java
215 TopicsModernizing Applications by Migrating Code to Use Managed Identity with Copilot App Modernization
Migrating application code to use Managed Identity removes hard‑coded secrets, reduces operational risk, and aligns with modern cloud security practices. Applications authenticate directly with Azure services without storing credentials. GitHub Copilot app modernization streamlines this transition by identifying credential usage patterns, updating code, and aligning dependencies for Managed Identity flows. Supported Migration Steps GitHub Copilot app modernization helps accelerate: Replacing credential‑based authentication with Managed Identity authentication. Updating SDK usage to token‑based flows. Refactoring helper classes that build credential objects. Surfacing libraries or APIs that require alternative authentication approaches. Preparing build configuration changes needed for managed identity integration. Migration Analysis Open the project in Visual Studio Code or IntelliJ IDEA. GitHub Copilot app modernization analyzes: Locations where secrets, usernames, passwords, or connection strings are referenced. Service clients using credential constructors or static credential factories. Environment‑variable‑based authentication workarounds. Dependencies and SDK versions required for Managed Identity authentication. The analysis outlines upgrade blockers and the required changes for cloud‑native authentication. Migration Plan Generation GitHub Copilot app modernization produces a migration plan containing: Replacement of hard‑coded credentials with Managed Identity authentication patterns. Version updates for Azure libraries aligning with Managed Identity support. Adjustments to application configuration to remove unnecessary secrets. Developers can review and adjust before applying. Automated Transformations GitHub Copilot app modernization applies changes: Rewrites code that initializes clients using username/password or connection strings. Introduces Managed Identity‑friendly constructors and token credential patterns. Updates imports, method signatures, and helper utilities. Cleans up configuration files referencing outdated credential flows. Build & Fix Iteration The tool rebuilds the project, identifies issues, and applies targeted fixes: Compilation errors from removed credential classes. Incorrect parameter types or constructors. Dependencies requiring updates for Managed Identity compatibility. Security & Behavior Checks GitHub Copilot app modernization validates: CVEs introduced through dependency updates. Behavior changes caused by new authentication flows. Optional fixes for dependency vulnerabilities. Expected Output A migrated codebase using Managed Identity: Updated authentication logic. Removed credential references. Updated SDKs and dependencies. A summary file listing code edits, dependency changes, and items requiring manual review. Developer Responsibilities Developers should: Validate identity access on Azure resources. Reconfigure role assignments for system‑assigned or user‑assigned managed identities. Test functional behavior across environments. Review integration points dependent on identity scopes and permissions. Learn full upgrade workflows in the Microsoft Learn guide for upgrading Java projects with GitHub Copilot app modernization. Learn more Predefined tasks for GitHub Copilot app modernization Apply a predefined task Install GitHub Copilot app modernization for VS Code and IntelliJ IDEA91Views0likes0CommentsMigrating Application Credentials to Azure Key Vault with GitHub Copilot App Modernization
Storing secrets directly in applications or configuration files increases operational risk. Migrating to Azure Key Vault centralizes secret management, supports rotation, and removes embedded credentials from application code. GitHub Copilot app modernization accelerates this process by identifying credential usage areas and generating changes for Key Vault integration. What This Migration Covers GitHub Copilot app modernization helps with: Detecting secrets hard‑coded in source files, config files, or environment variables. Recommending retrieval patterns using Azure Key Vault SDKs. Updating application code to load secrets from Key Vault. Preparing configuration updates to remove stored credentials. Surfacing dependency, version, and API adjustments required for Key Vault usage. Project Analysis Once the project is opened in Visual Studio Code or IntelliJ IDEA, GitHub Copilot app modernization analyzes: Hard‑coded credentials: passwords, tokens, client secrets, API keys. Legacy configuration patterns using .properties, .yaml, or environment variables. Azure SDK usage and required upgrades for Key Vault integration. Areas requiring secure retrieval or replacement with a managed identity. Migration Plan Generation The tool creates a step‑by‑step migration plan including: Introducing Key Vault client libraries. Mapping existing credential variables to Key Vault secrets. Updating configuration loading logic to retrieve secrets at runtime. Integrating Managed Identity authentication if applicable. Removing unused credential fields from code and configuration. Automated Transformations GitHub Copilot app modernization applies targeted changes: Rewrites code retrieving credentials from files or constants. Generates Key Vault retrieval patterns using SecretClient. Updates build dependencies to current Azure SDK versions. Removes unused configuration entries and environment variables. Build & Fix Iteration The project is rebuilt and validated: Fixes constructor changes related to updated clients. Resolves missing dependency versions. Corrects updated method signatures for Key Vault API calls. Rebuilds until no actionable errors remain. Security & Behavior Checks The tool surfaces: CVEs introduced by new or updated libraries. Behavior changes tied to lazy loading of secrets at runtime. Optional fixes or alternative patterns if Key Vault integration affects existing workflows. Expected Output After modernization: Credentials removed from source and config files. Application retrieves secrets from Azure Key Vault. Updated Azure SDK versions aligned with Key Vault. A summary file detailing code changes, dependency updates, and review items. Developer Responsibilities Developers should: Provision Key Vault resources and assign required access policies. Validate permissions through Managed Identity or service principals. Test application startup, error handling, and rotation scenarios. Review semantic impacts on components relying on early secret loading. Refer to the Microsoft Learn guide on upgrading Java projects with GitHub Copilot app modernization for foundational workflow details. Learn more Predefined tasks for GitHub Copilot app modernization Apply a predefined task Install GitHub Copilot app modernization for VS Code and IntelliJ IDEA113Views0likes0CommentsModernizing Spring Framework Applications with GitHub Copilot App Modernization
