microsoft 365 defender
431 TopicsSafeguarding Microsoft Teams with Microsoft Defender for Office 365
As organizations rely more on Microsoft Teams for daily collaboration, securing this platform has become a top priority. Threat actors are increasingly targeting Teams chats and channels with phishing links and malicious files, making it critical for IT admins and security professionals to extend protection beyond email. Enter Microsoft Defender for Office 365, now armed with dedicated Teams protection capabilities. Microsoft Defender for Office 365 enables users to report suspicious messages, brings time-of-click scanning of URLs and files into Teams conversations, and provides rich alerts and hunting insights for SecOps teams. As a collaborative piece between Pierre Thoor, a Microsoft Security Most Valuable Professional (MVP), and the Defender for Office 365 Product Engineering Team, the below guides with accompanying videos emphasize a proactive, user-driven approach to threat detection and response, turning everyday Teams interactions into actionable security signals for SecOps. See something, say something: Reporting suspicious messages in Microsoft Teams Your fastest sensor isn’t AI – it’s your people. Report this message in Microsoft Teams lets anyone flag a suspicious conversation in two clicks and routes a triageable submission to your security team in the Microsoft Defender portal. Why this matters: Speed to signal: Catch threats at the conversation layer, not just in email. Complete context: Original message, participants, URLs, and verdicts in one place. Habit-forming: A simple, repeatable action employees remember under pressure. How to report (desktop, web, and mobile) In Desktop/Web Hover the message → … More options → Report this message Select Security concern → (optional) add a short note → Report In Mobile (iOS/Android) app Long-press the message → Report message Select Security concern → (optional) add a short note → Report *Tip: Short notes like “Unexpected MFA reset link” help analysts triage faster. Where reports go (for security teams) In the Microsoft Defender portal, navigate to: Investigation & response → Actions and submissions → Submissions → User reported. Open an item to view the Teams message entity (sender/domain, Teams message ID, extracted URLs, verdict) and take action – mark as phish/clean, pivot to Explorer or Advanced Hunting, or copy indicators. Quick setup check Defender portal → Settings → Email & collaboration → User reported settings: enable Monitor reported messages in Microsoft Teams. Licensing: Microsoft Defender for Office 365 Plan 2 (included in Microsoft 365 E5). What good looks like (mini playbook) User reports the message. Security triages the submission and captures the URL/domain and other indicators. Block or allow as appropriate via the Tenant Allow/Block List (TABL). Hunt for related activity or clicks (see Video 3). Close the loop: thank the reporter and share the outcome to reinforce the behavior. Common gotchas Reporting is disabled in the Teams messaging policy – verify before rollout. Some users assume “Report” notifies the sender – clarify that it routes to the Security team, not the sender. Call to action: Enable reporting for your users and add this line to your awareness site: “If it feels phishy, report – don’t click.” Think before you click - Safe Links catches threats at click-time Links can change after delivery. Safe Links waits until click-time, evaluates the destination, and shows an in-app warning page in Teams. Pair it with the Tenant Allow/Block List (TABL) to tune quickly across the tenant. Why this matters Prevents delayed redirects: Avoids “clean-at-send” methods. Consistent protection in Teams: Familiar warning UX reduces risky clicks. Rapid tuning: Block newly observed domains in seconds; no advanced transport rules required. What you’ll see in the video Policy check (Teams in scope) Defender portal → Email & collaboration → Policies & rules → Threat policies → Safe Links → ensure Apply Safe Links to Microsoft Teams is enabled for target users or groups OR that you use Standard/Strict Preset Policy. Warning page at click-time Post a benign test URL in Teams and click it to show the Safe Links warning experience. Block it as you spot it (Allow/Block) Defender portal → Threat policies → Tenant Allow/Block List → URLs → Add (domain or URL). Re-click in Teams – now blocked at click-time. Optional telemetry (Advanced Hunting) Confirm outcomes and adoption: UrlClickEvents | where Timestamp > ago(24h) and Workload == "Teams" | summarize Clicks=count(), Users=dcount(AccountUpn) by ActionType | order by Clicks desc Deployment tips Start with a pilot group that includes IT + power users; expand after validation. Create a review cadence for TABL (e.g., monthly) and expire temporary blocks. Troubleshooting No warning page? Verify policy scope includes the user and the Teams workload. Block not taking effect? Give TABL a short sync window, then re-test; confirm you blocked the correct domain/URL pattern. “Hunt the chat”: Advanced hunting for Teams threats Overview With Advanced Hunting you can quickly reconstruct activity in Microsoft Teams – who sent the message, who clicked the link, and what protections kicked in. This section shows how the four Teams-relevant tables work together, so you can move from signal to action quickly. New: message warnings for malicious URLs (internal and external) Teams now shows a warning banner on messages that contain URLs flagged as spam, phishing, or malware. Warnings appear in internal and external chats/channels, and can be added after delivery (up to ~48 hours) if a URL’s reputation changes. This complements Safe Links (time-of-click) and doesn’t replace ZAP; when ZAP removes a message, that action takes precedence. Public preview began September 2025; GA November 2025, enabled by default at GA and manageable in Teams admin center → Messaging settings. See Message Center: https://admin.cloud.microsoft/?#/MessageCenter/:/messages/MC1150984 The four tables you’ll use MessageEvents – delivery context (sender, thread, internal vs. external). MessagePostDeliveryEvents – post-delivery actions, including Phish ZAP and Malware ZAP. MessageUrlInfo – URLs extracted from Teams messages. UrlClickEvents – time-of-click outcomes for links, including those clicked in Teams. What you’ll learn in the video Surface active external domains in your tenant’s Teams chats. Identify who clicked risky links and the click outcomes (via Safe Links telemetry). See where message warnings appear in the chat UI. Pivot to an incident and block indicators fast via the Tenant Allow/Block List (TABL). A couple hunts to try right now 1) Malicious verdicts in Teams (last 24 hours) Find messages that already carry a Spam/Phish/Malware verdict – your fastest triage queue. MessageEvents | where Timestamp > ago(1d) | where ThreatTypes has "Phish" or ThreatTypes has "Malware" or ThreatTypes has "Spam" | project Timestamp, SenderDisplayName, SenderEmailAddress, RecipientDetails, IsOwnedThread, ThreadType, IsExternalThread, ReportId Use it for: a quick sweep + pivot to incident/entities, then TABL block if needed. 2) “IT helpdesk” imposters in external DMs (last 5 days) Surface social-engineering lures that impersonate support. MessageEvents | where Timestamp > ago(5d) | where IsExternalThread == true | where (RecipientDetails has "help" and RecipientDetails has "desk") or (RecipientDetails has "it" and RecipientDetails has "support") or (RecipientDetails has "working" and RecipientDetails has "home") or (SenderDisplayName has "help" and SenderDisplayName has "desk") or (SenderDisplayName has "it" and SenderDisplayName has "support") or (SenderDisplayName has "working" and SenderDisplayName has "home") | project Timestamp, SenderDisplayName, SenderEmailAddress, RecipientDetails, IsOwnedThread, ThreadType, ReportId Use it for: first-contact scams (external tenant posing as IT). Pair with Safe Links telemetry to see who clicked. Tip: has is token-aware and generally faster/cleaner than contains for word matches. Keep both hunts detection-ready by ensuring the final projection includes Timestamp and ReportId. 