection of posts that explores practical deployment strategies, real-world implementations, and best practices to help organizations secure their digital estate with Microsoft Security solutions. Stay tuned for our next blog on deploying and maximizing your investments in Microsoft Threat Protection solutions.Securing the Clouds: Achieving a Unified Security Stance and threat-based approach to Use Cases
Uncover the complexities of obtaining full observability for your complex multiple cloud environment by adopting a proven approach based on a Threat assessment. Stay ahead of adversaries with a threat-based approach able to contrast even the most tricky vulnerabilities, including Zero Days. Dive into strategies for creating the perfect system to detect attacks and respond to them. Authored by a team of experts, this series is your guide to establishing a comprehensive security posture in a multi-cloud environment. Explore now and transform your cloud security game! :briefcase::locked:3.9KViews2likes2Comments