Upgrading Spring Framework applications from version 5 to the latest 6.x line (including 6.2+) enables improved performance, enhanced security, alignment with modern Java releases, and full Jakarta namespace compatibility. The transition often introduces breaking API changes, updated module requirements, and dependency shifts. GitHub Copilot app modernization streamlines this upgrade by analyzing your project, generating targeted changes, and guiding you through the migration. Supported Upgrade Path GitHub Copilot app modernization supports: Upgrading Spring Framework to 6.x, including 6.2+ Migrating from javax to jakarta Aligning transitive dependencies and version constraints Updating build plugins and configurations Identifying deprecated or removed APIs Validating dependency updates and surfacing CVE issues These capabilities align with the Microsoft Learn quickstart for upgrading Java projects with GitHub Copilot app modernization. Project Setup Open your Spring Framework project in Visual Studio Code or IntelliJ IDEA with GitHub Copilot app modernization enabled. The tool works with Maven or Gradle projects and evaluates your existing Spring Framework, Java version, imports, and build configurations. Project Analysis When you trigger the upgrade, GitHub Copilot app modernization: Detects the current Spring Framework version Flags javax imports requiring Jakarta migration Identifies incompatible modules, libraries, and plugins Validates JDK compatibility requirements for Spring Framework 6.x Reviews transitive dependencies impacted by the update This analysis provides the foundation for the upgrade plan generated next. Upgrade Plan Generation GitHub Copilot app modernization produces a structured plan including: Updated Spring Framework version (6.x / 6.2+) Replacements for deprecated or removed APIs jakarta namespace updates Updated build plugins and version constraints JDK configuration adjustments You can review the plan, modify version targets, and confirm actions before the tool applies them. Automated Transformations After approval, GitHub Copilot app modernization applies automated changes such as: Updating Spring Framework module coordinates Rewriting imports from javax.* to jakarta.* Updating libraries required for Spring Framework 6.x Adjusting plugin versions and build logic Recommending fixes for API changes These transformations rely on OpenRewrite‑based rules to modernize your codebase efficiently. Build Fix Iteration Once changes are applied, the tool compiles your project and automatically responds to failures: Captures compilation errors Suggests targeted fixes Rebuilds iteratively This loop continues until the project compiles with Spring Framework 6.x in place. Security & Behavior Checks GitHub Copilot app modernization performs validation steps after the upgrade: Checks for CVEs in updated dependencies Identifies potential behavior changes introduced during the transition Offers optional fixes to address issues This adds confidence before final verification. Expected Output After a Spring Framework 5 → 6.x upgrade, you can expect: Updated module coordinates for Spring Framework 6.x / 6.2 jakarta‑aligned imports across the codebase Updated dependency versions aligned with the new Spring ecosystem Updated plugins and build tool configurations Modernized test stack (JUnit 5) A summary file detailing versions updated, code edits applied, dependencies changed, and items requiring manual review Developer Responsibilities GitHub Copilot app modernization accelerates framework upgrade mechanics, but developers remain responsible for: Running full test suites Reviewing custom components, filters, and validation logic Revisiting security configurations and reactive vs. servlet designs Checking integration points and application semantics post‑migration The tool handles the mechanical modernization work so you can focus on correctness, runtime behavior, and quality assurance. Learn More For prerequisites, setup steps, and the complete Java upgrade workflow, refer to the Microsoft Learn guide: Upgrade a Java Project with Github Copilot App Modernization Install GitHub Copilot app modernization for VS Code and IntelliJ IDEA82Views0likes0CommentsUpgrade your Java JDK (8, 11, 17, 21, or 25) with GitHub Copilot App Modernization
Developers modernizing Java applications often need to upgrade the Java Development Kit (JDK), update frameworks, align dependencies, or migrate older stacks such as Java EE. GitHub Copilot app modernization dramatically speeds up this process by analyzing your project, identifying upgrade blockers, and generating targeted changes. This post highlights supported upgrade paths and what you can expect when using GitHub Copilot app modernization—optimized for search discoverability rather than deep tutorial content. For complete, authoritative guidance, refer to the official Microsoft Learn quickstart. Supported Upgrade Scenarios GitHub Copilot app modernization supports upgrading: Java Development Kit (JDK) to versions 8, 11, 17, 21, or 25 Spring Boot up to 3.5 Spring Framework up to 6.2+ Java EE → Jakarta EE (up to Jakarta EE 10) JUnit Third‑party dependencies to specified versions Ant → Maven build migrations For the full capabilities list, see the Microsoft Learn quickstart. Prerequisites (VS Code or IntelliJ) To use GitHub Copilot app modernization, you’ll need: GitHub account + GitHub Copilot Free Tier, Pro, Pro+, Business, or Enterprise Visual Studio Code Version 1.101+ GitHub Copilot extension GitHub Copilot app modernization extension Restart after installation IntelliJ IDEA Version 2023.3+ GitHub Copilot plugin 1.5.59+ Restart after installation Recommended: Auto‑approve MCP Tool Annotations under Tools > GitHub Project Requirements Java project using Maven or Gradle Git‑managed Maven access to public Maven Central (if Maven) Gradle wrapper version 5+ Kotlin DSL supported VS Code setting: “Tools enabled” set to true if controlled by your org Selecting a Java Project to Upgrade Open any Java project in: Visual Studio Code IntelliJ IDEA Optional sample projects: Maven: uportal‑messaging Gradle: docraptor‑java Once open, launch GitHub Copilot app modernization using Agent Mode. Running an Upgrade (Example: Java 8 → Java 21) Open GitHub Copilot Chat → Switch to Agent Mode → Run a prompt such as: Upgrade this project to Java 21 You’ll receive: Upgrade Plan JDK version updates Build file changes (Maven/Gradle) Dependency version adjustments Framework upgrade paths, if relevant Automated Transformations GitHub Copilot app modernization applies changes using OpenRewrite‑based transformations. Dynamic Build / Fix Loop The agent iterates: Build Detect failure Fix Retry Until the project builds successfully. Security & Behavior Checks Detects CVEs in upgraded dependencies Flags potential behavior changes Offers optional fixes Final Upgrade Summary Generated as a markdown file containing: Updated JDK level Dependencies changed Code edits made Any remaining CVEs or warnings What You Can Expect in a JDK Upgrade Typical outcomes from upgrading Java 8 → Java 21: Updated build configuration (maven.compiler.release → 21) Removal or replacement of deprecated JDK APIs Updated library versions for Java 21 compatibility Surface warnings for manual review Successfully building project with modern JDK settings GitHub Copilot app modernization accelerates these updates while still leaving space for developer review of runtime or architectural changes. Learn More For the complete, authoritative upgrade workflow—covering setup, capabilities, and the full end‑to‑end process—visit: ➡ Quickstart: Upgrade a Java project with GitHub Copilot app modernization (Microsoft Learn) Install GitHub Copilot app modernization for VS Code and IntelliJ IDEA160Views0likes0CommentsModernizing Spring Boot Applications with GitHub Copilot App Modernization