3) BONUS! External DMs with links (last 7 days) MessageEvents | where Timestamp > ago(7d) and IsExternalThread == true | join kind=inner (MessageUrlInfo) on TeamsMessageId | summarize Links=dcount(Url), Senders=dcount(SenderEmailAddress) by UrlDomain | top 10 by Links desc 4) Who clicked (Teams workload) – exposure view: UrlClickEvents | where Timestamp > ago(7d) and Workload == "Teams" | project Timestamp, AccountUpn, Url, ActionType | order by Timestamp desc “From Hunt to Action”: Respond & contain Finding a risky link in Teams is only half the job. This walkthrough shows how to go from detection to containment – block the domain, clean up delivered messages, and cut attacker access. Why this matters Speed: Shrink time from “we saw it” to “it’s blocked”. Consistency: Turns ad-hoc hunting into a repeatable response flow. Coverage: Pair URL blocking with identity and device containment. What you’ll see in the video Turn a hunt into an alert In Advanced Hunting, run a short query (below) and choose Create detection rule to schedule it. Alerts auto-create incidents you can triage. Block at click-time (Safe Links + TABL) In the incident, open the URL entity and add the URL/domain to the Tenant Allow/Block List (TABL) so future Teams clicks are blocked by Safe Links. Post-delivery cleanup (ZAP) If a malicious message slipped through, ZAP can remove or mark it after delivery. You’ll see evidence on the incident timeline. Contain accounts and devices Revoke user sessions in Entra ID to invalidate active tokens. Reset the password (and require strong, unique credentials), then enforce MFA for the account. Review MFA methods and remove anything suspicious; review app consents and revoke illicit grants. If endpoints are onboarded, isolate the device in Microsoft Defender for Endpoint to stop outbound connections while you investigate. The Microsoft Learn guide, https://learn.microsoft.com/en-us/defender-office-365/responding-to-a-compromised-email-account, for compromised accounts recommends session revocation, password reset, MFA enforcement, reviewing OAuth app consents and admin roles, and checking mail forwarding/rules – steps that complement the Teams response you see here. The hunt This KQL surfaces rare external domains in Teams and any user clicks. let lookback = 1d; // External Teams messages let externalMsgs = MessageEvents | where Timestamp > ago(lookback) and IsExternalThread == true | project MsgTime = Timestamp, TeamsMessageId, SenderEmailAddress, ME_ReportId = ReportId; // URLs found in Teams messages let urlsInMsgs = MessageUrlInfo | where Timestamp > ago(lookback) | project MUI_Time = Timestamp, TeamsMessageId, Url, UrlDomain, MUI_ReportId = ReportId; // Clicks coming from Teams let clicks = UrlClickEvents | where Timestamp > ago(lookback) and Workload == "Teams" | project ClickTime = Timestamp, Url, Clicker = AccountUpn, ClickAction = ActionType, UCE_ReportId = ReportId; // Define “rare” domains in the period let rareDomains = urlsInMsgs | summarize msgCount = dcount(TeamsMessageId) by UrlDomain | where msgCount < 3; rareDomains | join kind=inner (urlsInMsgs) on UrlDomain | join kind=leftouter (externalMsgs) on TeamsMessageId | join kind=leftouter (clicks) on Url | project Timestamp = coalesce(ClickTime, MUI_Time, MsgTime), UrlDomain, Url, SenderEmailAddress, Clicker, ClickTime, ClickAction, TeamsMessageId, ReportId = coalesce(UCE_ReportId, MUI_ReportId, ME_ReportId) After verifying results, select Create detection rule, set a schedule (e.g., hourly), and map entities so incidents include the right artifacts. What good looks like (response playbook) Alert fires → open incident; confirm scope and entities. Block URL/domain via TABL to stop future clicks. Confirm ZAP removed or marked delivered messages. Revoke sessions and reset password; enforce MFA. Review MFA methods and remove unknown devices/methods. Audit app consents (revoke illicit grants) and verify the user holds no unexpected admin roles. If email abuse is suspected, check for forwarding or malicious Inbox rules. Isolate device if execution is suspected; collect artifacts and un-isolate after remediation. FAQs Does the block remove the message? No – TABL blocks at click-time. Post-delivery removal is handled by ZAP when detections apply. Will revoking sessions disrupt users? It forces sign-in again (expected). Communicate this in your response template. What if the attacker used consent phishing? Revoke the offending enterprise app consent and review publisher verification status. Call to action: Save the query, create the detection, and attach this playbook to your incident template. The goal every time: find → block → clean up → contain Securing Microsoft Teams is most effective when technology and people work together. By enabling user reporting, leveraging real-time protections, and empowering security teams to act quickly, organizations can turn everyday collaboration into a strong defense against threats. ## Please take two minutes to take this survey to let us know what you think of this blog (series), video, and community content. Questions or comments on this blog "Microsoft Defender for Office 365 – A Four-Part Guide to Secure Collaboration" for the author or other readers? Please log in and post your response below! _____________ This blog has been generously and expertly authored by Microsoft Security MVP, Pierre Thoor with support of the Microsoft Defender for Office 365 product team. Pierre Thoor Microsoft Security MVP | Microsoft Defender for Office 365 Champ Get Involved and Learn More Log in and follow this Microsoft Defender for Office 365 blog and follow/post in the Microsoft Defender for Office discussion space. Follow = Click the heart in the upper right when you're logged in 🤍 Learn more about the Microsoft MVP Program. Join the Microsoft Security Community and be notified of upcoming events, product feedback surveys, and more. Get early access to Microsoft Security products and provide feedback to engineers by joining the Microsoft Customer Connection Community. Join the Microsoft Security Community LinkedInGenAI vs Cyber Threats: Why GenAI Powered Unified SecOps Wins
Cybersecurity is evolving faster than ever. Attackers are leveraging automation and AI to scale their operations, so how can defenders keep up? The answer lies in Microsoft Unified Security Operations powered by Generative AI (GenAI). This opens the Cybersecurity Paradox: Attackers only need one successful attempt, but defenders must always be vigilant, otherwise the impact can be huge. Traditional Security Operation Centers (SOCs) are hampered by siloed tools and fragmented data, which slows response and creates vulnerabilities. On average, attackers gain unauthorized access to organizational data in 72 minutes, while traditional defense tools often take on average 258 days to identify and remediate. This is over eight months to detect and resolve breaches, a significant and unsustainable gap. Notably, Microsoft Unified Security Operations, including GenAI-powered capabilities, is also available and supported in Microsoft Government Community Cloud (GCC) and GCC High/DoD environments, ensuring that organizations with the highest compliance and security requirements can benefit from these advanced protections. The Case for Unified Security Operations Unified security operations in Microsoft Defender XDR consolidates SIEM, XDR, Exposure management, and Enterprise Security Posture into a single, integrated experience. This approach allows the following: Breaks down silos by centralizing telemetry across identities, endpoints, SaaS apps, and multi-cloud environments. Infuses AI natively into workflows, enabling faster detection, investigation, and response. Microsoft Sentinel exemplifies this shift with its Data Lake architecture (see my previous post on Microsoft Sentinel’s New Data Lake: Cut Costs & Boost Threat Detection), offering schema-on-read flexibility for petabyte-scale analytics without costly data rehydration. This means defenders can query massive datasets in real time, accelerating threat hunting and forensic analysis. GenAI: A Force Multiplier for Cyber Defense Generative AI transforms security operations from reactive to proactive. Here’s how: Threat Hunting & Incident Response GenAI enables predictive analytics and anomaly detection across hybrid identities, endpoints, and workloads. It doesn’t just find threats—it anticipates them. Behavioral Analytics with UEBA Advanced User and Entity Behavior Analytics (UEBA) powered by AI correlates signals from multi-cloud environments and identity providers like Okta, delivering actionable insights for insider risk and compromised accounts. [13 -Micros...s new UEBA | Word] Automation at Scale AI-driven playbooks streamline repetitive tasks, reducing manual workload and accelerating remediation. This frees analysts to focus on strategic threat hunting. Microsoft Innovations Driving This Shift For SOC teams and cybersecurity practitioners, these innovations mean you spend less time on manual investigations and more time leveraging actionable insights, ultimately boosting productivity and allowing you to focus on higher-value security work that matters most to your organization. Plus, by making threat detection and response faster and more accurate, you can reduce stress, minimize risk, and demonstrate greater value to your stakeholders. Sentinel Data Lake: Unlocks real-time analytics at scale, enabling AI-driven threat detection without rehydration costs. Microsoft Sentinel data lake overview UEBA Enhancements: Multi-cloud