Upgrading Spring Boot applications from 2.x to the latest 3.x releases introduces significant changes across the framework, dependencies, and Jakarta namespace. These updates improve long-term support, performance, and compatibility with modern Java platforms, but the migration can surface breaking API changes and dependency mismatches. GitHub Copilot app modernization helps streamline this transition by analyzing your project, generating an upgrade plan, and applying targeted updates. Supported Upgrade Path GitHub Copilot app modernization supports upgrading Spring Boot applications to Spring Boot 3.5, including: Updating Spring Framework libraries to 6.x Migrating from javax to jakarta Aligning dependency versions with Boot 3.x Updating plugins and starter configurations Adjusting build files for the required JDK level Validating dependency updates and surfacing CVE issues These capabilities complement the Microsoft Learn quickstart for upgrading Java projects using GitHub Copilot app modernization. How GitHub Copilot app modernization helps When you open a Spring Boot 2.x project in Visual Studio Code or IntelliJ IDEA and initiate an upgrade, GitHub Copilot app modernization performs: Project Analysis Detects your current Spring Boot version Identifies incompatible starters, libraries, and plugins Flags javax.* imports requiring Jakarta migration Evaluates your build configuration and JDK requirements Upgrade Plan Generation The tool produces an actionable plan that outlines: New Spring Boot parent version Updated Spring Framework and related modules Required namespace changes from javax.* to jakarta.* Build plugin updates JDK configuration alignment for Boot 3 You can review and adjust the plan before applying changes. Automated Transformations GitHub Copilot app modernization applies targeted changes such as: Updating spring-boot-starter-parent to 3.5.x Migrating imports to jakarta.* Updating dependencies and BOM versions Rewriting removed or deprecated APIs Aligning test dependencies (e.g., JUnit 5) Build / Fix Iteration The agent automatically: Builds the project Captures failures Suggests fixes Applies updates Rebuilds until the project compiles successfully This loop continues until all actionable issues are addressed. Security & Behavior Checks As part of the upgrade, the tool can: Validate CVEs introduced by dependency version changes Surface potential behavior changes Recommend optional fixes Expected Output After running the upgrade for a Spring Boot 2.x project, you should expect: An updated Spring Boot parent in Maven or Gradle Spring Framework 6.x and Jakarta-aligned modules Updated starter dependencies and plugin versions Rewritten imports from javax.* to jakarta.* Updated testing stack A summary file detailing: Versions updated Code edits applied Dependencies changed CVE results Remaining manual review items Developer Responsibilities GitHub Copilot app modernization accelerates technical migration tasks, but final validation still requires developer review, including: Running the full test suite Reviewing custom filters, security configuration, and web components Re-validating integration points Confirming application behavior across runtime environments The tool handles mechanical upgrade work so you can focus on correctness, quality, and functional validation. Learn more For setup, prerequisites, and the broader Java upgrade workflow, refer to the official Microsoft Learn guide: Quickstart: Upgrade a Java Project with GitHub Copilot App Modernization Install GitHub Copilot app modernization for VS Code and IntelliJ IDEA101Views0likes0CommentsModernizing Java EE Applications to Jakarta EE with GitHub Copilot App Modernization
Migrating a Java EE application to Jakarta EE is now a required step as the ecosystem has fully transitioned to the new jakarta.* namespace. This migration affects servlet APIs, persistence, security, messaging, and frameworks built on top of the Jakarta specifications. The changes are mechanical but widespread, and manual migration is slow, error‑prone, and difficult to validate at scale. GitHub Copilot app modernization accelerates this process by analyzing the project, identifying required namespace and dependency updates, and guiding developers through targeted upgrade steps. Supported Upgrade Path GitHub Copilot app modernization supports: Migrating Java EE applications to Jakarta EE (up to Jakarta EE 10) Updating javax.* imports to jakarta.* Aligning dependencies and application servers with Jakarta EE 10 requirements Updating build plugins, BOMs, and libraries impacted by namespace migration Fixing compilation issues and surfacing API incompatibilities Detecting dependency CVEs after migration These capabilities complement the Microsoft Learn guide for upgrading Java projects with GitHub Copilot app modernization. Getting Started Open your Java EE project in Visual Studio Code or IntelliJ IDEA with GitHub Copilot app modernization enabled. Copilot evaluates the project structure, build files, frameworks in use, and introduces a migration workflow tailored to Jakarta EE. Project Analysis The migration begins with a full project scan: Identifies Java EE libraries (javax.*) Detects frameworks depending on older EE APIs (Servlet, JPA, JMS, Security) Flags incompatible versions of application servers and dependencies Determines JDK constraints for Jakarta EE 10 compatibility Analyzes build configuration (Maven/Gradle) and transitive dependencies This analysis forms the basis for the generated migration plan. Migration Plan Generation GitHub Copilot app modernization generates a clear, actionable plan outlining: Required namespace transitions from javax.* to jakarta.* Updated dependency coordinates aligned with Jakarta EE 10 Plugin version updates Adjustments to JDK settings if needed Additional changes for frameworks relying on legacy EE APIs You can review and adjust versions or library targets before applying changes. Automated Transformations After approving the plan, Copilot performs transformation steps: Rewrites imports from javax. to jakarta. Updates dependencies to Jakarta EE 10–compatible coordinates Applies required framework-level changes (JPA, Servlet, Bean Validation, JAX‑RS, CDI) Updates plugin versions aligned with Jakarta EE–based libraries Converts removed or relocated APIs with recommended replacements These transformations rely on OpenRewrite‑based rules surfaced through Copilot app modernization. Build Fix Iteration Copilot iterates through a build‑and‑fix cycle: Runs the build Captures compilation errors introduced by the migration Suggests targeted fixes Applies changes Rebuilds until the project compiles successfully This loop eliminates hours or days of manual mechanical migration work. Security & Behavior Checks After a successful build, Copilot performs additional validation: Flags CVEs introduced by updated or newly resolved dependencies Surfaces potential behavior changes from updated APIs Offers optional fixes for dependency vulnerabilities These checks ensure the migrated application is secure and stable before runtime verification. Expected Output A Jakarta EE migration with GitHub Copilot app modernization results in: Updated imports from javax.* to jakarta.* Dependencies aligned with Jakarta EE 10 Updated Maven or Gradle plugin and library versions Rewritten API usage where needed Updated tests and validation logic if required A summary file containing: Versions updated Code edits applied Dependency changes CVE results Items requiring manual developer review Developer Responsibilities While GitHub Copilot app modernization accelerates the mechanical upgrade, developers remain responsible for: Running the full application test suite Reviewing security, validation, and persistence behavior changes Updating application server configuration (if applicable) Re‑verifying integrations with messaging, REST endpoints, and persistence providers Confirming semantic correctness post‑migration Copilot focuses on the mechanical modernization tasks so developers can concentrate on validating runtime behavior and business logic. Learn More For setup prerequisites and full upgrade workflow details, refer to the Microsoft Learn guide for upgrading Java projects with GitHub Copilot app modernization. Quickstart: Upgrade a Java Project with GitHub Copilot App Modernization | Microsoft Learn196Views0likes0CommentsUnlocking Application Modernisation with GitHub Copilot
AI-driven modernisation is unlocking new opportunities you may not have even considered yet. It's also allowing organisations to re-evaluate previously discarded modernisation attempts that were considered too hard, complex or simply didn't have the skills or time to do. During Microsoft Build 2025, we were introduced to the concept of Agentic AI modernisation and this post from Ikenna Okeke does a great job of summarising the topic - Reimagining App Modernisation for the Era of AI | Microsoft Community Hub. This blog post however, explores the modernisation opportunities that you may not even have thought of yet, the business benefits, how to start preparing your organisation, empowering your teams, and identifying where GitHub Copilot can help. I’ve spent the last 8 months working with customers exploring usage of GitHub Copilot, and want to share what my team members and I have discovered in terms of new opportunities to modernise, transform your applications, bringing some fun back into those migrations! Let’s delve into how GitHub Copilot is helping teams update old systems, move processes to the cloud, and achieve results faster than ever before. Background: The Modernisation Challenge (Then vs Now) Modernising legacy software has always been hard. In the past, teams faced steep challenges: brittle codebases full of technical debt, outdated languages (think decades-old COBOL or VB6), sparse documentation, and original developers long gone. Integrating old systems with modern cloud services often requiring specialised skills that were in short supply – for example, check out this fantastic post from Arvi LiVigni (@arilivigni ) which talks about migrating from COBOL “the number of developers who can read and write COBOL isn’t what it used to be,” making those systems much harder to update". Common pain points included compatibility issues, data migrations, high costs, security vulnerabilities, and the constant risk that any change could break critical business functions. It’s no wonder many modernisation projects stalled or were “put off” due to their complexity and risk. So, what’s different now (circa 2025) compared to two years ago? In a word: Intelligent AI assistance. Tools like GitHub Copilot have emerged as AI pair programmers that dramatically lower the barriers to modernisation. Arvi’s post talks about how only a couple of years ago, developers had to comb through documentation and Stack Overflow for clues when deciphering old code or upgrading frameworks. Today, GitHub Copilot can act like an expert co-developer inside your IDE, ready to explain mysterious code, suggest updates, and even rewrite legacy code in modern languages. This means less time fighting old code and more time implementing improvements. As Arvi says “nine times out of 10 it gives me the right answer… That speed – and not having to break out of my flow – is really what’s so impactful.” In short, AI coding assistants have evolved from novel experiments to indispensable tools, reimagining how we approach software updates and cloud adoption. I’d also add from my own experience – the models we were using 12 months ago have already been superseded by far superior models with ability to ingest larger context and tackle even further complexity. It's easier to experiment, and fail, bringing more robust outcomes – with such speed to create those proof of concepts, experimentation and failing faster, this has also unlocked the ability to test out multiple hypothesis’ and get you to the most confident outcome in a much shorter space of time. Modernisation is easier now because AI reduces the heavy lifting. Instead of reading the 10,000-line legacy program alone, a developer can ask Copilot to explain what the code does or even propose a refactored version. Rather than manually researching how to replace an outdated library, they can get instant recommendations for modern equivalents. These advancements mean that tasks which once took weeks or months can now be done in days or hours – with more confidence and less drudgery - more fun! The following sections will dive into specific opportunities unlocked by GitHub Copilot across the modernisation journey which you may not even have thought of. Modernisation Opportunities Unlocked by Copilot Modernising an application isn’t just about updating code – it involves bringing everyone and everything up to speed with cloud-era practices. Below are several scenarios and how GitHub Copilot adds value, with the specific benefits highlighted: 1. AI-Assisted Legacy Code Refactoring and Upgrades Instant Code Comprehension: GitHub Copilot can explain complex legacy code in plain English, helping developers quickly understand decades-old logic without scouring scarce documentation. For example, you can highlight a cryptic COBOL or C++ function and ask Copilot to describe what it does – an invaluable first step before making any changes. This saves hours and reduces errors when starting a modernisation effort. Automated Refactoring Suggestions: The AI suggests modern replacements for outdated patterns and APIs, and can even translate code between languages. For instance, Copilot can help convert a COBOL program into JavaScript or C# by recognising equivalent constructs. It also uses transformation tools (like OpenRewrite for Java/.NET) to systematically apply code updates – e.g. replacing all legacy HTTP calls with a modern library in one sweep. Developers remain in control, but GitHub Copilot handles the tedious bulk edits. Bulk Code Upgrades with AI: GitHub Copilot’s App Modernisation capabilities can analyse an entire codebase and generate a detailed upgrade plan, then execute many of the code changes automatically. It can upgrade framework versions (say from .NET Framework 4.x to .NET 6, or Java 8 to Java 17) by applying known fix patterns and even fixing compilation errors after the upgrade. Teams can finally tackle those hundreds of thousand-line enterprise applications – a task that could take multiple years with GitHub Copilot handling the repetitive changes. Technical Debt Reduction: By cleaning up old code and enforcing modern best practices, GitHub Copilot helps chip away at years of technical debt. The modernised codebase is more maintainable and stable, which lowers the long-term risk hanging over critical business systems. Notably, the tool can even scan for known security vulnerabilities during refactoring as it updates your code. In short, each legacy component refreshed with GitHub Copilot comes out safer and easier to work on, instead of remaining a brittle black box. 2. Accelerating Cloud Migration and Azure Modernisation Guided Azure Migration Planning: GitHub Copilot can assess a legacy application’s cloud readiness and recommend target Azure services for each component. For instance, it might suggest migrating an on-premises database to Azure SQL, moving file storage to Azure Blob Storage, and converting background jobs to Azure Functions. This provides a clear blueprint to confidently move an app from servers to Azure PaaS. One-Click Cloud Transformations: GitHub Copilot comes with predefined migration tasksthat automate the code changes required for cloud adoption. With one click, you can have the AI apply dozens of modifications across your codebase. For example: File storage: Replace local file read/writes with Azure Blob Storage SDK calls. Email/Comms: Swap out SMTP email code for Azure Communication Services or SendGrid. Identity: Migrate authentication from Windows AD to Azure AD (Entra ID) libraries. Configuration: Remove hard-coded configurations and use Azure App Configuration or Key Vault for secrets. GitHub Copilot performs these transformations consistently, following best practices (like using connection strings from Azure settings). After applying the changes, it even fixes any compile errors automatically, so you’re not left with broken builds. What used to require reading countless Azure migration guides is now handled in minutes. Automated Validation & Deployment: Modernisation doesn’t stop at code changes. GitHub Copilot can also generate unit tests to validate that the application still behaves correctly after the migration. It helps ensure that your modernised, cloud-ready app passes all its checks before going live. When you’re ready to deploy, GitHub Copilot can produce the necessary Infrastructure-as-Code templates (e.g. Azure Resource Manager Bicep files or Terraform configs) and even set up CI/CD pipeline scripts for you. In other words, the AI can configure the Azure environment and deployment process end-to-end. This dramatically reduces manual effort and error, getting your app to the cloud faster and with greater confidence. Integrations: GitHub Copilot also helps tackle larger migration scenarios that were previously considered too complex. For example, many enterprises want to retire expensive proprietary integration platforms like MuleSoft or Apigee and use Azure-native services instead, but rewriting hundreds of integration workflows was daunting. Now, GitHub Copilot can assist in translating those workflows: for instance, converting an Apigee API proxy into an Azure API Management policy, or a MuleSoft integration into an Azure Logic App. Multi-Cloud Migrations: if you plan to consolidate from other clouds into Azure, GitHub Copilot can suggest equivalent Azure services and SDK calls to replace AWS or GCP-specific code. These AI-assisted conversions significantly cut down the time needed to reimplement functionality on Azure. The business impact can be substantial. By lowering the effort of such migrations, GitHub Copilot makes it feasible to pursue opportunities that deliver big cost savings and simplification. 