and identity integrations for unified risk visibility. Sentinel UEBA’s Superpower: Actionable Insights You Can Use! Now with Okta and Multi-Cloud Logs! Security Copilot & Agentic AI: Harnesses AI and global threat intelligence to automate detection, response, and compliance across the security stack, enabling teams to scale operations and strengthen Zero Trust defenses defenders. Security Copilot Agents: The New Era of AI, Driven Cyber Defense Sector-Specific Impact All sectors are different, but I would like to focus a bit on the public sector at this time. This sector and critical infrastructure organizations face unique challenges: talent shortages, operational complexity, and nation-state threats. GenAI-centric platforms help these sectors shift from reactive defense to predictive resilience, ensuring mission-critical systems remain secure. By leveraging advanced AI-driven analytics and automation, public sector organizations can streamline incident detection, accelerate response times, and proactively uncover hidden risks before they escalate. With unified platforms that bridge data silos and integrate identity, endpoint, and cloud telemetry, these entities gain a holistic security posture that supports compliance and operational continuity. Ultimately, embracing generative AI not only helps defend against sophisticated cyber adversaries but also empowers public sector teams to confidently protect the services and infrastructure their communities rely on every day. Call to Action Artificial intelligence is driving unified cybersecurity. Solutions like Microsoft Defender XDR and Sentinel now integrate into a single dashboard, consolidating alerts, incidents, and data from multiple sources. AI swiftly correlates information, prioritizes threats, and automates investigations, helping security teams respond quickly with less manual work. This shift enables organizations to proactively manage cyber risks and strengthen their resilience against evolving challenges. Picture a single pane of glass where all your XDRs and Defenders converge, AI instantly shifts through the noise, highlighting what matters most so teams can act with clarity and speed. That may include: Assess your SOC maturity and identify silos. Use the Security Operations Self-Assessment Tool to determine your SOC’s maturity level and provide actionable recommendations for improving processes and tooling. Also see Security Maturity Model from the Well-Architected Framework Explore Microsoft Sentinel, Defender XDR, and Security Copilot for AI-powered security. Explains progressive security maturity levels and strategies for strengthening your security posture. What is Microsoft Defender XDR? - Microsoft Defender XDR and What is Microsoft Security Copilot? Design Security in Solutions from Day One! Drive embedding security from the start of solution design through secure-by-default configurations and proactive operations, aligning with Zero Trust and MCRA principles to build resilient, compliant, and scalable systems. Design Security in Solutions from Day One! Innovate boldly, Deploy Safely, and Never Regret it! Upskill your teams on GenAI tools and responsible AI practices. Guidance for securing AI apps and data, aligned with Zero Trust principles Build a strong security posture for AI About the Author: Hello Jacques "Jack” here! I am a Microsoft Technical Trainer focused on helping organizations use advanced security and AI solutions. I create and deliver training programs that combine technical expertise with practical use, enabling teams to adopt innovations like Microsoft Sentinel, Defender XDR, and Security Copilot for stronger cyber resilience. #SkilledByMTT #MicrosoftLearnMicrosoft Defender for Office 365: Migration & Onboarding
This blog covers four key areas that are frequently missed, but they are essential for a secure and auditable deployment of Defender for Office 365. Before diving into the technical details, it is important to clarify a common misconception about Defender for Office 365 protections. Blocking Malicious File Downloads in SharePoint and OneDrive A common assumption during onboarding is that Microsoft Defender for Office 365 protections only apply to email. In reality, Safe Attachments also integrates with SharePoint Online, OneDrive for Business and Microsoft Teams. It scans files for malware even after they are uploaded or shared internally. However, this protection is only effective when the configuration explicitly prevents users from downloading files flagged as malicious. Without this setting, files detected as threats can still be downloaded locally. This creates a major risk particularly if the malware is detected post-delivery. In one investigation, I found that this setting had been left at its default, allowing users to download malicious files from SharePoint. This oversight created a significant exposure risk until it was corrected. This setting is part of the Safe Attachments for SPO/ODB policy and is critical in reducing internal exposure. Once enabled, this setting protects users in real time and acts as a powerful audit point. If someone disables this setting, whether intentionally or by accident, that action is recorded in Purview's Unified Audit Log under the DisallowInfectedFileDownloadDisabled operation. The video below offers a brief walkthrough on how to enable the setting, details the associated audit log events, and provides guidance on configuring alerts for any modifications: Regularly auditing for this event can help identify misconfiguration or potentially malicious administrative activity that could indicate insider threat behaviour. Including this check as part of your continuous security monitoring process is a smart, proactive move. Learn more at Step 2: (Recommended) Use SharePoint Online PowerShell to prevent users from downloading malicious files Once you have established protection against malicious files, the next step is ensuring your tenant is correctly set up to create and manage threat policies. Ensuring Organization Customization is Enabled A frustrating yet common hurdle during Defender for Office 365 onboarding is the inability to create threat policies such as anti-phishing or Safe Attachments policies. This confusion often stems from a basic configuration oversight: the tenant has not been enabled for organization customization. Without this step, the Microsoft 365 platform prevents the creation or editing of many critical security policies in Defender for Office 365. A few years prior with a new client being onboarded to Defender for Office 365, I encountered a situation where policy creation kept failing because this step wasn’t followed. It caused unnecessary delays and frustrated the security team until we identified the missing customization. The fix is simple. Run the Enable-OrganizationCustomization PowerShell cmdlet from Exchange Online. It is a one-time configuration task, but it is essential for policy management and overall service functionality. Including this step early in your deployment or migration plan prevents unnecessary delays and ensures the security team can fully leverage Defender for Office 365's capabilities from day one. This is particularly important for consultants who are brought in to assist after issues have already arisen. Getting ahead of this configuration means one less troubleshooting rabbit hole. With customization enabled, you can now take advantage of the preset security policies to quickly build a solid baseline. Using Preset Security Policies for a Strong Starting Point One of the best tools Microsoft has provided for onboarding is the Preset Security Policies feature. These come in two flavors: Standard and Strict. Figure 4 - Defender for Office 365 Preset security policies (Standard & Strict protection) They represent Microsoft’s recommended baseline configurations for anti-malware, anti-phishing, and spam protection. Learn more at Preset security policies in cloud organizations. For customers with limited security maturity or time to deeply understand the inner workings of Defender for Office 365, these presets are a game-changer. Figure 5 - Microsoft recommendation is to apply standard protection to all users In several cases, I have seen organizations with limited security teams benefit from activating these presets early. This approach gave them immediate protection while freeing up time to better understand and tune policies over time. For incident response, having a consistent and known-good baseline also helps reduce noise and false positives in the initial stages of deployment. Figure 6 - Apply strict Defender for Office 365 protection for priority users After setting foundational policies, controlling who has access to what within Defender for Office 365 is crucial to maintaining a secure environment. Implementing Unified RBAC for Least Privilege Access As more