3. Boosting Developer Productivity and Quality Instant Unit Tests (TDD Made Easy): Writing tests for old code can be tedious, but GitHub Copilot can generate unit test cases on the fly. Developers can highlight an existing function and ask Copilot to create tests; it will produce meaningful test methods covering typical and edge scenarios. This makes it practical to apply test-driven development practices even to legacy systems – you can quickly build a safety net of tests before refactoring. By catching bugs early through these AI-generated tests, teams gain confidence to modernise code without breaking things. It essentially injects quality into the process from the start, which is crucial for successful modernisation. DevOps Automation: GitHub Copilot helps modernise your build and deployment process as well. It can draft CI/CD pipeline configurations, Dockerfiles, Kubernetes manifests, and other DevOps scripts by leveraging its knowledge of common patterns. For example, when setting up a GitHub Actions workflow to deploy your app, GitHub Copilot will autocomplete significant parts (like build steps, test runs, deployment jobs) based on the project structure. This not only saves time but also ensures best practices (proper caching, dependency installation, etc.) are followed by default. Microsoft even provides an extension where you can describe your Azure infrastructure needs in plain language and have GitHub Copilot generate the corresponding templates and pipeline YAML. By automating these pieces, teams can move to cloud-based, automated deployments much faster. Behaviour-Driven Development Support: Teams practicing BDD write human-readable scenarios (e.g. using Gherkin syntax) describing application behaviour. GitHub Copilot’s AI is adept at interpreting such descriptions and suggesting step definition code or test implementations to match. For instance, given a scenario “When a user with no items checks out, then an error message is shown,” GitHub Copilot can draft the code for that condition or the test steps required. This helps bridge the gap between non-technical specifications and actual code. It makes BDD more efficient and accessible, because even if team members aren’t strong coders, the AI can translate their intent into working code that developers can refine. Quality and Consistency: By using AI to handle boilerplate and repetitive tasks, developers can focus more on high-value improvements. GitHub Copilot’s suggestions are based on a vast corpus of code, which often means it surfaces well-structured, idiomatic patterns. Starting from these suggestions, developers are less likely to introduce errors or reinvent the wheel, which leads to more consistent code quality across the project. The AI also often reminds you of edge cases (for example, suggesting input validation or error handling code that might be missed), contributing to a more robust application. In practice, many teams find that adopting GitHub Copilot results in fewer bugs and quicker code reviews, as the code is cleaner on the first pass. It’s like having an extra set of eyes on every pull request, ensuring standards are met. Business Benefits of AI-Powered Modernisation Bringing together the technical advantages above, what’s the payoff for the business and stakeholders? Modernising with GitHub Copilot can yield multiple tangible and intangible benefits: Accelerated Time-to-Market: Modernisation projects that might have taken a year can potentially be completed in a few months, or an upgrade that took weeks can be done in days. This speed means you can deliver new features to customers sooner and respond faster to market changes. It also reduces downtime or disruption since migrations happen more swiftly. Cost Savings: By automating repetitive work and reducing the effort required from highly paid senior engineers, GitHub Copilot can trim development costs. Faster project completion also means lower overall project cost. Additionally, running modernised apps on cloud infrastructure (with updated code) often lowers operational costs due to more efficient resource usage and easier maintenance. There’s also an opportunity cost benefit: developers freed up by Copilot can work on other value-adding projects in parallel. Improved Quality & Reliability: GitHub Copilot’s contributions to testing, bug-fixing, and even security (like patching known vulnerabilities during upgrades) result in more robust applications. Modernised systems have fewer outages and security incidents than shaky legacy ones. Stakeholders will appreciate that with GitHub Copilot, modernisation doesn’t mean “trading one set of bugs for another” – instead, you can increase quality as you modernise (GitHub’s research noted higher code quality when using Copilot, as developers are less likely to introduce errors or skip tests). Business Agility: A modernised application (especially one refactored for cloud) is typically more scalable and adaptable. New integrations or features can be added much faster once the platform is up-to-date. GitHub Copilot helps clear the modernisation hurdle, after which the business can innovate on a solid, flexible foundation (for example, once a monolith is broken into microservices or moved to Azure PaaS, you can iterate on it much faster in the future). AI-assisted modernisation thus unlocks future opportunities (like easier expansion, integrations, AI features, etc.) that were impractical on the legacy stack. Employee Satisfaction and Innovation: Developer happiness is a subtle but important benefit. When tedious work is handled by AI, developers can spend more time on creative tasks – designing new features, improving user experience, exploring new technologies. This can foster a culture of innovation. Moreover, being seen as a company that leverages modern tools (like AI Copilot) helps attract and retain top tech talent. Teams that successfully modernise critical systems with Copilot will gain confidence to tackle other ambitious projects, creating a positive feedback loop of improvement. To sum up, GitHub Copilot acts as a force-multiplier for application modernisation. It enables organisations to do more with less: convert legacy “boat anchors” into modern, cloud-enabled assets rapidly, while improving quality and developer morale. This aligns IT goals with business goals – faster delivery, greater efficiency, and readiness for the future. Call to Action: Embrace the Future of Modernisation GitHub Copilot has proven to be a catalyst for transforming how we approach legacy systems and cloud adoption. If you’re excited about the possibilities, here are next steps and what to watch for: Start Experimenting: If you haven’t already, try GitHub Copilot on a sample of your code. Use Copilot or Copilot Chat to explain a piece of old code or generate a unit test. Seeing it in action on your own project can build confidence and spark ideas for where to apply it. Identify a Pilot Project: Look at your application portfolio for a candidate that’s ripe for modernisation – maybe