business units engage with Defender for Office 365 for everything from investigation to reporting, it is important to ensure each role has access only to what they need. Unified Role-Based Access Control (RBAC) in Defender for Office 365 makes this possible by allowing granular control over who can see and change what within the security portal. Figure 7 – Example least privilege role configuration for a Defender for Office 365 Incident Responder (image trimmed). This becomes critically valuable in larger or more complex organizations where responsibilities are split between security, compliance, IT, and operations teams. Figure 8 - Activating Microsoft Defender for Office 365 Workload in Defender XDR Roles. By using unified RBAC, you can avoid the dangerous and often default behavior of assigning Security Administrator rights to everyone involved. Instead, define roles based on function. For example, Tier 1 analysts might only need view and investigation access, while admins can manage policies. Figure 9 - Assigning a user to a Custom Microsoft Defender for Office 365 role, Entra Security Groups are also supported. This approach aligns with zero trust principles and makes it easier to audit who has access to sensitive areas. During onboarding, I recommend mapping stakeholders to the available roles and applying this model as early as possible. This helps establish accountability and improves your security posture before an incident occurs. Learn more at Map Defender for Office 365 permissions to the Microsoft Defender XDR Unified RBAC permissions Having set the right roles and permissions, it is vital to understand how these configurations contribute to a resilient and well-prepared security posture. Final Thoughts Successful onboarding to Microsoft Defender for Office 365 is not just about flipping switches. It is about making intentional configuration choices that support operational efficiency and long-term security goals. The points covered here are often missed in quick start guides but they are essential for building a solid foundation. Those who invest time in proper configuration are far better prepared when incidents arise. Migration is just the beginning. Set up Defender for Office 365 right to reduce risk and build real resilience. Please take two minutes to take this survey to let us know what you think of this blog (series), video, and community content. Questions or comments on this blog "Microsoft Defender for Office 365 Migration & Onboarding" for the author or other readers? Please log in and post your response below! _____________ This blog has been generously and expertly authored by Microsoft Security MVP, Purav Desai. with support of the Microsoft Defender for Office 365 product team. Lead M365 Incident Responder, Financial Services | Dual Microsoft Security MVP Log in and follow this Microsoft Defender for Office 365 blog and follow/post in the Microsoft Defender for Office discussion space. Follow = Click the heart in the upper right when you're logged in 🤍 Learn more about the Microsoft MVP Program. Join the Microsoft Security Community and be notified of upcoming events, product feedback surveys, and more. Get early access to Microsoft Security products and provide feedback to engineers by joining the Microsoft Customer Connection Community. Join the Microsoft Security Community LinkedInIncorrect Secure Score recommendation - Remove unnecessary replication permissions
Hi, In our environment, we got the "Remove unnecessary replication permissions for Entra Connect AD DS Connector Account" secure score recommendation. Based on the https://learn.microsoft.com/en-us/defender-for-identity/remove-replication-permissions-microsoft-entra-connect replication permission is needed when PHS is in use. We are using PTA, but PHS is also enabled as a fallback. On the Entra Connect server I ran the following: Import-Module ADSyncDiagnostics Invoke-ADSyncDiagnostics -PasswordSync The result is: Password Hash Synchronization cloud configuration is enabled If I remove the replication permission, we soon receive an alert that password hash sync did not occour. Is it normal? I would say that the sensor should be able to detect PHS usage hence not recommending to remove the permissions. Thank you in advance, DanielSolvedSentinel UEBA’s Superpower: Actionable Insights You Can Use! Now with Okta and Multi-Cloud Logs!
Microsoft Sentinel continues to evolve as a cloud-native Security Information and Event Management (SIEM) and Security Orchestration, Automation, and Response (SOAR) solution, empowering security teams to detect, investigate, and respond to threats with speed and precision. The latest update introduces advanced User and Entity Behavior Analytics (UEBA), expanding support for new eligible logs, including multi-cloud sources and the Okta identity provider. This leap strengthens coverage and productivity by surfacing anomalies, actionable insights, and rich security context across entities and raw logs. Building on these enhancements, Sentinel UEBA now enables security teams to correlate activity seamlessly across diverse platforms like Azure, AWS, Google Cloud, and Okta, providing a unified risk perspective and empowering SOC analysts to quickly identify suspicious patterns such as unusual logins, privilege escalations, or anomalous access attempts. By leveraging behavioral baselines and contextual data about users, devices, and cloud resources, organizations benefit from improved detection accuracy and a reduction in false positives, streamlining investigations and accelerating threat response. For our Government Customers and for information about feature availability in US Government clouds, see the Microsoft Sentinel tables in Cloud feature availability for US Government customers. What’s New in Sentinel UEBA? Expanded Log Support: Sentinel now ingests and analyzes logs from a broader set of sources, including multi-cloud environments and Okta. This means security teams can correlate user and entity activity across Azure, AWS, Google Cloud, and Okta, gaining a unified view of risk. Actionable Insights: UEBA surfaces anomalies, such as unusual login patterns, privilege escalations, and suspicious access attempts by analyzing behavioral baselines and deviations. These insights help SOC analysts prioritize investigations and respond to threats faster. Rich Security Context: By combining raw logs with contextual information about users, devices, and cloud resources, Sentinel UEBA provides a holistic view of each entity’s risk posture. This enables more accurate detection and reduces false positives. To maximize the benefits of Sentinel UEBA’s expanded capabilities, organizations should focus on integrating all relevant cloud and identity sources, establishing behavioral baselines for users and entities, and leveraging automated response workflows to streamline investigations. Continuous tuning of UEBA policies and proactive onboarding of new log sources, such as Okta and multi-cloud environments, ensures that security teams remain agile in the face of evolving threats. By utilizing dedicated dashboards to monitor for anomalies like impossible travel and privilege changes, and by training SOC analysts to interpret insights and automate incident responses, teams can significantly enhance their threat detection and mitigation strategies while fostering a culture of ongoing learning and operational excellence. Microsoft Learn, UEBA Engine Key Practices for Maximizing UEBA To help organizations fully leverage the latest capabilities of Sentinel UEBA, adopting proven practices is essential. The following key strategies will empower security teams to maximize value, enhance detection, and streamline their operations. Integrate Multi-Cloud Logs: Ensure all relevant cloud and identity sources (Azure, AWS, GCP, Okta) are connected to Sentinel for comprehensive coverage. Baseline Normal Behavior: Use UEBA to establish behavioral baselines for users and entities, making it easier to spot anomalies. Automate Response: Leverage Sentinel’s SOAR capabilities to automate investigation and response workflows for detected anomalies. Continuous Tuning: Regularly review and refine UEBA policies to adapt to evolving threats and organizational changes. This image shows how Microsoft Sentinel UEBA analyzes user and entity behavior to detect suspicious activity and anomalies, helping security teams identify advanced threats and insider risks more accurately. Microsoft Learn, UEBA pipeline Call to Action Start by onboarding Okta and multi-cloud logs into Sentinel. Use UEBA dashboards to monitor for unusual activities, such as impossible travel, multiple failed logins, or privilege changes. Automate alerts and incident response to reduce manual workload and accelerate threat mitigation. Assess your current log sources and identity providers. Onboard Okta and multi-cloud logs into Sentinel, enable UEBA, and start monitoring behavioral anomalies. Train your SOC team on interpreting UEBA insights and automating response actions. Stay ahead of threats by continuously tuning your analytics and integrating new sources as your environment evolves. Reference Links for Sentinel UEBA Advanced threat detection with User and Entity Behavior Analytics (UEBA) in Microsoft Sentinel Enable User and Entity Behavior Analytics (UEBA) in Microsoft Sentinel Microsoft Sentinel User and Entity Behavior Analytics (UEBA) reference Investigate incidents with UEBA data What's new in Microsoft Sentinel Microsoft Sentinel documentation home About the Author: Hi! Jacques “Jack” here, Microsoft Technical Trainer. I’m passionate about empowering teams to master security and operational excellence. As you advance your skills, pair technical expertise with a commitment to sharing knowledge and ongoing training. Create opportunities to lead workshops, stay current on threats and best practices, and foster a culture of continuous learning. #SkilledByMTT #MicrosoftLearnIntroducing Microsoft Sentinel graph (Public Preview)