a small legacy service that could be moved to Azure, or a module that needs a refactor. Use GitHub Copilot to assess and estimate the effort. Often, you’ll find tasks once deemed “too hard” might now be feasible. Early successes will help win support for larger initiatives. Stay Tuned for Our Upcoming Blog Series: This post is just the beginning. In forthcoming posts, we’ll dive deeper into: Setting Up Your Organisation for Copilot Adoption: Practical tips on preparing your enterprise environment – from licensing and security considerations to training programs. We’ll discuss best practices (like running internal awareness campaigns, defining success metrics, and creating Copilot champions in your teams) to ensure a smooth rollout. Empowering Your Colleagues: How to foster a culture that embraces AI assistance. This includes enabling continuous learning, sharing prompt techniques and knowledge bases, and addressing any scepticism. We’ll cover strategies to support developers in using Copilot effectively, so that everyone from new hires to veteran engineers can amplify their productivity. Identifying High-Impact Modernisation Areas: Guidance on spotting where GitHub Copilot can add the most value. We’ll look at different domains – code, cloud, tests, data – and how to evaluate opportunities (for example, using telemetry or feedback to find repetitive tasks suited for AI, or legacy components with high ROI if modernised). Engage and Share: As you start leveraging Copilot for modernisation, share your experiences and results. Success stories (even small wins like “GitHub Copilot helped reduce our code review times” or “we migrated a component to Azure in 1 sprint”) can build momentum within your organisation and the broader community. We invite you to discuss and ask questions in the comments or in our tech community forums. Take a look at the new App Modernisation Guidance—a comprehensive, step-by-step playbook designed to help organisations: Understand what to modernise and why Migrate and rebuild apps with AI-first design Continuously optimise with built-in governance and observability Modernisation is a journey, and AI is the new compass and Copilot to guide the way. By embracing tools like GitHub Copilot, you position your organisation to break through modernisation barriers that once seemed insurmountable. The result is not just updated software, but a more agile, cloud-ready business and a happier, more productive development team. Now is the time to take that step. Empower your team with Copilot, and unlock the full potential of your applications and your developers. Stay tuned for more insights in our next posts, and let’s modernise what’s possible together!1.4KViews4likes1CommentSearch Less, Build More: Inner Sourcing with GitHub Copilot and ADO MCP Server
Developers burn cycles context‑switching: opening five repos to find a logging example, searching a wiki for a data masking rule, scrolling chat history for the latest pipeline pattern. Organisations that I speak to are often on the path of transformational platform engineering projects but always have the fear or doubt of "what if my engineers don't use these resources". While projects like Backstage still play a pivotal role in inner sourcing and discoverability I also empathise with developers who would argue "How would I even know in the first place, which modules have or haven't been created for reuse". In this blog we explore how we can ensure organisational standards and developer satisfaction without any heavy lifting on either side, no custom model training, no rewriting or relocating of repositories and no stagnant local data. Using GitHub Copilot + Azure DevOps MCP server (with the free `code_search` extension) we turn the IDE into an organizational knowledge interface. Instead of guessing or re‑implementing, engineers can start scaffolding projects or solving issues as they would normally (hopefully using Copilot) and without extra prompting. GitHub Copilot can lean into organisational standards and ensure recommendations are made with code snippets directly generated from existing examples. What Is the Azure DevOps MCP Server + code_search Extension? MCP (Model Context Protocol) is an open standard that lets agents (like GitHub Copilot) pull in structured, on-demand context from external systems. MCP servers contain natural language explanations of the tools that the agent can utilise allowing dynamic decision making of when to implement certain toolsets over others. The Azure DevOps MCP Server is the ADO Product Team's implementation of that standard. It exposes your ADO environment in a way Copilot can consume. Out of the box it gives you access to: Projects – list and navigate across projects in your organization. Repositories – browse repos, branches, and files. Work items – surface user stories, bugs, or acceptance criteria. Wiki's – pull policies, standards, and documentation. This means Copilot can ground its answers in live ADO content, instead of hallucinating or relying only on what’s in the current editor window. The ADO server runs locally from your own machine to ensure that all sensitive project information remains within your secure network boundary. This also means that existing permissions on ADO objects such as Projects or Repositories are respected. Wiki search tooling available out of the box with ADO MCP server is very useful however if I am honest I have seen these wiki's go unused with documentation being stored elsewhere either inside the repository or in a project management tool. This means any tool that needs to implement code requires the ability to accurately search the code stored in the repositories themself. That is where the code_search extension enablement in ADO is so important. Most organisations have this enabled already however it is worth noting that this pre-requisite is the real unlock of cross-repo search. This allows for Copilot to: Query for symbols, snippets, or keywords across all repos. Retrieve usage examples from code, not just docs. Locate standards (like logging wrappers or retry policies) wherever they live. Back every recommendation with specific source lines. In short: MCP connects Copilot to Azure DevOps. code_search makes that connection powerful by turning it into a discovery engine. What is the relevance of Copilot Instructions? One of the less obvious but most powerful features of GitHub Copilot is its ability to follow instructions files. Copilot automatically looks for these files and uses them as a “playbook” for how it should behave. There are different types of instructions you can provide: Organisational instructions – apply across your entire workspace, regardless of which repo you’re in. Repo-specific instructions – scoped to a particular repository, useful when one project has unique standards or patterns. Personal instructions – smaller overrides layered on top of global rules when a local exception applies. (Stored in .github/copilot-instructions.md) In this solution, I’m using a single personal instructions file. It tells Copilot: When to search (e.g., always query repos and wikis before answering a standards question). Where to look (Azure DevOps repos, wikis, and with code_search, the code itself). How to answer (responses must cite the repo/file/line or wiki page; if no source is found, say so). How to resolve conflicts (prefer dated wiki entries over older README fragments). As a small example, a section of a Copilot instruction file could look like this: # GitHub Copilot Instructions for Azure DevOps MCP Integration This project uses Azure DevOps with MCP server integration to provide organizational context awareness. Always check to see if the Azure DevOps MCP server has a tool relevant to the user's request. ## Core Principles ### 1. Azure DevOps Integration - **Always prioritize Azure DevOps MCP tools** when users ask about: - Work items, stories, bugs, tasks - Pull requests and code reviews - Build pipelines and deployments - Repository