Security is being reengineered for the AI era—moving beyond static, rulebound controls and after-the-fact response toward platform-led, machine-speed defense. The challenge is clear: fragmented tools, sprawling signals, and legacy architectures that can’t match the velocity and scale of modern attacks. What’s needed is an AI-ready, data-first foundation—one that turns telemetry into a security graph, standardizes access for agents, and coordinates autonomous actions while keeping humans in command of strategy and high-impact investigations. Security teams already center operations on their SIEM for end-to-end visibility, and we’re advancing that foundation by evolving Microsoft Sentinel into both the SIEM and the platform for agentic defense—connecting analytics and context across ecosystems. And today, we announced the general availability of Sentinel data lake and introduced new preview platform capabilities that are built on Sentinel data lake (Figure 1), so protection accelerates to machine speed while analysts do their best work. We are excited to announce the public preview of Microsoft Sentinel graph, a deeply connected map of your digital estate across endpoints, cloud, email, identity, SaaS apps, and enriched with our threat intelligence. Sentinel graph, a core capability of the Sentinel platform, enables Defenders and Agentic AI to connect the dots and bring deep context quickly, enabling modern defense across pre-breach and post-breach. Starting today, we are delivering new graph-based analytics and interactive visualization capabilities across Microsoft Defender and Microsoft Purview. Attackers think in graphs. For a long time, defenders have been limited to querying and analyzing data in lists forcing them to think in silos. With Sentinel graph, Defenders and AI can quickly reveal relationships, traversable digital paths to understand blast radius, privilege escalation, and anomalies across large, cloud-scale data sets, deriving deep contextual insight across their digital estate, SOC teams and their AI Agents can stay proactive and resilient. With Sentinel graph-powered experiences in Defender and Purview, defenders can now reason over assets, identities, activities, and threat intelligence to accelerate detection, hunting, investigation, and response. Incident graph in Defender. The incident graph in the Microsoft Defender portal is now enriched with ability to analyze blast radius of the active attack. During an incident investigation, the blast radius analysis quickly evaluates and visualizes the vulnerable paths an attacker could take from a compromise entity to a critical asset. This allows SOC teams to effectively prioritize and focus their attack mitigation and response saving critical time and limiting impact. Hunting graph in Defender. Threat hunting often requires connecting disparate pieces of data to uncover hidden paths that attackers exploit to reach your crown jewels. With the new hunting graph, analysts can visually traverse the complex web of relationships between users, devices, and other entities to reveal privileged access paths to critical assets. This graph-powered exploration transforms threat hunting into a proactive mission, enabling SOC teams to surface vulnerabilities and intercept attacks before they gain momentum. This approach shifts security operations from reactive alert handling to proactive threat hunting, enabling teams to identify vulnerabilities and stop attacks before they escalate. Data risk graph in Purview Insider Risk Management (IRM). Investigating data leaks and insider risks is challenging when information is scattered across multiple sources. The data risk graph in IRM offers a unified view across SharePoint and OneDrive, connecting users, assets, and activities. Investigators can see not just what data was leaked, but also the full blast radius of risky user activity. This context helps data security teams triage alerts, understand the impact of incidents, and take targeted actions to prevent future leaks. Data risk graph in Purview Data Security Investigation (DSI). To truly understand a data breach, you need to follow the trail—tracking files and their activities across every tool and source. The data risk graph does this by automatically combining unified audit logs, Entra audit logs, and threat intelligence, providing an invaluable insight. With the power of the data risk graph, data security teams can pinpoint sensitive data access and movement, map potential exfiltration paths, and visualize the users and activities linked to risky files, all in one view. Getting started Microsoft Defender If you already have the Sentinel data lake, the required graph will be auto provisioned when you login into the Defender portal; hunting graph and incident graph experience will appear in the Defender portal. New to data lake? Use the Sentinel data lake onboarding flow to provision the data lake and graph. Microsoft Purview Follow the Sentinel data lake onboarding flow to provision the data lake and graph. In Purview Insider Risk Management (IRM), follow the instructions here. In Purview Data Security Investigation (DSI), follow the instructions here. Reference links Watch Microsoft Secure Microsoft Secure news blog Data lake blog MCP server blog ISV blog Security Store blog Copilot blog Microsoft Sentinel—AI-Powered Cloud SIEM | Microsoft SecurityBuilt-in report button is available in Microsoft Outlook across platforms
Outlook and Defender for Office 365 are excited to announce the release of built-in report button in Microsoft Outlook across platforms (web, new Outlook for Windows, classic Outlook for Windows, Outlook for Mac, Outlook for Android, Outlook for iOS, and Outlook for android Lite) for both personal and commercial accounts. You can find the built-in button across Outlook: Outlook on the web. New Outlook for Windows. Outlook for Mac version 16.89 (24090815) or later. Classic Outlook for Windows version Current channel: Version 16.0.17827.15010 or later. Monthly Enterprise Channel: Version 16.0.18025.20000 or later. Semi-Annual Channel (Preview): Release 2502, build 16.0.18526.20024 Semi-Annual Channel: Release 2502, build 16.0.18526.20024 Outlook for iOS version 4.2511 or later and Outlook for Android version 4.2446 or later. Outlook for Android Lite Benefits the built-in report button provides for security admins It works out of the box with no setup required The reporting experience for end user is the same across consumer and commercial accounts The report button is consistent across Outlook clients The report button is front and center on all clients The report button is present on the grid view, reading panel, preview panel, context menu The report button enables the user to select in bulk and report messages at once You can turn on and off the pre and post reporting popups for users in your organization using You can customize the individual pre and post reporting popup by adding text and links in 7 diff languages The report button is present on shared and delegate mailboxes enabling end users to report emails. Now present on outlook for web, new outlook for windows, outlook for mac, outlook for android and outlook for iOS The end user reports made by these clients are routed as per the message reported destination configured in the user reported settings. You can view the user report as soon as they are made on the If you have configured Microsoft only or Microsoft and my reporting mailbox in the user reported settings, the result from Microsoft analysis are available on the result column You can turn off the built-in report button on user reported settings by Selecting non-Microsoft add-in button and providing the address of the reporting mailbox of the 3 rd party add-in, or Deselecting monitor reported messages in outlook Note: The report phish add-in and the report message add-in does not provide support for shared and delegate mailbox. The report phish add-in, the report message add-in, and the built-in report button all read from the same user reported settings and use the same internal reporting API. In a way there are two different doors (entry point) to the same house (the backend). For the moment, the report message and report phish add-in are in maintenance mode to provide enough time for customers to migrate to the built-in button. To learn more, please check out Transition from Report Message or the Report Phishing add-ins - Microsoft Defender for Office 365 | Microsoft Learn Report phishing and suspicious emails in Outlook for admins - Microsoft Defender for Office 365 | Microsoft Learn User reported settings - Microsoft Defender for Office 365 | Microsoft Learn Protect yourself from phishing - Microsoft Support Report phishing - Microsoft Support How do I report phishing or junk email? - Microsoft SupportIntroducing Microsoft Security Store
Security is being reengineered for the AI era—moving beyond static, rulebound controls and after-the-fact response toward platform-led, machine-speed defense. We recognize that defending against modern threats requires the full strength of an ecosystem, combining our unique expertise and shared threat intelligence. But with so many options out there, it’s tough for security professionals to cut through the noise, and even tougher to navigate long procurement cycles and stitch together tools and data before seeing meaningful improvements. That’s why we built Microsoft Security Store - a storefront designed for security professionals to discover, buy, and deploy security SaaS solutions and AI agents from our ecosystem partners such as Darktrace, Illumio, and BlueVoyant. Security SaaS solutions and AI agents on Security Store integrate with Microsoft Security products, including Sentinel platform, to enhance end-to-end protection. These integrated solutions and agents collaborate intelligently, sharing insights and leveraging AI to enhance critical security tasks like triage, threat hunting, and access management. In Security Store, you can: Buy with confidence – Explore solutions and agents that are validated to integrate with Microsoft Security products, so you know they’ll work in your environment. Listings are organized to make it easy for security professionals to find what’s relevant to their needs. For example, you can filter solutions based on how they integrate with your existing Microsoft Security products. You can also browse listings based on their NIST Cybersecurity Framework functions, covering everything from network security to compliance automation — helping you quickly identify which solutions strengthen the areas that matter most to your security posture. Simplify purchasing – Buy solutions and agents with your existing Microsoft billing account without any additional payment setup. For Azure benefit-eligible offers, eligible purchases contribute to your cloud consumption commitments. You can also purchase negotiated deals through private offers. Accelerate time to value – Deploy agents and their dependencies in just a few steps and start getting value from AI in minutes. Partners offer ready-to-use AI agents that can triage alerts at scale, analyze and retrieve investigation insights in real time, and surface posture and detection gaps with actionable recommendations. A rich ecosystem of solutions and AI agents to elevate security posture In Security Store, you’ll find solutions covering every corner of cybersecurity—threat protection, data security and governance, identity and device management, and more. To give you a flavor of what is available, here are some of the exciting solutions on the store: Darktrace’s ActiveAI Security SaaS solution integrates with Microsoft Security to extend self-learning AI across a customer's entire digital estate, helping detect anomalies and stop novel attacks before they spread. The Darktrace Email Analysis Agent helps SOC teams triage and threat hunt suspicious emails by automating detection of risky attachments, links, and user behaviors using Darktrace Self-Learning AI, integrated with Microsoft Defender and Security Copilot. This unified approach highlights anomalous properties and indicators of compromise, enabling proactive threat hunting and faster, more accurate response. Illumio for Microsoft Sentinel combines Illumio Insights with Microsoft Sentinel data lake and Security Copilot to enhance detection and response to cyber threats. It fuses data from Illumio and all the other sources feeding into Sentinel to deliver a unified view of threats across millions of workloads. AI-driven breach containment from Illumio gives SOC analysts, incident responders, and threat hunters unified visibility into lateral traffic threats and attack paths across hybrid and multi-cloud environments, to reduce alert fatigue, prioritize threat investigation, and instantly isolate workloads. Netskope’s Security Service Edge (SSE) platform integrates with Microsoft M365, Defender, Sentinel, Entra and Purview for identity-driven, label-aware protection across cloud, web, and private apps. Netskope's inline controls (SWG, CASB, ZTNA) and advanced DLP, with Entra signals and Conditional Access, provide real-time, context-rich policies based on user, device, and risk. Telemetry and incidents flow into Defender and Sentinel for automated enrichment and response, ensuring unified visibility, faster investigations, and consistent Zero Trust protection for cloud, data, and AI everywhere. PERFORMANTA Email Analysis Agent automates deep investigations into email threats, analyzing metadata (headers, indicators, attachments) against threat intelligence to expose phishing attempts. Complementing this, the IAM Supervisor Agent triages identity risks by scrutinizing user activity for signs of credential theft, privilege misuse, or unusual behavior. These agents deliver unified, evidence-backed reports directly to you, providing instant clarity and slashing incident response time. Tanium Autonomous Endpoint Management (AEM) pairs realtime endpoint visibility with AI-driven automation to keep IT environments healthy and secure at scale. Tanium is integrated with the Microsoft Security suite—including Microsoft Sentinel, Defender for Endpoint, Entra ID, Intune, and Security Copilot. Tanium streams current state telemetry into Microsoft’s security and AI platforms and lets analysts pivot from investigation to remediation without tool switching. Tanium even executes remediation actions from the Sentinel console. The Tanium Security Triage Agent accelerates alert triage, enabling security teams to make swift, informed decisions using Tanium Threat Response alerts and real-time endpoint data. Walkthrough of Microsoft Security Store Now that you’ve seen the types of solutions available in Security Store, let’s walk through how to find the right one for your organization. You can get started by going to the Microsoft Security Store portal. From there, you can search and browse solutions that integrate with Microsoft Security products, including a dedicated section for AI agents—all in one place. If you are using Microsoft Security Copilot, you can also open the store from within Security Copilot to find AI agents - read more here. Solutions are grouped by how they align with industry frameworks like NIST CSF 2.0, making it easier to see which areas of security each one supports. You can also filter by integration type—e.g., Defender, Sentinel, Entra, or Purview—and by compliance certifications to narrow results to what fits your environment. To explore a solution, click into its detail page to view descriptions, screenshots, integration details, and pricing. For AI agents, you’ll also see the tasks they perform, the inputs they require, and the outputs they produce —so you know what to expect before you deploy. Every listing goes through a review process that includes partner verification, security scans on code packages stored in a secure registry to protect against malware, and validation that integrations with Microsoft Security products work as intended. Customers with the right permissions can purchase agents and SaaS solutions directly through Security Store. The process is simple: choose a partner solution or AI agent and complete the purchase in just a few clicks using your existing Microsoft billing account—no new payment setup required. Qualifying SaaS purchases also count toward your Microsoft Azure Consumption Commitment (MACC), helping accelerate budget approvals while adding the security capabilities your organization needs. Security and IT admins can deploy solutions directly from Security Store in just a few steps