operations and branch management - Wiki pages and documentation - Test plans and test cases - Project and team information ### 2. Organizational Context Awareness - Before suggesting solutions, **check existing organizational patterns** by: - Searching code across repositories for similar implementations - Referencing established coding standards and frameworks - Looking for existing shared libraries and utilities - Checking architectural decision records (ADRs) in wikis ### 3. Cross-Repository Intelligence - When providing code suggestions: - **Search for existing patterns** in other repositories first - **Reference shared libraries** and common utilities - **Maintain consistency** with organizational standards - **Suggest reusable components** when appropriate ## Tool Usage Guidelines ### Work Items and Project Management When users mention bugs, features, tasks, or project planning: ``` ✅ Use: wit_my_work_items, wit_create_work_item, wit_update_work_item ✅ Use: wit_list_backlogs, wit_get_work_items_for_iteration ✅ Use: work_list_team_iterations, core_list_projects The result... To test this I created 3 ADO Projects each with between 1-2 repositories. The repositories were light with only ReadMe's inside containing descriptions of the "repo" and some code snippets examples for usage. I have then created a brand-new workspace with no context apart from a Copilot instructions document (which could be part of a repo scaffold or organisation wide) which tells Copilot to search code and the wikis across all ADO projects in my demo environment. It returns guidance and standards from all available repo's and starts to use it to formulate its response. In the screenshot I have highlighted some key parts with red boxes. The first being a section of the readme that Copilot has identified in its response, that part also highlighted within CoPilot chat response. I have highlighted the rather generic prompt I used to get this response at the bottom of that window too. Above I have highlighted Copilot using the MCP server tooling searching through projects, repo's and code. Finally the largest box highlights the instructions given to Copilot on how to search and how easily these could be optimised or changed depending on the requirements and organisational coding standards. How did I implement this? Implementation is actually incredibly simple. As mentioned I created multiple projects and repositories within my ADO Organisation in order to test cross-project & cross-repo discovery. I then did the following: Enable code_search - in your Azure DevOps organization (Marketplace → install extension). Login to Azure - Use the AZ CLI to authenticate to Azure with "az login". Create vscode/mcp.json file - Snippet is provided below, the organisation name should be changed to your organisations name. Start and enable your MCP server - In the mcp.json file you should see a "Start" button. Using the snippet below you will be prompted to add your organisation name. Ensure your Copilot agent has access to the server under "tools" too. View this setup guide for full setup instructions (azure-devops-mcp/docs/GETTINGSTARTED.md at main · microsoft/azure-devops-mcp) Create a Copilot Instructions file - with a search-first directive. I have inserted the full version used in this demo at the bottom of the article. Experiment with Prompts – Start generic (“How do we secure APIs?”). Review the output and tools used and then tailor your instructions. Considerations While this is a great approach I do still have some considerations when going to production. Latency - Using MCP tooling on every request will add some latency to developer requests. We can look at optimizing usage through copilot instructions to better identify when Copilot should or shouldn't use the ADO MCP server. Complex Projects and Repositories - While I have demonstrated cross project and cross repository retrieval my demo environment does not truly simulate an enterprise ADO environment. Performance should be tested and closely monitored as organisational complexity increases. Public Preview - The ADO MCP server is moving quickly but is currently still public preview. We have demonstrated in this article how quickly we can make our Azure DevOps content discoverable. While their are considerations moving forward this showcases a direction towards agentic inner sourcing. Feel free to comment below how you think this approach could be extended or augmented for other use cases! Resources MCP Server Config (/.vscode/mcp.json) { "inputs": [ { "id": "ado_org", "type": "promptString", "description": "Azure DevOps organization name (e.g. 'contoso')" } ], "servers": { "ado": { "type": "stdio", "command": "npx", "args": ["-y", "@azure-devops/mcp", "${input:ado_org}"] } } } Copilot Instructions (/.github/copilot-instructions.md) # GitHub Copilot Instructions for Azure DevOps MCP Integration This project uses Azure DevOps with MCP server integration to provide organizational context awareness. Always check to see if the Azure DevOps MCP server has a tool relevant to the user's request. ## Core Principles ### 1. Azure DevOps Integration - **Always prioritize Azure DevOps MCP tools** when users ask about: - Work items, stories, bugs, tasks - Pull requests and code reviews - Build pipelines and deployments - Repository operations and branch management - Wiki pages and documentation - Test plans and test cases - Project and team information ### 2. Organizational Context Awareness - Before suggesting solutions, **check existing organizational patterns** by: - Searching code across repositories for similar implementations - Referencing established coding standards and frameworks - Looking for existing shared libraries and utilities - Checking architectural decision records (ADRs) in wikis ### 3. Cross-Repository Intelligence - When providing code suggestions: - **Search for existing patterns** in other repositories first - **Reference shared libraries** and common utilities - **Maintain consistency** with organizational standards - **Suggest reusable components** when appropriate ## Tool Usage Guidelines ### Work Items and Project Management When users mention bugs, features, tasks, or project planning: ``` ✅ Use: wit_my_work_items, wit_create_work_item, wit_update_work_item ✅ Use: wit_list_backlogs, wit_get_work_items_for_iteration ✅ Use: work_list_team_iterations, core_list_projects ``` ### Code and Repository Operations When users ask about code, branches, or pull requests: ``` ✅ Use: repo_list_repos_by_project, repo_list_pull_requests_by_repo ✅ Use: repo_list_branches_by_repo, repo_search_commits ✅ Use: search_code for finding patterns across repositories ``` ### Documentation and Knowledge Sharing When users need documentation or want to create/update docs: ``` ✅ Use: wiki_list_wikis, wiki_get_page_content, wiki_create_or_update_page ✅ Use: search_wiki for finding existing documentation ``` ### Build and Deployment When users ask about builds, deployments, or CI/CD: ``` ✅ Use: pipelines_get_builds, pipelines_get_build_definitions ✅ Use: pipelines_run_pipeline, pipelines_get_build_status ``` ## Response Patterns ### 1. Discovery First Before providing solutions, always discover organizational context: ``` "Let me first check what patterns exist in your organization..." → Search code, check repositories, review existing work items ``` ### 2. Reference Organizational Standards When suggesting code or approaches: ``` "Based on patterns I found in your [RepositoryName] repository..." "Following your organization's standard approach seen in..." "This aligns with the pattern established in [TeamName]'s implementation..." ``` ### 3. Actionable Integration Always offer to create or update Azure DevOps artifacts: ``` "I can create a work item for this enhancement..." "Should I update the wiki page with this new pattern?" "Let me link this to the current iteration..." ``` ## Specific Scenarios ### New Feature Development 1. **Search existing repositories** for similar features 2. **Check