through a guided experience. The deployment process automatically provisions the resources each solution needs—such as Security Copilot agents and Microsoft Sentinel data lake notebook jobs—so you don’t have to do so manually. Agents are deployed into Security Copilot, which is built with security in mind, providing controls like granular agent permissions and audit trails, giving admins visibility and governance. Once deployment is complete, your agent is ready to configure and use so you can start applying AI to expand detection coverage, respond faster, and improve operational efficiency. Security and IT admins can view and manage all purchased solutions from the “My Solutions” page and easily navigate to Microsoft Cost Management tools to track spending and manage subscriptions. Partners: grow your business with Microsoft For security partners, Security Store opens a powerful new channel to reach customers, monetize differentiated solutions, and grow with Microsoft. We will showcase select solutions across relevant Microsoft Security experiences, starting with Security Copilot, so your offerings appear in the right context for the right audience. You can monetize both SaaS solutions and AI agents through built-in commerce capabilities, while tapping into Microsoft’s go-to-market incentives. For agent builders, it’s even simpler—we handle the entire commerce lifecycle, including billing and entitlement, so you don’t have to build any infrastructure. You focus on embedding your security expertise into the agent, and we take care of the rest to deliver a seamless purchase experience for customers. Security Store is built on top of Microsoft Marketplace, which means partners publish their solution or agent through the Microsoft Partner Center - the central hub for managing all marketplace offers. From there, create or update your offer with details about how your solution integrates with Microsoft Security so customers can easily discover it in Security Store. Next, upload your deployable package to the Security Store registry, which is encrypted for protection. Then define your license model, terms, and pricing so customers know exactly what to expect. Before your offer goes live, it goes through certification checks that include malware and virus scans, schema validation, and solution validation. These steps help give customers confidence that your solutions meet Microsoft’s integration standards. Get started today By creating a storefront optimized for security professionals, we are making it simple to find, buy, and deploy solutions and AI agents that work together. Microsoft Security Store helps you put the right AI‑powered tools in place so your team can focus on what matters most—defending against attackers with speed and confidence. Get started today by visiting Microsoft Security Store. If you’re a partner looking to grow your business with Microsoft, start by visiting Microsoft Security Store - Partner with Microsoft to become a partner. Partners can list their solution or agent if their solution has a qualifying integration with Microsoft Security products, such as a Sentinel connector or Security Copilot agent, or another qualifying MISA solution integration. You can learn more about qualifying integrations and the listing process in our documentation here.Cybersecurity: What Every Business Leader Needs to Know Now
As a Senior Cybersecurity Solution Architect, I’ve had the privilege of supporting organisations across the United Kingdom, Europe, and the United States—spanning sectors from finance to healthcare—in strengthening their security posture. One thing has become abundantly clear: cybersecurity is no longer the sole domain of IT departments. It is a strategic imperative that demands attention at board-level. This guide distils five key lessons drawn from real-world engagements to help executive leaders navigate today’s evolving threat landscape. These insights are not merely technical—they are cultural, operational, and strategic. If you’re a C-level executive, this article is a call to action: reassess how your organisation approaches cybersecurity before the next breach forces the conversation. In this article, I share five lessons (and quotes) from the field that help demystify how to enhance an organisation’s security posture. 1. Shift the Mindset “This has always been our approach, and we’ve never experienced a breach—so why should we change it?” A significant barrier to effective cybersecurity lies not in the sophistication of attackers, but in the predictability of human behaviour. If you’ve never experienced a breach, it’s tempting to maintain the status quo. However, as threats evolve, so too must your defences. Many cyber threats exploit well-known vulnerabilities that remain unpatched or rely on individuals performing routine tasks in familiar ways. Human nature tends to favour comfort and habit—traits that adversaries are adept at exploiting. Unlike many organisations, attackers readily adopt new technologies to advance their objectives, including AI-powered ransomware to execute increasingly sophisticated attacks. It is therefore imperative to recognise—without delay—that the advent of AI has dramatically reduced both the effort and time required to compromise systems. As the UK’s National Cyber Security Centre (NCSC) has stated: “AI lowers the barrier for novice cyber criminals, hackers-for-hire and hacktivists to carry out effective access and information gathering operations. This enhanced access will likely contribute to the global ransomware threat over the next two years.” Similarly, McKinsey & Company observed: “As AI quickly advances cyber threats, organisations seem to be taking a more cautious approach, balancing the benefits and risks of the new technology while trying to keep pace with attackers’ increasing sophistication.” To counter this evolving threat landscape, organisations must proactively leverage AI in their cyber defence strategies. Examples include: Identity and Access Management (IAM): AI enhances IAM by analysing real-time signals across systems to detect risky sign-ins and enforce adaptive access controls. Example: Microsoft Entra Agents for Conditional Access use AI to automate policy recommendations, streamlining access decisions with minimal manual input. Figure 1: Microsoft Entra Agents Threat Detection: AI accelerates detection, response, and recovery, helping organisations stay ahead of sophisticated threats. Example: Microsoft Defender for Cloud’s AI threat protection identifies prompt injection, data poisoning, and wallet attacks in real time. Incident Response: AI facilitates real-time decision-making, removing emotional bias and accelerating containment and recovery during security incidents. Example: Automatic Attack Disruption in Defender XDR, which can automatically contain a breach in progress. AI Security Posture Management AI workloads require continuous discovery, classification, and protection across multi-cloud environments. Example: Microsoft Defender for Cloud’s AI Security Posture Management secures custom AI apps across Azure, AWS, and GCP by detecting misconfigurations, vulnerabilities, and compliance gaps. Data Security Posture Management (DSPM) for AI AI interactions must be governed to ensure privacy, compliance, and insider risk mitigation. Example: Microsoft Purview DSPM for AI enables prompt auditing, applies Data Loss Prevention (DLP) policies to third-party AI apps like ChatGPT, and supports eDiscovery and lifecycle management. AI Threat Protection Organisations must address emerging AI threat vectors, including prompt injection, data leakage, and model exploitation. Example: Defender for AI (private preview) provides model-level security, including governance, anomaly detection, and lifecycle protection. Embracing innovation, automation, and intelligent defence is the secret sauce for cyber resilience in 2026. 