architectural patterns** and shared libraries 3. **Review related work items** and planning documents 4. **Suggest implementation** based on organizational standards 5. **Offer to create work items** and documentation ### Bug Investigation 1. **Search for similar issues** across repositories and work items 2. **Check related builds** and recent changes 3. **Review test results** and failure patterns 4. **Provide solution** based on organizational practices 5. **Offer to create/update** bug work items and documentation ### Code Review and Standards 1. **Compare against organizational patterns** found in other repositories 2. **Reference coding standards** from wiki documentation 3. **Suggest improvements** based on established practices 4. **Check for reusable components** that could be leveraged ### Documentation Requests 1. **Search existing wikis** for related content 2. **Check for ADRs** and technical documentation 3. **Reference patterns** from similar projects 4. **Offer to create/update** wiki pages with findings ## Error Handling If Azure DevOps MCP tools are not available or fail: 1. **Inform the user** about the limitation 2. **Provide alternative approaches** using available information 3. **Suggest manual steps** for Azure DevOps integration 4. **Offer to help** with configuration if needed ## Best Practices ### Always Do: - ✅ Search organizational context before suggesting solutions - ✅ Reference existing patterns and standards - ✅ Offer to create/update Azure DevOps artifacts - ✅ Maintain consistency with organizational practices - ✅ Provide actionable next steps ### Never Do: - ❌ Suggest solutions without checking organizational context - ❌ Ignore existing patterns and implementations - ❌ Provide generic advice when specific organizational context is available - ❌ Forget to offer Azure DevOps integration opportunities --- **Remember: The goal is to provide intelligent, context-aware assistance that leverages the full organizational knowledge base available through Azure DevOps while maintaining development efficiency and consistency.**1.3KViews1like3CommentsHost remote MCP servers on Azure Functions
Model Context Protocol (MCP) servers allow AI agents to access external tools, data, and systems, greatly extending the capability and power of agents. When you’re ready to expose your MCP servers externally, within your organization or to the world, it’s important that the servers are run in a secure, scalable, and reliable environment. Azure Functions provides such a robust platform for hosting your remote MCP servers, offering high scalability with the Flex Consumption plan, built‑in authentication feature for Microsoft Entra and OAuth, and a serverless billing model. The platform also offers two hosting options for added flexibility and convenience. The options allow for hosting of MCP servers built with Azure Functions MCP extension or the official MCP SDKs. Azure Functions MCP Extension (GA) The MCP extension allows you to build and host servers using Azure Functions programming model, i.e. using triggers and bindings. The MCP tool trigger allows you to focus on implementing tools you want to expose, instead of worrying about handling protocol and server logistics. The MCP extension launched as public preview back in April and is now generally available, with support for .NET, Java, JavaScript, Python, and Typescript. New features in the extension Support for streamable-http transport Support for the newer streamable-http transport is added to the extension. Unless your client specifically requires the older Server-Sent Events (SSE) transport, you should use the streamable-http. The two transports have different endpoints in the extension: Transport Endpoint Streamable HTTP /runtime/webhooks/mcp Server-Sent Events (SSE) /runtime/webhooks/mcp/sse Defining server information You can use the extensions.mcp section in host.json to define MCP server information. { "version": "2.0", "extensions": { "mcp": { "instructions": "Some test instructions on how to use the server", "serverName": "TestServer", "serverVersion": "2.0.0", "encryptClientState": true, "messageOptions": { "useAbsoluteUriForEndpoint": false }, "system": { "webhookAuthorizationLevel": "System" } } } } Built-in server authentication and authorization The built-in feature implements the requirements of the MCP authorization protocol, such as issuing 401 challenge and hosting the Protected Resource Metadata document. You can configure it to use identity providers like Microsoft Entra for server authentication. In addition to server authenticating, you can also leverage this feature to implement on-behalf-of (OBO) auth flows where the client invokes a tool that accesses some downstream services on-behalf-of the user. Learn more about the built-in authentication and authorization feature. Mavin Build Plugin for Java For Java applications, the Maven Build Plugin (version 1.40.0) parses and verifies MCP tool annotations during build time. This process automatically generates the correct MCP extension configuration, ensuring that the MCP tool defined by the user is properly set up. The build-time analysis is especially beneficial for Java apps, as it allows developers to utilize the MCP extension without concerns about increased cold start times. We'll continuously enhance the plugin’s capabilities. Upcoming improvements, such as property type inference, will reduce manual configuration and make it even easier to use the McpToolTrigger. Get started Checkout the quickstarts to get an MCP extension server deployed in minutes: C# (.NET) remote-mcp-functions-dotnet Python remote-mcp-functions-python TypeScript (Node.js) remote-mcp-functions-typescript Java remote-mcp-functions-java References Learn more about the MCP extension and tool trigger in official documentations. Self‑hosted MCP server (public preview) In addition to the MCP extension, Azure Functions also supports hosting MCP servers implemented with the official SDKs. This is a suitable option for teams that have existing SDK‑based servers or who favor the SDK experience over the Functions programming model. There is no need to modify your server code; you can lift and shift these MCP servers to Azure Functions— which is why they are termed self‑hosted. The hosting capability supports the following features: Stateless servers that use the streamable-http transport. If you need your server to be stateful, consider using the Functions MCP extension for now. Servers implemented with Python, TypeScript, C#, or Java MCP SDK. Built-in server authentication and authorization like the MCP extension Hosting requirement Self-hosted MCP servers are deployed to the Azure Functions platform as custom handlers. You can think of custom handlers as lightweight web servers that receive events from the Functions host. The only requirement for hosting the MCP server is a file called host.json. Add this file to your project root to tell Functions how to run the server. An example host.json for a Python server looks like: { "version": "2.0", "configurationProfile": "mcp-custom-handler", "customHandler": { "description": { "defaultExecutablePath": "python", "arguments": ["path to main python script, e.g. hello.py"] }, "port": "8000" } } Get started Check out quickstarts to get your self-hosted MCP server deployed in minutes: C# (.NET) mcp-sdk-functions-hosting-dotnet Python mcp-sdk-functions-hosting-python TypeScript (Node.js) mcp-sdk-functions-hosting-node Java Coming soon! References Read the official documentation of self-hosted MCP servers and learn about integrations with Azure services like Foundry and API Center. For .NET developers - check out the overview of self-hosted MCP servers from the recent .NET Conference! We’d love to hear from you! Let us know your thoughts about hosting remote MCP server on Azure Functions. Does either of the options meet your needs? What other MCP features are you looking for? Let us know what you’d like us to prioritize next!1KViews3likes1Comment