2. Avoid One-Off Purchases – Invest with a Strategy “One MDE and one Sentinel to go, please.” Organisations often approach me intending to purchase a specific cybersecurity product—such as Microsoft Defender for Endpoint (MDE)—without a clearly articulated strategic rationale. My immediate question is: what is the broader objective behind this purchase? Is it driven by perceived value or popularity, or does it form part of a well-considered strategy to enhance endpoint security? Cybersecurity investments should be guided by a long-term, holistic strategy that spans multiple years and is periodically reassessed to reflect evolving threats. Strengthening endpoint protection must be integrated into a wider effort to improve the organisation’s overall security posture. This includes ensuring seamless integration between security solutions and avoiding operational silos. For example, deploying robust endpoint protection is of limited value if identities are not safeguarded with multi-factor authentication (MFA), or if storage accounts remain publicly accessible. A cohesive and forward-looking approach ensures that all components of the security architecture work in concert to mitigate risk effectively. Security Adoption Journey (Based on Zero Trust Framework) Assess – Evaluate the threat landscape, attack surface, vulnerabilities, compliance obligations, and critical assets. Align – Link security objectives to broader business goals to ensure strategic coherence. Architect – Design integrated and scalable security solutions, addressing gaps and eliminating operational silos. Activate – Implement tools with robust governance and automation to ensure consistent policy enforcement. Advance – Continuously monitor, test, and refine the security posture to stay ahead of evolving threats. Security tools are not fast food—they work best as part of a long-term plan, not a one-off order. This piecemeal approach runs counter to the modern Zero Trust security model, which assumes no single tool will prevent every breach and instead implements layered defences and integration. 3. Legacy Systems Are Holding You Back “Unfortunately, we are unable to implement phishing-resistant MFA, as our legacy app does not support integration with the required protocols.” A common challenge faced by many organisations I have worked with is the constraint on innovation within their cybersecurity architecture, primarily due to continued reliance on legacy applications—often driven by budgetary or operational necessity. These outdated systems frequently lack compatibility with modern security technologies and may introduce significant vulnerabilities. A notable example is the deployment of phishing-resistant multi-factor authentication (MFA)—such as FIDO2 security keys or certificate-based authentication—which requires advanced identity protocols and conditional access policies. These capabilities are available exclusively through Microsoft Entra ID. To address this issue effectively, it is essential to design security frameworks based on the organisation’s future aspirations rather than its current limitations. By adopting a forward-thinking approach, organisations can remain receptive to emerging technologies that align with their strategic cybersecurity objectives. Moreover, this perspective encourages investment in acquiring the necessary talent, thereby reducing reliance on extensive change management and staff retraining. I advise designing for where you want to be in the next 1–3 years—ideally cloud-first and identity-driven—essentially adopting a Zero Trust architecture, rather than being constrained by the limitations of legacy systems. 4. Collaboration Is a Security Imperative “This item will need to be added to the dev team's backlog. Given their current workload, they will do their best to implement GitHub Security in Q3, subject to capacity.” Cybersecurity threats may originate from various parts of an organisation, and one of the principal challenges many face is the fragmented nature of their defence strategies. To effectively mitigate such risks, cybersecurity must be embedded across all departments and functions, rather than being confined to a single team or role. In many organisations, the Chief Information Security Officer (CISO) operates in isolation from other C-level executives, which can limit their influence and complicate the implementation of security measures across the enterprise. Furthermore, some teams may lack the requisite expertise to execute essential security practices. For instance, an R&D lead responsible for managing developers may not possess the necessary skills in DevSecOps. To address these challenges, it is vital to ensure that the CISO is empowered to act without political or organisational barriers and is supported in implementing security measures across all business units. When the CISO has backing from the COO and HR, initiatives such as MFA rollout happen faster and more thoroughly. Cross-Functional Security Responsibilities Role Security Responsibilities R&D - Adopt DevSecOps practices - Identify vulnerabilities early - Manage code dependencies - Detect exposed secrets - Embed security in CI/CD pipelines CIO - Ensure visibility over organizational data - Implement Data Loss Prevention (DLP) - Safeguard sensitive data lifecycle - Ensure regulatory compliance CTO - Secure cloud environments (CSPM) - Manage SaaS security posture (SSPM) - Ensure hardware and endpoint protection COO - Protect digital assets - Secure domain management - Mitigate impersonation threats - Safeguard digital marketing channels and customer PII Support & Vendors - Deliver targeted training - Prevent social engineering attacks - Improve awareness of threat vectors HR - Train employees on AI-related threats - Manage insider risks - Secure employee data - Oversee cybersecurity across the employee lifecycle Empowering the CISO to act across departments helps organisations shift towards a security-first culture—embedding cybersecurity into every function, not just IT. 5. Compliance Is Not Security “We’re compliant, so we must be secure.” Many organisations mistakenly equate passing audits—such as ISO 27001 or SOC 2—with being secure. While compliance frameworks help establish a baseline for security, they are not a guarantee of protection. Determined attackers are not deterred by audit checklists; they exploit gaps, misconfigurations, and human error regardless of whether an organisation is certified. Moreover, due to the rapidly evolving nature of the cyber threat landscape, compliance frameworks often struggle to keep pace. By the time a standard is updated, attackers may already be exploiting new techniques that fall outside its scope. This lag creates a false sense of security for organisations that rely solely on regulatory checkboxes. Security is a continuous risk management process—not a one-time certification. It must be embedded into every layer of the enterprise and treated with the same urgency as other core business priorities. Compliance may be the starting line, not the finish line. Effective security goes beyond meeting regulatory requirements—it demands ongoing vigilance, adaptability, and a proactive mindset. Conclusion: Cybersecurity Is a Continuous Discipline Cybersecurity is not a destination—it is a continuous journey. By embracing strategic thinking, cross-functional collaboration, and emerging technologies, organisations can build resilience against today’s threats and tomorrow’s unknowns. The lessons shared throughout this article are not merely technical—they are cultural, operational, and strategic. If there is one key takeaway, it is this: avoid piecemeal fixes and instead adopt an integrated, future-ready security strategy. Due to the rapidly evolving nature of the cyber threat landscape, compliance frameworks alone cannot keep pace. Security must be treated as a dynamic, ongoing process—one that is embedded into every layer of the enterprise and reviewed regularly. Organisations should conduct periodic security posture reviews, leveraging tools such as Microsoft Secure Score or monthly risk reports, and stay informed about emerging threats through threat intelligence feeds and resources like the Microsoft Digital Defence Report, CISA (Cybersecurity and Infrastructure Security Agency), NCSC (UK National Cyber Security Centre), and other open-source intelligence platforms. As Ann Johnson aptly stated in her blog: “The most prepared organisations are those that keep asking the right questions and refining their approach together.” Cyber resilience demands ongoing investment—in people (through training and simulation drills), in processes (via playbooks and frameworks), and in technology (through updates and adoption of AI-driven defences). To reduce cybersecurity risk over time, resilient organisations must continually refine their approach and treat cybersecurity as an ongoing discipline. The time to act is now. Resources: https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat Defend against cyber threats with AI solutions from Microsoft - Microsoft Industry Blogs Generative AI Cybersecurity Solutions | Microsoft Security Require phishing-resistant multifactor authentication for Microsoft Entra administrator roles - Microsoft Entra ID | Microsoft Learn AI is the greatest threat—and defense—in cybersecurity today. Here’s why. Microsoft Entra Agents - Microsoft Entra | Microsoft Learn Smarter identity security starts with AI https://www.microsoft.com/en-us/security/blog/2025/06/12/cyber-resilience-begins-before-the-crisis/ https://www.microsoft.com/en-us/security/security-insider/threat-landscape/microsoft-digital-defense-report-2023-critical-cybersecurity-challenges https://www.microsoft.com/en-us/security/blog/2025/06/12/cyber-resilience-begins-before-the-crisis/1.4KViews2likes0Comments